Web Services Overview

Marlon Pierce
Community Grids Lab
Indiana University

Assignments

Download and install Tomcat (again).
o http://jakarta.apache.org/tomcat/
e You will need two tomcat servers.

Install Apache Axis.

e Use "HappyAxis” to make sure you have done so
correctly.

e http://ws.apache.org/axis/
Design and deploy a sample web service.
Write a client application to use the web service.

Use Google and Amazon WSDL to design your
own client.

This Lecture...

= [his lecture is intended to introduce
the main concepts of Web Services.

= We will also look at some things
(SOAP, WSDL) in detail...

= But the primary purpose is to
introduce topics that will all be
covered in greater detail in future
lectures.

What Are Web Services?

Web services framework is an XML-based distributed
object/service/component system.
o SOAP, WSDL, WSIL, UDDI

o Intended to support machine-to-machine interactions over the
network.

Basic ideas is to build an platform and programming
language-independent distributed invocation system out of

existing Web standards.
o Most standards defined by W3C, Oasis (IP considerations)

o Interoperability really works, as long as you can map XML
message to a programming language type, structure, class,
etc.

Very loosely defined, when compared to CORBA, etc.
Inherit both good and bad of the web
e Scalable, simple, distributed

e But no centralized management, system is inefficient, must be
tolerant of failures.

Basic Architectures:
Serviets/CGl and Web Services

HTTP GET/POST .

Explanation of Previous Slide

= [he diagram on the left represents a standard
web application.

e Browsers converse with web servers using HTTP
GET/POST methods.

o Servlets or CGI scripts process the parameters and take
action, like connect to a DB.

o Examples: Google, Amazon

= On the right, we have a Web services system.

e Interactions may be either through the browser or

through a desktop client (Java Swing, Python, Windows,
etc.)

e [will explain how to do this in several more lectures.
e Examples: Google, Amazon

Some I'erminology

The diagram on the left is called a client/server
system.

The diagram on the right is called a multi-tiered
architecture.

SOAP: Simple Object Access Protocol
o XML Message format between client and service.

WSDL: Web Service Description Language.
e Describes how the service is to be used

e Compare (for example) to Java Interface.

e Guideline for constructing SOAP messages.

e WSDL is an XML language for writing Application
Programmer Interfaces (APIs).

Amazon and Google Experiment
with Web Services

s Both Google and Amazon have conducted
open experiments with Web services.

= Why? To allow partners to develop custom
user interfaces and applications that work

Google and Amazon data and services.

= You can download their APIs and try them.
e http://www.google.com/apis/
e http://www.amazon.com/webservices

Why Use Web Services?

s Web services provide a clean separation

between a capability and its user
Interface.

= [his allows a company (Google) with a
sophisticated capability and huge amounts

of data to make that capability available to
its partners.

e "Don’t worry about how PageRank works or
web robots or data storage. We will do that.
You just use this WSDL API to build your client
application to use our search engine.”

A Google Aside

s Google’s PageRank system was developed
by two Stanford grad students.

s Open algorithm published in scholarly
journals, conferences.
e Previous (and lousy) search engines were all
proprietary.
s See for example
http://www7.scu.edu.au/programme/fullp
apers/1921/com1921.htm

When To Use Web Services?

Applications do not have severe restrictions on
reliability: and speed.
Two or more organizations need to cooperate

e One needs to write an application that uses another’s
service.

Services can be upgraded independently of
clients.

e Google can improve PageRank implemenation without
telling me.

e Just don’t change the WSDL.

Services can be easily expressed with simple
request/response semantics and simple state.
e HTTP and Cookies, for example.

Relationship to Previous
Work

Connecting to Bryan'’s
Lectures on XML, Java, Java
Servlets and JSP.

XML Overview

XML is a language for building languages.
Basic rules: be well formed and be valid

Particular XML “dialects™ are defined by an
XML Schema.

o XML itself is defined by its own schema.

XML is extensible via namespaces

Many non-Web services dialects
e RDF, SVG,GML, XForms, XHTML

Many basic tools available: parsers, XPath
and XQuery for searching/querying, etc.

XML and Web services

XML provides a natural substrate for distributed
computing:

e [ts just a data description.

o Platform, programming language independent.

So let’s describe the pieces.

Web Services Description Language (WSDL)

° E)Des)cribes how to invoke a service (compare with CORBA
L).

e Can bind to SOAP, other protocols for actual invocation.
Simple Object Access Protocol (SOAP)

o Wire protocol extension for conveying RPC calls.
e Can be carried over HTTP, SMTP.

