SOAP Routing and
Processing Concepts

Marlon Pierce, Bryan Carpenter, Geoffrey Fox
Community Grids Lab
Indiana University
mpierce@cs.indiana.edu
http://www.grid2004.org/spring2004

SOAP Processing Assumptions

SOAP assumes
messages have an
originator, one or more
ultimate receivers, and
Zero or more
intermediaries.

The reason is to support
distributed message
processing.

That is, we can go
beyond client-server
messaging.

Originator

Intermediary

Recipient

Intermediary

Intermediary

Processing and SOAP Structure

« SOAP processing rules are directly related to the SOAP
message envelope:
— The Body is only for final recipients.

— Header sections may be processed by one or more
intermediaries as well as final recipient nodes.

— SOAP headers are the extensibility elements for defining other
features.
« The Header therefore has three optional attributes:

— Role (called actorin SOAP 1.0 and 1.1): Determines is a header
should process a particular header.

— mustUnderstand: If set to “true”, the node must know how to
process the header.

— Relay: Indicates whether or not an unprocessed header block
should be forwarded.

Example Uses of Headers

« Security: WS-Security and SAML place additional
security information (like digital signatures and public
keys) in the header.

* Quality of Service: SOAP headers can be used if we
want to negotiate particular qualities of service such as
reliable message delivery and transactions.

— Reliable Message is one example.

« Session State Support: Many services require several
steps and so will require maintenance of session state.
— Equivalent to cookies in HTTP.
— Put session identifier in the header.

Example Header from SOAP
Primer

<?xml version='1.0' ?>

<env:Envelope xmins:env="http://www.w3.0rg/2003/05/soap-
envelope">

<env:Header>

<m:reservation xmins:m="..."
env:role="http://www.w3.0rg/2003/05/soap-
envelope/role/next" env:mustUnderstand="true">

<m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d
</m:reference>
<m:dateAndTime>2001-11-29T13:20:00.000-05:00
</m:dateAndTime>
</m:reservation>
<n:passenger xmins:n="..."

env:role="http://www.w3.0rg/2003/05/soap-
envelope/role/next" env:mustUnderstand="true">

<n:name>Ake Jogvan @yvind</n:name>
</n:passenger>
</env:Header>

SOAP Nodes and Roles

Originators, recipients, and receivers of SOAP messages are all
called SOAP Nodes.

— Each node is labeled with a URI

For a particular message, the Node can act in one or more SOAP
Roles.

— Each role is labeled with a URI

— The following table list predefined roles.
You can define your own roles

— “Log message” role

— “Check authorization” role
When a node receives a message, it must examine the message for
a role definition and process the headers as required.

The SOAP specification itself does not specify how you assign a
role to a node.

— This depends upon the implementation.

Standard SOAP 1.2 Roles

Short-name | Name Description
"http://www.w3.0rg/2003 | Each SOAP intermediary and the
next /05/soap- ultimate SOAP receiver MUST act in
envelope/role/next" this role.
" _ SOAP nodes MUST NOT act in this
hitp:/lwww.w3.0rg/2003 role. That s, the header block should
none /05/soap-

envelope/role/none"

not be directly processed. It may carry
supplemental information.

ultimateRecei
ver

"http://www.w3.0rg/2003
/05/soap-
envelope/role/ultimateR
eceiver"

The ultimate receiver MUST act in this
role. If no role is specified in a header, it
is treated as being in this role.

Understanding Headers

SOAP role definitions may require SOAP nodes to
process headers.

In a distributed processing model, it is possible that
certain nodes will not have the required capability to
process the header.

We must therefore identify a header as optional or
required.

We do this with the mustUnderstand attribute.

— If true, the node must process the header or else stop
processing and return a Fault message.

— If false, the header is optionally processed, depending on the
role of the node. This is the default value.
The SOAP specification requires that a node identify all
required headers and determine if they are understood
before any processing takes place.

Relaying SOAP Messages

As we have seen, SOAP headers may or may not be
processed by an intermediate node.

— mustUnderstand and role attributes determine this.

Processed headers must be removed from the SOAP
message before forwarding.

But there are times when a node role indicates
processing, but processing is optional.
— Role is “next” but mustUnderstand="false”

What happens to these headers?

SOAP 1.2 defines an optional attribute called “relay” to
resolve this.

— Relay is a boolean attribute.

Summary of Relay Forwarding

Role Header block
Short-name | Assumed | Understood & Processed | Forwarded
Yes No, unless reinserted
next Yes No, unless relay
No _n "
="true
Yes No, unless reinserted
Yes
user-defined No NO urlless relay
="true
No n/a Yes
ultimateRec Yes n/a
. Yes
elver No n/a
none No n/a Yes

SOAP Intermediaries

« Forwarding Intermediaries:

— Are used to route messages to other SOAP nodes,
based on header information.

— May do additional processing as described in a SOAP
header.
* Active Intermediaries do additional processing to
a message that is NOT described in any of the
message headers.

— For example, may insert additional headers needed
for additional processing, or may encrypt parts of the
message for security.

SOAP Forwarding Intermediaries

* As we have seen, a forwarding intermediary must do the
following:

— Process any headers as required by its role and
mustUnderstand.

— Relay any unprocessed headers.
» |tis also required by the spec to
— Remove all processed header blocks.
— Remove all unprocessed and non-relayable header blocks.
* Forwarding Intermediaries may also insert new headers.

— This may be a reinsertion of a processed header, for example.

— Oddly, there seems to be no built-in way to label a header as
“persistent”.

SOAP + HTTP

A Quick HTTP Lesson

« HTTP is an ASCII * Type this:
request and response — telnet www.cnn.com
protocol. 80

* You can easily send |* Then type
HTTP messages to — GET/HTTP/1.0

your favorite website
and get a response.

Hit enter twice.

You'll get back the
HTML for CNN’s
home page.

Putting SOAP into HTTP

 Assume that | know the
port of a particular HTTP
server that speaks SOAP.

* Then | can easily
construct an HTTP
message with a SOAP
payload.

* Then write the message
to the remote socket.

POST /axis/servicel/echo
HTTP/1.0

Host: www.myservice.com

Content-Type: text/xml;
charset="utf-8”

Content-Length: nnn
SOAPAction=""
<SOAP:env>

</SOAP:evn>

What Does It Mean?

The POST line specifies that we will use the POST
method and assume HTTP 1.0 (not HTTP 1.1).

— /axis/services/echo is the relative path part of the URL.
— Host is in on a separate line.
Host: specifies the name of the host.

Content-Type: Type of content we are sending.
— We must use text/xml for SOAP.
— In general these are called mime-types.

Content-Length: number of characters in the HTTP
payload.

SOAPAction: Recall this from our WSDL Binding
example.

SOAPAction

In SOAP 1.0 this is required by all HTTP request
messages that transmit SOAP.

It is optional in SOAP 1.1, deprecated in 1.2.

It's intended use is to tell the Web Server some
specific intended use.

— The server could use this to short circuit SOAP
message processing if the requested service was
unavailable.

SOAPAction="" means that the intended service

IS identical to the relative path of the POST line.

— /axis/services/Echo

