SOAP I: Intro and Message
Formats

Marlon Pierce, Bryan Carpenter, Geoffrey Fox
Community Grids Lab
Indiana University

SOAP Primary References

* SOAP i1s defined by a number of links

* See primarily the “Primer” and “Messaging
Framework” links.
 The actual SOAP schema 1s available from

— It 1s pretty small, as these things go.

SOAP and Web Services

* QOur previous lectures have
looked at WSDL

— Defines the interfaces for
remote services.

— Provides guidelines for

constructing clients to the
service.

— Tells the client how to }S{OAP . SOAP
communicate with the eques Response
service. — \p

e The actual
communications are
encoded with SOAP.

— Transported by HTTP

Defining SOAP Messages

* (G1ven what you have learned about WSDL,
imagine 1t 1s your job to design the message
interchange layer.

— What are the requirements?

* Note SOAP actually predates WSDL, so
this 1s 1n reverse order.

Web Service Messaging
Infrastructure Requirements?

Define a message format

— Define a messaging XML schema

— Allow the message to contain arbitrary XML from other schemas.
Keep It Simple

— Messages may require advanced features like security, reliability, conversational
state, etc.

— KISS, so don’t design these but do design a place where this sort of advanced
information can go.

Tell the message originator is something goes wrong.
Define data encodings
— That is, you need to tell the message recipient the types of each piece of data.

Define some RPC conventions that match WSDL

— Your service will need to process the message, so you need to provide some simple
conventions for matching the message content to the WSDL service.

Decide how to transport the message.
— Generalize it, since messages may pass through many entities.

Decide what to do about non-XML payloads (movies, images, arbitrary
documents).

SOAP Lecture Parts

SOAP Messages:

— Headers and body elements with examples.

SOAP Encoding:

— Rules for encoding data.
— Focus on SOAP for RPC

SOAP Routing and Processing

SOAP Over HTTP:
— How SOAP gets sent over the wire.

SOAP Messaging

SOAP Basics

* SOAP is often thought of as a protocol extension for doing
Remote Procedure Calls (RPC) over HTTP.

— This 1s how we will use it.

« This is not completely accurate: SOAP is an XML
message format for exchanging structured, typed data.
— It may be used for RPC in client-server applications
— May be used to send XML documents
— Also suitable for messaging systems (like JMS) that follow one-to-
many (or publish-subscribe) models.
 SOAP i1s not a transport protocol. You must attach your
message to a transport mechanism like HTTP.

What Does SOAP Look Like?

* The next two slides shows examples of
SOAP message.

— It’s just XML

* First slide 1s an example message that might
be sent from a client to the echo service.

» Second slide 1s an example response.
— I have highlighted the actual message payload.

SOAP Request

<?xml version=°1.0> 7>
<soapenv:Envelope
xmlns:soapenv=""http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd=http://www.w3.0rg/2001/XMLSchema
xmlns:xsi=""http://www.w3.0rg/2001/XMLSchema-instance'>
<soapenv:Body>
<nsl:echo
soapenv:encodingStyle=""http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="http://.../axis/services/EchoService'>
<in(xsi:type="xsd:string">Hello World</in0>
</nsl:echo>
</soapenv:Body>
</soapenv:Envelope>

SOAP Response

<?xml version=°1.0> 7>
<soapenv:Envelope
xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsd=http://www.w3.0rg/2001/XMLSchema
xmlns:xsi=""http://www.w3.0rg/2001/XMLSchema-instance'>
<soapenv:Body>
<nsl:echoResponse
soapenv:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
xmlns:ns1="http://../axis/services/echoService''>
<echoReturn xsi:type=*“String*“> Hello World</echoReturn>
</nsl:echoResponse>
</soapenv:Body>
</soapenv:Envelope>

SOAP Structure

* SOAP structure is very
simple.
— 0 or more headers elements
— 1 body element
— Envelop that wraps it all.

* Body contains XML
payload.

 Headers are structured the
same way.

— Can contain additional
payloads of “metadata”

— Security information,
quality of service, etc.

SOAP Schema Notes

All of this 1s expressed formally
in the SOAP schema.