Web Service Architectures

= [he following examples illustrate how Web
services interact with clients.

s For us, a client is typically a JSP, servlet,

or portlet that a user accesses through
browser.

m YOU can also build other clients

e Web service interoperability means that clients
and services can be in different programming
languages (C/C++, python, java, etc).

Ul Server has stubs

for all services (data |

base access, job
submission, file
transfer, etc.)

Browser Interface

v

HTTP(S)

User Interface

Server + Clie
Stubs

nt

\ 4

SOAP/HTTP(S)

A particular server
has several
service implementations.

Server plus
Service

Implementations

\

Backend is a database,
application code plus
operating system.

/

Backend
Resources

———— Local invocation, JDBC

connection or Grid Protocol

Before Going On...

= In the next several slides we’ll go into the
details of WSDL and SOAP.

s But in practice, you don't need to work
directly with either.

e Most tools that I'm familiar with generate the
WSDL for you from your class.

e SOAP messages are constructed by classes.

e Generated client stubs will even hide SOAP
classes behind a local “facade” that looks like a
local class but actually constructs SOAP calls to
the remote server.

Web Services
Description Language

Defines what your service
does and how it is invoked.

WSDL Overview

s WSDL is an XML-based Interface Definition
Language.

e You can define the APIs for all of your services in WSDL.
= WSDL docs are broken into five major parts:

o Data definitions (in XML) for custom types
o Abstract message definitions (reqguest, response)

Organization of messages into “ports” and “operations”
(=>classes and methods).

e Protocol bindings (to SOAP, for example)
e Service point locations (URLs)
= Some interesting features

e A single WSDL document can describe several versions
of an interface.

e A single WSDL doc can describe several related services.

The Java Code

public Strindg[] execlocalCommand(String
command) {

Runtime rt = Runtime.getRuntime();

String stdout="",stderr="";
try {

Process p = rt.exec(command);
BufferedReader in=

new BufferedReader(new
InputStreamReader(p.getlinputStream()));

BufferedReader err=

new BufferedReader(new
InputStreamReader(p.getErrorStream()));

Java Code Continued

String line;
whi e((line=in.readLine(p!= null)
{stdout+=Iline+"\n";

in.close();
while (éline=err.readLine())!=nu||)
{st

err+=line+"\n"; }
err.close();
+//End of try{}
catch (Exception eio) {...}
String[] retstring=new String[2];
retstring[0]=stdout;
retstring[1]=stderr;
return retstring;
» //End of method

WSDL Example: Job
Submission

= Our example is a simple service that can
executes local (to the server) commands.

s Service implementation (in Java) has a
single method

e Execlocal takes a single string argument (the
command to exec)

e Returns a 2D string array (standard out and
error).
= The WSDL maps to a Java interface in this
CasSe.

The Full WSDL

= [he following slide contains the WSDL
definition for the Job Submit service.

o | omitted some data definitions to get into one
page with a decent font.

s AsS you can see, WSDL is very verbose
o Typically, you don’t write WSDL

e This file was actually generated from my Java
class by Apache Axis.

= We will go through the parts of the doc in
some detail.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions>
<wsdl:message name=""execLocalCommandResponse''>
<wsdl:message name=""execLocalCommandRequest'>
<wsdl:portType name="SJwsImp''>
<wsdl:operation name="execLocalCommand" parameterOrder="in0">
<wsdl:input message=""impl:execLocalCommandRequest"
name=""execLocalCommandRequest' />
<wsdl:output message=""impl:execLocalCommandResponse"
name=""execLocalCommandResponse'' />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name=""SubmitjobSoapBinding" type="impl:SJwsImp'>
<wsdlsoap:binding style="rpc" transport='""http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="execLocalCommand'>
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="execLocalCommandRequest'>
<wsdl:output name="""execLocalCommandResponse''>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name=""SJwsImpService'>
<wsdl:port binding="impl:SubmitjobSoapBinding'" name=""Submitjob">
</wsdl:service>
</wsdl:definitions>

WSDL Elements |

= [ypes: describes custom XML data types
(optional) used in messages.

o For OO languages, types are a limited object
serialization.

o We'll see an example for defining arrays.

s Message: abstractly defines the messages that
need to be exchanged.

e Conventionally messages are used to group requests
and responses.

e Each method/function in the interface contains 0-1
request and 0-1 response messages.

e Consists of part elements. Usually you need one part for
each variable sent or received. Parts can either be XML
primitive types or custom complex types.

