Developing NaradaBrokering
Applications

Outline

* Primer on events, synopsis, protiles and
templates

* Developing a simple application
- Specitying different subscription formats and
available transports
- Utilizing different transports
* Exploiting available Quality-of-Service
capabilities
- Compression/Decompression of payloads
- Building a Reliable Delivery application

Outline - (IT)

- Managing Replays
- Exactly once delivery of clients
- Fragmentation & Coalescing of Events

* Writing JMS applications in NaradaBrokering
- Simple applications
- Applications requiring reliable delivery

* An Audio/Video conferencing application

* Advanced applications

- GridFTP and NaradaBrokering
-~ Shared SVG application
- Shared Microsoft application

NaradaBrokering Overview

Open source project. http:/ /www.naradabrokering.org
Based on a network of cooperating broker nodes
— Cluster based architecture allows system to scale in size

Provides a variety of services
- Reliable, ordered and exactly once delivery.
- Compression and fragmentation of large payloads.
- Support for multiple subscription types

Used in the context of A/V applications and to enhanced
Grid apps such as Grid-FTP

Provides support for variety of transports: TCP, UDP,
HTTP, SSL, Multicast and parallel TCP stream:s.

JMS compliant. Will provide WS-Notification support.
Includes bridge to GT3. April 2004 release.
Support for Web Services being incorporated.

Current NaradaBrokering Features

Multiple transport
support
In publish-subscribe

Paradigm with different

Protocols on each link

Transport protocols supported include TCP, Parallel TCP streams,
UDP, Multicast, SSL, HTTP and HTTPS.

Communications through authenticating proxies/firewalls &
NATs. Network QoS based Routing

Subscription Formats

Subscription can be Strings, Integers, XPath queries, Regular
Expressions, SQL and tag=value pairs.

Reliable delivery Robust and exactly-once delivery of messages in presence of
failures
Ordered delivery Producer Order and Total Order over a message type
Time Ordered delivery using Grid-wide NTP based absolute time
Recovery and Replay Recovery from failures and disconnects.
Replay of events/messages at any time.
Security Message-level WS-Security compatible security
Message Payload Compression and Decompression of payloads
options Fragmentation a nd Coalescing of payloads
Messaging Related Java Message Service (JMS) 1.0.2b compliant
Compliance Support for routing P2P JXTA interactions.
Grid Application NaradaBrokering enhanced Grid-FTP. Bridge to the Globus TK3.
Support

Web Service reliability

Prototype implementation of WS-ReliableMessaging

Primer (I)

* An event comprises of headers, content descriptors
and the payload encapsulating the content.

* An event’s headers provide information pertaining
to
— the type, unique identification, timestamps,
dissemination traces and other QoS related information
pertaining to the event.
* The content descriptors for an event describe
information pertaining to the encapsulated content.

— The content descriptors and the values these content
descriptors take collectively comprise the event’s
content synopsis.

Primer - (II)

Headers

Headers

Content
Synopsis

Content

Content Payload Synopsis & Payload

@) (b)

* Complexity of content description can cause the
demarcation between synopsis and the content to blur
- Here they end up being indistinguishable from each other.

Primer - (III)

'

* The set of headers and content descriptors
constitute the template of an event.

* Events containing identical sets of headers
and content descriptors are said to be
conforming to the same template.

— Values the content descriptors take and the

content payloads itself may be entirely different
for events conforming to the same template.

Primer (IV)

* Entities have multiple profiles each of which
signifies an interest in events conforming to a
certain template.

* Interest is in the form of constraints.
— Constraint also referred to as a subscription.
* Entities specify constraints on the content

descriptors and the values some or all of these
descriptors might take.

* Constraint complexity can vary from simple
strings to <tag, value> pairs to XPath queries to
Regular expressions.

Starting the broker

* In the bin directory of the NaradaBrokering
installation please update the NB_ HOME variable.

- Note that that the location of the installation directory
does not have a trailing slash “/”.

- For Windows, update startBroker.bat.
* Please also include the $NB HOME%\d11 in your path variable.