XML on the right 1s taken

directly from the SOAP
schema.

This just encodes the previously
stated rules.

Also, note that the SOAP
envelope can contain other
attributes.

— <anyAttribute> tag is the
wildcard

<xs:complexType
name="Envelope'>

<xs:sequence>

<xs:element ref="tns:Header"
minOccurs="0" />

<xs:element ref="tns:Body"
minOccurs="1" />

</Xs:sequence>

<xs:anyAttribute
namespace="##other"
processContents="lax" />

</xs:complexType>

Options on <xsd:any/>
(From DBC’s Schema Lectures)

» The <xsd:any/> clement takes the usual optional maxOccurs,
minOccurs attributes.

« Allows a namespace attribute taking one of the values:

— ##any (the default),
— ##other (any namespace except the target namespace),
— List of namespace names, optionally including either
##targetNamespace or ##local.
Controls what elements the wildcard matches, according to
namespace.

It also allows a processContents attribute taking one of the
values strict, skip, lax (default strict), controlling the extent to
which the contents of the matched element are validated.

[Lax

» “If the item, or any 1tems among its children
1f 1t's an element information item, has a
uniquely determined declaration available,
it must be -valid- with respect to that
definition.”

» That 1s, -validate: where you can, don't
worry when you can't.

SOAP Envelop

* The envelop i1s the root container of the SOAP message.

* Things to put in the envelop:

— Namespaces you will need.

* http://schemas.xmlsoap.org/soap/envelope is required, so that the
recipient knows it has gotten a SOAP message.

 Others as necessary

— Encoding rules (optional)
» Specific rules for deserializing the encoded SOAP data.
* More later on this.

« Header and body elements.

— Headers are optional, body is mandatory.

— Headers come first in the message, but we will look at the body
first.

SOAP Headers

SOAP Body elements contain the primary message contents.

Headers are really just extension points where you can include
elements from other namespaces.

— 1.e., headers can contain arbitrary XML.
Headers may be processed independently of the body.
Headers may optionally define encodingStyle.
Headers may optionally have a “role” attribute

Header entries may optionally have a “mustUnderstand” attribute.

— mustUnderstand=1 means the message recipient must process the header
element.

— If mustUnderstand=0 or 1s missing, the header element 1s optional.

Header Definition From SOAP
Schema

<xs:element name="Header" type="tns:Header" />
<xs:complexType name="Header">
<xs:annotation>

<xs:documentation>Elements replacing the wildcard MUST be
namespace qualified, but can be in the
targetNamespace</xs:documentation>

</Xs:annotation>
<xs:sequence>

<xs:any namespace="##any" processContents="lax"
minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax" />
</xs:complexType>

Example Uses of Headers

» Security: WS-Security and SAML place additional security
information (like digital signatures and public keys) in the
header.

* Quality of Service: SOAP headers can be used 1f we want
to negotiate particular qualities of service such as reliable
message delivery and transactions.

— We will look at reliable messaging in detail in a future lecture.

« Session State Support: Many services require several steps
and so will require maintenance of session state.

— Equivalent to cookies in HTTP.
— Put session i1dentifier in the header.

Example Header from SOAP Primer

<?xml version='1.0" 7>
<env:Envelope xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<env:Header>

<m:reservation xmlns:m="...
env:role="http://www.w3.0rg/2003/05/soap-envelope/role/next"
env:mustUnderstand="true">

<m:reference>uuid:093a2dal-q345-739r-basSd-pqft98fe8;7d
</m:reference>
<m:dateAndTime>2001-11-29T13:20:00.000-05:00
</m:dateAndTime>
</m:reservation>
<n:passenger xmlns:n=*...

env:role="http://www.w3.0rg/2003/05/soap-envelope/role/next"
env:mustUnderstand="true">

<n:name>Ake Jogvan @yvind</n:name>
</n:passenger>
</env:Header>

"

Explanation of Header Example

* In this particular case, we may imagine an
ongoing transaction for making an airline
reservation.

— Involves several steps and messages, so client must
remind the server of this state information when
sending a message.

— The actual header content all comes from other
namespaces.

 The role and mustUnderstand attributes are from
SOAP.