T'ypes for Job Submission

s Recall that the job submission
service sends a string (the
command) and returns a 2D array.

s Strings are XML Schema primitive
types, so we don‘t need a special
definition in our WSDL.

s Arrays are not primitive types. They
are defined in the SOAP schema, so
we will import that definition.

e In other words, SOAP has rules for
array encoding; vanilla XML does not.

Example: WSDL types for Custom
Data Definition

<wsdl:types>
<schema targetNamespace=""http://....GCWS/services/Submitjob"
xmlIns:impl="http://.... GCWS/services/Submitjob"
xmins="http://www.w3.0rg/2001/XMLSchema''>
<import namespace='"http://schemas.xmlsoap.org/soap/encoding/" />
<complexType name="ArrayOf xsd string'>
<complexContent>
<restriction base="soapenc:Array'>
<attribute ref="'soapenc:arrayType"
wsdl:arrayType="xsd:string[]" />
</restriction>
</complexContent>
</complexType>
<element name=""'ArrayOf xsd_string" nillable="'true"
type=""impl:ArrayOf xsd_string" />
</schema>
</wsdl:types>

What Does It Mean?

s \We start with some useful
namespace definitions.

s \We next import the SOAP schema
o [t has the array definitions we need.

= Finally, we define our own local XML
complex type, ArrayOf_xsd_string.
e This extends the SOAP array type
o We restrict this to String arrays.

Message Elements for Job
Submission Service

Our service implementation has one method of
the form (in Java)

public String[] execlLocalCommand(String cmd)

This will require one “request” message and one
“response” message.

Each message has one part:

o Request message must send the String cmd.
e Response must get back the String[] array (defined
previously as a custom type).
If we had to pass two input variables, our
“request” message would need two part
elements.

Note the name attributes of messages are
iImportant!

Message Examples for Job
Submission Service

<wsdl:message
name="execLocalCommandResponse">
<wsdl:part

—n

name="execLocalCommandReturn"
type="impl:ArrayOf xsd_string" />
</wsdl:message>
<wsdl:message
name="execLocalCommandRequest">
<wsdl:part name="in0" type="xsd:string" />

</wsdl:message>

portTypes

portType elements map messages to
operations.

You can think of portTer==cIass,
operation==class methods.

Operations can contain input, output,
and/or fault bindings for messages.

An operation may support of the following
message styles:

e One-way: request only

e Two-way: request/response

e Solicit-response: server "push” and client response

o Notification: one-way server push

portType for JobSubmit

s WWe previously defined the messages
and types needed. Now we bind
them into the portType structure.

s PortType names are important
o Will be referenced by binding element.

= Note names of previously defined

messages are used as references in
the operations.

Example WSDL Nugget

<wsdl:portType name="SJwslmp''>
<wsdl:operation name="execLocalCommand"
parameterOrder="in0">
<wsdl:input
message=""impl:execLocalCommandRequest"
name="execLocalCommandRequest" />
<wsdl:output
message=""impl:execL.ocalCommandResponse"
name=""execLocalCommandResponse' />
</wsdl:operation>
</wsdl:portType>

Some Notes on the PortType
Definition

s PortTypes refer to messages by name

e The message attribute in <input> and
<output> elements of <operation> refer to
the name attributes of the previously defined
messages.

e The operation and portType names will
‘?imilarly be used for reference in forthcoming
d(gs.

s Also note "parameterOrder” does what
you would expect. For the current
example, there is only one input
parameter.

PortType Bindings

s portlypes are abstract interface
definitions.
e Don’t say anything about how to invoke a
remote method.
s Remote invocations are defined in binding
elements.

= Binding elements are really just place
holders that are extended for specific
protocols

e WSDL spec provides SOAP, HTTP GET/POST,
and MIME extension schema examples.

SOAP Bindings for JobSubmit
Service

Note that the binding element contains a mixture
of tags from different namespaces (wsdl and
wsdlsoap).

WSDL child elements for binding element are
operation, input, and output.

WSDLSOAP elements are from a different XML
schema (a new one, neither WSDL nor SOAP).

e This is how you extend WSDL bindings: define a new
schema that gives mapping instructions from WSDL to

the protocol of choice.
The binding element name is important, will be
used as a reference by the final port binding.