- For UNIX users, modify the startbr.sh file

e Double click the startBroker .bat file or run
./startbr.sh

- Note that you need to download jms. jar (Version
1.0.2b) and jm£ . jar. Move them into the
NB HOME/1lib directory.

Developing applications

* Entities need to specity an identifier

— Currently this is an integer value. We are
proposing to replace this by UUIDs.

* Next control the configuration of the client.
See the $NB_HOME/config/ServiceConfiguration. txt
for a sample configuration file.

— File is used to set up and control parameters
needed by various services.

— Detaults used if correct file not specitied.

* Initialize roles of producer and consumer

Sample Service Configuration file (I)

FragmentationDirectory=D:/TempFiles/tmpFiles/fragment

#This specifies the location of the coalescing directory
CoalescingDirectory=D:/TempFiles/tmpFiles/coalesce

#Specifies location of stratum-1 time servers.

NTP_Servers =
129.6.15.28,129.6.15.29,132.163.4.101,132.163.4.102,132.163
.4.103,192.43.244.18

This is the time interval (milliseconds) between runs of
the NTP synchronization NTP Interval=2000
NTP Debug=OFF

#Time Ordered Buffering related parameters
TOB MaximumTotalBufferSize=2500000
TOB MaximumNumberOfBufferEntries=10000

#In milliseconds#
TOB MaximumBufferEntryDuration=50000
TOB BufferReleaseFactor=0.8

Sample Service Configuration file (II)

#These pertain to Reliable Delivery Service
Implementations (db=Database, file=FileStorage)

Storage Type=db

Database JDBC Driver=org.gjt.mm.mysql.Driver
Database ConnectionProvider=jdbc:mysql
Database ConnectionHost=localhost

Database ConnectionPort=3306

Database ConnectionDatabase=NbPersistence

FileStorage BaseDirectory=C:/NBStorage/filebased/persis
tent

Database_WSRM_Database=wsrm
#Database_WSRM_username=username
#Database WSRM password=password

Initializing the client service

* You can initialize the configurations associated
with services in your session using the following

String config =
"D:/NaradaSources/config/ServiceConfiguration. txt";

SessionService.setServiceConfigurationLocation (config) ;

* Initialize the ClientService instance using the entity Id

ClientService clientService =
SessionService.getClientService (entityId) ;

e Note that last 2 method calls listed above throw the
NaradaBrokering ServiceException if it encounters

problems.

Initialize Broker communications

* It is very simple to initialize and load
communication libraries in NB clients.

* Create a Properties object and load t he
appropriate values.

* [f the broker is running on localhost and
listening to TCP connections on 30405.

Properties props = new Properties() ;
props.put ("hostname", “localhost”);

props.put ("portnum", “3045");

clientService.initializeBrokerCommunications (props,
“niotcp”) ;

Initializing the consumer role - (I)

* Every consumer needs to implement the
NBEventListener interface.
— This contains the onEvent (NBEvent nbEvent)

method that is invoked by the substrate upon
receipt of an appropriate event.

* To create a consumer and register with

substrate do the following

EventConsumer consumer =
clientService.createEventConsumer (this) ;

Note that this refers to the class, which
implements the NBEventListener interface.

Initializing the consumer role - (II)

* Next, you need to specity your subscription.

- Here we deal with the simplest form which is
String based.

* This is done by the creation of a Profile
int profileType =
TemplateProfileAndSynopsisTypes.STRING;
Profile profile =
clientService.createProfile (profileType,

"Movie/Casablanca'") ;

* Next proceed to subscribe

consumer . subscribeTo (profile) ;

Initializing the consumer role - (I1I)

e Note that there is no limit on the number of
consumers that can be created from a client service.

* There is also no limit on the number of
subscriptions that you can subscribe to on a given
consumer.

* A given consumer can have subscriptions of
different types, such as XPath, Regular expressions
etc.

Initializing the producer role

* Creation of the event producer is done by
invoking the following method.