Header Processing

* SOAP messages are allowed to pass through many
intermediaries before reaching their destination.
— Intermediary=some unspecified routing application.
— The final destination processes the body of the message.

« Headers are allowed to be processed independently of the
body.
— May be processed by intermediaries.
* This allows an intermediary application to determine 1f it

can process the body, provide the required security,
session, or reliability requirements, etc.

Header Roles

SOAP nodes may be assigned role designations.

SOAP headers then specify which role or roles
should process.

Standard SOAP roles:
— None: SOAP nodes MUST NOT act in this role.

— Next: Each SOAP intermediary and the ultimate SOAP
recetver MUST act 1n this role.

— UltimateReceiver: The ultimate receiver MUST act in
this role.

In our example, all nodes must process the header
entries.

SOAP Body

Body entries are really just placeholders for XML
from some other namespace.

The body contains the XML message that you are
transmitting.

It may also define encodingStyle, just as the
envelop.

The message format 1s not specified by SOAP.

— The <Body></Body> tag pairs are just a way to notify
the r601p1ent that the actual XML message 1s contained
therein.

— The recipient decides what to do with the message.

SOAP Body Element Definition

<xs:element name="Body" type="tns:Body" />
<xs:complexType name="Body">
<xs:sequence>
<XS:any namespace="##any"

processContents="lax" minOccurs="0*
maxOccurs="unbounded" />

</xs:sequence>

<xs:anyAttribute namespace="##other"
processContents="lax" />

</xs:complexType>

SOAP Body Example

<soapenv:Body>
<nsl:echo soapenv:encodingStyle=
""http://schemas.xmlsoap.org/soap/encoding/"
xmlns:nsl=
"http://.../axis/services/EchoService'>

<in(xsi:type="xsd:string"'>Hello
World</in0>

</nsl:echo>
</soapenv:Body.

C

la B

I'he <Body> tag 1s extended to include elements

Example SOAP Body Details

efined 1n our Echo Service WSDL schema.

rm

T'his particular style is called RPC.

— Maps WSDL bindings to SOAP body elements.

— Guidelines will be given in next lecture.
xsi-type 1s used to specify that the <in0> element
takes a string value.

— This 1s data encoding

— Data encoding rules will also be examined in next

lectures.

When Things Go Wrong

One of the precepts of distributed

computing is that things will go

wrong in any operational system.

— Servers will fail, networks will go

down, services will change or go
away.

Need a way to communicate

failures back to message

originators.

— Consider HTTP faults

SOAP Provides its own fault
communication mechanism.

These may be in addition to HTTP
errors when we use SOAP over
HTTP.

HTTP Error Messages

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required
408 Request Time-Out

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large
414 Request-URL Too Large
415 Unsupported Media Type
500 Server Error

501 Not Implemented

502 Bad Gateway

503 Out of Resources

504 Gateway Time-Out

505 HTTP Version not supported

SOAP Fault Scenarios

« HTTP errors will take precedence.
— Involve message transmission problems.

e SOAP errors occur during the processing of the message.
— HTTP 500 Internal Server Error

 Faults can occur when

— You sent an improperly formatted message that the service can’t
process (an integer instead of a string, for example).

— There 1s a SOAP version mismatch
* You sent SOAP 1.2 and I understand SOAP 1.0

— You have a “must understand” header that can’t be understood.

— You failed to meet some required quality of service specified by a
header.

Sample SOAP Fault
From SOAP Primer

<env:Body>
<env:Fault>
<env:Code>
<env:Value>env:Sender</env:Value>
<env:Subcode>
<env:Value>rpc:BadArguments</env:Value>
</env:Subcode>
</env:Code>
<env:Reason>
<env:Text xml:lang="en-US">Processing error</env:Text>
</env:Reason>
<env:Detail>
<e:myFaultDetails> ...</e:myFaultDetails>
</env:Detail>
</env:Fault>
</env:Body>

Fault Structure from SOAP Schema

* Fault messages are
included 1n the
<body>.

e <Code> and
<Reason> are
required.

e <Node>,<Role>, and

<Detail> are optional.