<wsdl:binding
name=""SubmitjobSoapBinding" type=""impl:SJwsImp''>
<wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="execLocalCommand'>
<wsdlsoap:operation soapAction=""" />
<wsdl:input name="execLocalCommandRequest'>
<wsdlsoap:body

encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
namespace=""http://.... GCWS/services/Submitjob"
use="encoded" />

</wsdl:input>

<wsdl:output name="execL.ocalCommandResponse''>

<wsdlsoap:body

encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
namespace=http://....GCWS/services/Submitjob
use="encoded" />

</wsdl:output>

</wsdl:operation>
</wsdl:binding>

A Closer Look at SOAP Binding

<wsdlsoap:body
encodingStyle=http:/ /schemas.xmlsoap.org/
soap/encoding/
namespace=http://.../GCWS/services/Submi
tjob use="encoded" />

= All this really means is "encode the message by
the rules in encodingStyle and put it in the SOAP
body.”

= [he bindings are just instructions that must be
implemented by the SOAP message generator.

Service and Port Definitions

s SO far, we have defined the class
method interfaces (portTypes) and
the rules for binding to a particular
protocol.

s Port elements define how the
bindings (and thus the portTypes)
are associated with a particular
server.

m | he service element collects ports.

Service and Port Elements for the
Job Submission Service

<wsdl:service name="SJwsImpService">
<wsdl:port
binding="1mpl:SubmitjobSoapBinding"
name="Submitjob">
<wsdlsoap:address
location="http://....GCWS/services/Submitjob" />
</wsdl:port>

</wsdl:service>

Explanation

s Note the port element’s binding attribute
points to the appropriate binding element
by name.

= [he only purpose of the port element is to
point to a service location (a URL). This is
done by extension (SOAP in this case.)

s Ports are child elements of the service
element. A service can contain one or
more ports.

e Note the value of multiple ports: a single
portType may correspond to several ports,
each with a different protocol binding and
service point.

WSDL Trivia

s he schema rules allow all of the elements we
have discussed to appear zero or more times.

= A single WSDL file may contain many portTypes
(although this is not usual).

e You may want to do this to support multiple interface
definitions of a service for backward compatibility.

= Multiple ports may also be used to provide
different views of a service
e One portType defines the interface.
e Another provides access to metadata about the service.

e Yet another may define how the service interacts with
other services via notification/event systems.

Simple Object Access
Protocol

A message format for
exchanging structured, typed
information

SOAP Basics

SOAP is often thought of as a protocol extension
for doing RPC over HTTP.

This is not completely accurate: SOAP is an XML
message format for exchanging structured, typed
data.

It may be used for RPC in client-server
applications but is also suitable for messaging
systems (like JMS) that follow one-to-many (or
publish-subscribe) models.

SOAP is not a transport protocol. You must
attach your message to a transport mechanism
like HTTP.

SOAP Structure

s A SOAP message is contained in an
envelop.

= [he envelop element in turn contain
(in order)

e An optional header with one or more
child entries.

o A body element that can contain one or
more child entries. These child entries
may contain arbitrary XML data.

SOAP Headers

s Headers are really just extension points
where you can include elements from
other namespaces.

e .e., headers can contain arbitrary XML.

s Header entries may optionally have a
“mustUnderstand” attribute.

e mustUnderstand=1 means the message
recipient must process the header element.

o If mustUnderstand=0 or is missing, the header
element is optional.

SOAP Body

s Body entries are really just placeholders
for arbitrary XML from some other

namespace.
s [he body contains the XML message that
you are transmitting.

s |he message format is not specified by

SOAP.
e The <Bod?;> </Body> tag pairs are just a way

to notify the reC|p|ent that the actual XML
message is contained therein.

e The recipient decides what to do with the
message.

Example Messages

s Recall the WSDL interface for "SubmitJob”

e Sends one string command
e Returns array of strings for standard out and error.

s [he envelop is decorated with a few useful
namespaces:

e soapenv defines the version
e Xsd is the Schema definition itself
e XSi defines some useful constants.

= [he body is just an arbitrary XML
fragment.

Assumes the recipient knows what this means.

Recipient must looks up the ExecLocalCommand operation in
the JobSubmit service and passes it one string argument.

The nsl namespace tells the recipient the WSDL namespace
that defines the service.

xsi:type lets the recipient know that the arbitrary XML element
in0 is in fact a string, as defined by the XML Schema.