EventProducer producer =
clientService.createEventProducer () ;

* You can suppress redistribution of
generated events by using the following

producer.setSuppressRedistributionToSource (true) ;

* A sample of other utility methods include

producer.generateEventIdentifier (true) ;
producer.setTemplateId(12345) ;
producer.setDisableTimestamp (false) ;

Generating and Publishing events

* To generate events, one needs to specify the
event type, the content synopsis and the
payload for the event.

int eventType = TemplateProfileAndSynopsisTypes.STRING;

String synopsis = "Movie/Casablanca"“;

byte[] payload;
NBEvent nbEvent =
producer.generateEvent (eventType, synopsis,payload) ;

* To publish an event simply use the

following method.
producer.publishEvent (nbEvent) ;

Dealing with the receipt of events

* Events that an entity receives are delivered
LISiIlg the onEvent (NBEvent nbEvent) method.

* Processing logic associated with received
events can be put here in this method.

- Note that an entity can inspect this event to
retrieve its headers, synopsis, payloads etc.

* In the simplest case, you can print the
event’s payload.

Dealing with other profiles/templates

* NaradaBrokering provides support for other
profiles and event types.

* We will take a look at some of these. These
include
- Integers
- <tag, value> pairs based on equality.
— XPath queries and XML events
- Regular expressions’ based subscriptions

Availing of Quality of Services

* Quality of Services (Qo0S) pertaining to
compression, fragmentation, reliable
delivery, replay etc. in NaradaBrokering.

* Here we discuss building applications
which can avail of these services.

* Generally, this involves the creation of
ProducerConstraints & ConsumerConstraints.

— These constraints are associated with the
publishing and consumption of events.

Creation of Consumer Constraints

* ConsumerConstraints are created by the
EventConsumer by LISiIlg the profile on which

the constraints are to be specified.
ConsumerConstraints constraints =

consumer .createConsumerConstraints (profile) ;

* The QoS constraint on the subscription is
propagated using the following

consumer . subscribeTo (profile, constraints);

Creation of Producer constraints

- ProducerConstraints first require the creation of a
TemplateInfo.

— This requires the specification of the templateld,
templateType and template.
int templateId = 12345;

int templateType =
TemplateProfileAndSynopsisTypes.STRING;

Object template = "Movie/Casablanca"“;
TemplateInfo templateInfo =

clientService.createTemplateInfo (templateId,
templateType, template);

* Next this is used to create the appropriate

ProducerConstraints.

ProducerConstraints producerConstraints =
producer.createProducerConstraints (templateInfo) ;

Using the producer constraints

* This producer constraints are specified
along with any events that need to be

published.

— Thus the constraints can be specified on a per-
event basis.

producer .publishEvent (nbEvent, producerConstraints) ;

Compression/Decompression

* This is the simplest QoS available for
applications.

e The QoS constraints are associated with
producer.

- The system automatically decompresses the
payloads prior to delivery.

Properties compressionProperties = new Properties();
compressionProperties.put ("compressionAlgo", "zlib") ;
producerConstraints.

setSendAfterPayloadCompression (compressionProperties) ;
producer .publishEvent (nbEvent, producerConstraints) ;

Reliable Delivery

* Setting up of the Reliable Delivery Node

* You first need to install mySQL 4.0. This is
available from http:/ /www.mysgl.com/ .

— If you do not wish to install this you may also
use the files-storage based implementation of
the NB storage service.

Setting up the MySQL database

* If you have installed mySQL 4.0 you first
need to create the database. Use the

following command to create the database
utilized by NB.

— mysql create database NbPersistence,

* Next go the $NB_HOME/bin/mysql directory.
Double click on AutoNbDb.bat.

- You may need to comment the first line in this
files using a “#” if it is the first you are creating
tables.