<xs:element name=""Fault" type="tns:Fault"
/>

<xs:complexType name=""Fault*
final="extension">
<xs:sequence>
<xs:element name="'"Code*
type=""tns:faultcode" />
<xs:element name="Reason"
type='"tns:faultreason" />
<xs:element name=""Node"
type=""xs:anyURI“ minOccurs="0" />
<xs:element name=""Role"
type=""xs:anyURI" minOccurs="0" />
<xs:element name="'"Detail*
type=""tns:detail" minOccurs="0" />
</xs:sequence>
</xs:complexType>

SOAP Fault Codes

These are one of the
required subelements of
Faults.

They must contain one of
the standard fault code
enumerations (next slide).

They may also contain
subcodes.

— For more detailed error
messages.

<xs:complexType
name="faultcode">

<xs:sequence>
<xs:element
name="Value"
type="tns:faultcodeEnum" />
<xs:element name="Subcode"
type="tns:subcode"
minOccurs="0" />
</Xs:sequence>
</xs:complexType>

Enumerating Faults

Fault codes must contain one of the
standard fault messages.

DataEncodingUnknown: you sent
data encoded in some format that [
don’t understand.

MustUnderstand: I don’t support
this header.

Receiver: message was correct, but
receiver could not process for some
reason.

Sender: message was incorrectly
formatted, or lacked required
additional information

— Couldn’t authenticate you

VersionMismatch: I don’t support
your version of SOAP.

<xs:simpleType name="faultcodeEnum">
<xs:restriction base="xs:QName'">

<xs:enumeration
value="tns:DataEncodingUnkno
wn'" />

<Xs:enumeration
value="tns:MustUnderstand" />

<XS:enumeration
value="tns:Receiver" />

<XS:enumeration
value="tns:Sender" />

<Xs:enumeration
value="tns:VersionMismatch" />

</xs:restriction>
</xs:simpleType>

Fault Subcodes

* Fault codes may contain
subcodes that refine the
message.

o Unlike Codes, subcodes
don’t have standard
values.

— Instead, they can take any
QName value.

— This is an extensibility
mechanism.
* Subcodes may contain
other subcodes.

<env:Code>
<env:Value>env:Sender
</env:Value>

<env:Subcode>
<env:Value>rpc:Bad
Arguments

</env:Value>
</env:Subcode>
</env:Code>

Fault Reasons

* This is intended to provide

human readable reasons
for the fault.

The reason 1is just a simple
string determined by the
implementer.

— For Axis, this is the Java
exception name.

— At least, for my version of
Axis.
We must also provide at
least one language.

<xs:complexType name="faultreason'>
<xs:sequence>

<xs:element name="Text"
type="tns:reasontext"
minOccurs="1"
maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="reasontext">
<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute ref="xml:lang"
use="required" />

</xs:extension>
</xs:simpleContent>
</xs:complexType>

Optional Fault Elements

Code and Reason are required.
Node, Role, and Detail are
optional

Node and Role are used in
SOAP processing steps that we

have lightly covered.

— SOAP messages may go
through several intermediaries.
. a
Nodes and roles are needed in
case a fault occurs in an

intermediary.

— Return the URI of the node and
role

Details will be described. “I Check
AuthN”’

“I Check
AuthZ”

]

Fault Detail

A fault detail 1s just an
extension element.
— Carries application specific
information
It can contain any number of
elements of any type.

This 1s intended for the SOAP
implementer to put in specific
information.

— You can define your own
SOAP fault detail schemas
specific to your application.

Axis, for example, includes
Java exception stack traces.

<xs:complexType name="detail">
<xs:sequence>

<xs:any namespace="##any"
processContents="lax"
minOccurs="0"
maxOccurs="unbounded" />

</xs:sequence>

<xs:anyAttribute
namespace="##other"
processContents="lax" />

</xs:complexType>

Next Time

e This lecture has examined the basic SOAP
message format.

* We have not described the following:

— The rules for encoding transmitted data
 Specifically, how do I encode XML for RPC?
» How does this connect to WSDL?

— The rules for transmitting messages.

I also want to give a specific example of extending
SOAP to support reliable messaging.