SOAP Request

<soapenv:Envelope
xmlns:soapenv=""http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd=http://www.w3.0rg/2001/XMLSchema
xmlns:xsi=""http://www.w3.0rg/2001/XMLSchema-instance'>
<soapenv:Body>
nsl:execLocalCommand
soapenv:encodingStyle
="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:nsl
="http://....GCWS/services/Submitjob/GCWS/services/Submitjob''>
<in0 xsi:type="xsd:string''>/usr/bin/csh /tmp/job.script</in(0>
</nsl:execLocalCommand>
</soapenv:Body>
</soapenv:Envelope>

Example Response

s [he structure is the same as the request.

= [he interesting thing here is that the
request returns a 2-element array of two
strings.
e Arrays not defined by XML schema

o SOAP encoding does define arrays, so use
xsi:type to point to this definition.

o <item></item> surrounds each array
element.

x Note that arbitrary XML returns can
likewise be encoded this way.

e Use xsi:type to point to a schema.

SOAP Response

<soapenv:Envelope
xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsd=http://www.w3.0rg/2001/XMLSchema
xmlns:xsi=""http://www.w3.0rg/2001/XMLSchema-instance'>
<soapenv:Body>
<nsl:execLocalCommandResponse
soapenv:encodingStyle=
http://schemas.xmlsoap.org/soap/encoding/
xmlns:ns1="http://../services/Submitjob'>
<execLocalCommandReturn xsi:type='"'soapenc:Array*
soapenc:arrayT'ype=""xsd:string[2]"
xmlns:soapenc=""http://schemas.xmlsoap.org/soap/encoding/'">
<item></item> <item></item>
</execLocalCommandReturn>
</nsl:execLocalCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Developing Web
Services

Using Apache Axis to develop
Java implementations of Web
services.

Web Service Development

Tools

s Web service toolkits exist for various
programming languages:

o C++4,Python, Perl, various Microsoft
NET Kkits.

= We'll concentrate on building Java
Web services with Apache Axis.

= Language and implementation
interoperability is addressed through
WS-I.

e http://www.ws-i.org/

Apache Axis Overview

Apache Axis is a toolkit for converting
Java applications into Web services.

Axis service deployment tools allow you to
publish your service in a particular
application server (Tomcat).

AXis client tools allow you to convert
WSDL into client stubs.

AXis runtime tools accept incoming SOAP
requests and redirect them to the
appropriate service.

Developing and Deploying a
Service

Download and install Tomcat and Axis.

Write a Java implementation

e Our Submitlob is a simple example but services can get
quite complicated.

o Compile it into Tomcat’s classpath.
Write a deployment descriptor (WSDD) for your

SErvice.
o Will be used by Axis runtime to direct SOAP calls.

Hse Axis’s AdminClient tool to install your WSDD
ile.

o The tells the axis servlet to load your class and direct
SOAP requests to it.

That’s it.

o Axis will automatically generate the WSDL for your
service.

Sample WSDD

<deployment name="Submitjob"
xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<service name="Submitjob" provider="java:RPC">
request"/>

—n

<parameter name="scope" value

<parameter name="className"
value="WebFlowSoap.SJwslmp"/>

<parameter name="allowedMethods"
value="execLocal Command"/>

—n

</service>
</deployment>

Explanation

s Use Axis’'s command-line
AdminClient tool to deploy this to the
Server.

s AXis will create a service called
e http://your.server/services/Submitlob

s WSDL for service is available from

e http://your.server/services/Submitlob?
wsdl

s A list of all services is available from
e http://your.server/services

And now... Some Services

s Subrnitjob Parsdfil

< test

o execlocalComunand

o execBemoteCommand
s« SpplicationInstance Peadtl)

o getHaostame
setErmanl
getInputDiescnption
getOutputlDl e scription
getBrrorDiescription
getCOueueType
getQsubPath
setipplicationtTame
setlobINatme
sethumb er O P TTs
set W alltitme
getTobITame

aethlumber OFCP Us Check your Tomcat Server

get™ alltitne

getépplicationame for a list of deployed
services.

createJueuelnstance
createHostlnstance
create ApplhcatenInstance
write Appllns
sethdemory O ption
getdppllnsString
getlnputl ocation
getOutputlocation
getBrrorlocation

o gethlemoryOphon
o FEemotefile Barsdadil

< writeFile

o readFile
s SdminService fwrsal

o A drminSeryice
s Wersion sl

o getWersion
e SOAPMontorService fwrsss

< publishhlessage

= T smbaert BT i o sarmAd

0000000000000 00000000000

<7wml version="1.0" encoding="UTF-&" 7>
- <wsdl definitions targetMamespace="http://grids.ucs.indiana.edu:8045/GCWS/services/Submitjob" x:rins="http://schemas.xmlsoap.org/wsdl/"
umins: apachesoap="http://«ml.apache.org/xml-soap" zmins:impl="http:/ /grids.ucs.indiana.edu:8045/GCWS/services/Submitjob"
srnlns: intf="http:/ /grids.ucs.indiana.edu:8045/GCWS /services /Submitjob" xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
srnlns: wsdl="http:/ /schemas.xmlsoap.org/wsdl/" «mins: wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" zmins:xsd="http:/ /vwww.w3.0rg/2001/XMLSchema">
- <wsdlitypess
- «<schema targetNamespace="http://grids.ucs.indiana.edu:8045/GCWS/services/Submitjob" xmins="http:/ /www.w3.o0rg/2001/¥MLSchema">
<import namespace="http://schemas.xmlsoap.org/soap/encoding/" /=
- <complexType name="ArrayOf_xsd_string">
- <complexContent>
- <restriction base="soapenc:Array">
<attribute ref="soapenc:arrayType" wsdl: arrayType="«sd:string[]" /=
</restrictions
< /complexCantent
</complesTypes=
<element name="ArrayOf_xsd_string" nillable="true" type="impl:ArrayOf_xsd_string" />

i sypess WSDL generated by

- <wsdlimessage name="execLocalCommandResponse"> ")
<wsdlipart name="execLocalCommandReturn" type="impl:ArrayOf_xsd_string" /> h J

P inspecting the Java

- <wsdlimessage name="testResponse">

<wsdlipart name="testReturn" type="xsd:string" /> implementation. Can be

</wsdl:messages
- <wsdli:message name="execLocalCommandRequest"> d d f

<wsdlipart name="in0" type="wsd:string" /> Ownloa rom the
</wsdlmessages
<wsdlimessage name="testRequest" /= Server

[}

<wsdlipart name="execRemoteCommandReturn" type="impl:ArrayOf_xsd_string" /> °

<pwsdlmessages> (XML was shown in

- «wsdl:message name="execRemoteCommandResponse">
- «wsdl:message name="execRemoteCommandRequest">
<wsdl part name="in0" type="xsd:string" /> o o
e:wsdl:Eart name="inl" t:Ee:“xsd:string“ o eal’llel" SlldeS)
<wsdlipart name="in2" type="wsd:string" />
<wsdlipart name="in3" type="wsd:string" />
</wedlimessages
- <wsdlportType name="8JwsImp"=
- <wsdl:operation name="test">
<wsdliinput message="impl:testRequest" name="testRequest" /=
<wsdlioutput message="impl:testResponse" name="testResponse" /=
</wsdlioperationz
- <wsdl:operation name="execLocalCommand" parameterOrder="in0"=>
<wsdliinput message="impl:execLocalCommandRequest" name="execLocalCommandRequest" />
<wsdlioutput message="impl:execLocalCommandResponse” name="execLocalCommandResponse" />
</wsdloperations
- <wsdl:operation name="execRemoteCommand" parameterOrder="in0 inl in2 in3">
<wsdliinput message="impl:execRemoteCommandRequest" name="execRemoteCommandRequest" />

@ Dane £ Internet

Building a Client withi Axis

s Obtain the WSDL file.

s Generate client stubs

o Stubs look like local objects but really
convert method invocations into SOAP
calls.

s Write a client application with the
stubs

e Can be a Java GUI, a JSP page, etc.
= Compile everything and run.

Sample Java Client Code

/**Create Submit]ob client object and point to the
service you want to use */

Submilob sjws = new
SubmitJobServicelLocator().getSubmitjob(new

URL(http://your.server/services/SubmitJob));
/** Invoke the method as if local. */
String[] messages =

sjws.execLocalCommand(command);

Two Notes On Client Stubs

s AXis stubs convert method calls into
SOAP requests but WSDL does not
require the use of SOAP.

e Web Service Invocation Framework (WSIF)
from IBM allows flexibility of protocols. (Alek
Slominski, IU)

s Client stubs introduce versioning

problems.

e We are developing dynamic (stubless) clients
that construct SOAP messages by inspecting
WSDL at runtime.

Web Service URLs

Java

o http://xml.apache.org/axis/

XSOAP: C++ and Java toolkits for WS

o http://www.extreme.indiana.edu/xgws/xsoap/
gSOAP: C++ SOAP toolkit

o http://www.cs.fsu.edu/~engelen/soap.html
Python Web Services:

o http://pywebsvcs.sourceforge.net/

Perl:

o http://www.soaplite.com/