Setting up the RDS node

Initialize reliable delivery consumer

* Creating the subscription constraints
ConsumerConstraints constraints =

consumer .createConsumerConstraints (profile) ;
constraints.setReceiveReliably (templatelId) ;

consumer . subscribeTo (profile, constraints) ;

e Also, to retrieve events after a failure or disconnect
one needs to

— Implement the NBRecoveryListener interface.
- Initiate recovery by invoking the following method.

long recoveryld= consumer.recover (templateId, this);

this corresponds to the class which implements the
aforementioned NBRecoveryListener interface.

Initialize reliable delivery producer

* Initializing the constraints
TemplateInfo templateInfo =

clientService.createTemplateInfo (templateId,
templateType, template);
producerConstraints =

producer.createProducerConstraints (templateInfo) ;
producerConstraints.setSendReliably () ;

producer .publishEvent (nbEvent,producerConstraints) ;

* Also, to reinitialize producer after a failure or disconnect
one needs to

- Implement the NBRecoveryListener interface.

- Initiate recovery by invoking the following method.
long recoveryId= consumer.recover (templatelId, this);

this corresponds to the class which implements the
aforementioned NBRecoveryListener interface.

Exactly-once delivery of events

* This uses the NaradaBrokering Reliable Delivery
Service.

* This mandates no changes to the NaradaBrokering
reliable delivery producer.

* On the consumer side specity both reliable and

ordered delivery.
ConsumerConstraints constraints =
consumer .createConsumerConstraints (profile) ;
constraints.setReceiveReliably (templateId) ;
constraints.setReceiveInOrder (templateId) ;

consumer . subscribeTo (profile, constraints);
long recoverylId = consumer.recover (templateId, this);

Managing replays - (I)

* Replay Service works with events that have been stored
reliably by the NB Reliable Delivery Service.

* Here we first need to use the clientservice to create a
replay request. There are 3 different ways to do so.

- Specity templateId and the sequence numbers to be replayed.
long[] sequenceNumbers;
ReplayRequest replayRequest =
clientService.createReplayRequest (templateId,
sequenceNumbers) ;
— Specify templatelId, along with the start and end values of the
sequences to be replayed.
ReplayRequest replayRequest =
clientService.createReplayRequest (templateld,
start, end);

- Specify templatelId, the range of sequences to be replayed, along
with any additional profile constraints for delivery.

Managing Replays (II)

* The replay client needs to implement the
ReplayServiceListener interface. This has two
methods

— public void
onReplay (ReplayEvent replayEvent)

— public void
onReplayResponse (ReplayResponse replayResponse)

* To initiate replay simply use the following method.
consumer.initiateReplay (replayRequest, this);

- The this here corresponds to the class implementing
the ReplayServicelListener interface.

Fragmentation/Coalescing

* Here we break up a large file into smaller
fragments and reliably coalesce them at the
recelver.

e This scheme is used in the NB-enhanced version of
GridFTP.

— This allows us to initiate file transfers without the
recipient being present.

- Furthermore, this also allows one-to-many transfers.

* The fragmentation/coalescing service requires the
NB Reliable Delivery Service.

* See the configuration file to configure the
fragmentation/coalescing service parameters.

— This includes the location of the temporary directories.

Fragmentation Producer

* The fragmentation properties takes two sets of
parameters. You can specity one of these sets.

— fileLocation and fragmentSize. This controls the
size of the fragments for the specified file.

— fileLocation and numOfFragments. This controls

the total number of fragments for a given file.
fragmentationProperties.put ("numberOfFragments", 300);
fragmentationProperties.put("fileLocation", filename)

* Next proceed to send the file across after splitting

it into fragments.
producerConstraints.
setSendAfterFragmentation (fragmentationProperties) ;
producer .publishEvent (nbEvent, producerConstraints) ;

The coalescing consumer

* Here we specity the delivery of the coalesced

payload.

- Note that the large file will be coalesced in the directory
specified in the config file.

— The large file will not be in memory. Instead the user
will get a notification saying that the file has be written
to the appropriate location.

ConsumerConstraints constraints =

consumer .createConsumerConstraints (profile) ;
constraints.setReceiveReliably (templateId) ;
constraints.setReceiveAfterCoalescingFragments() ;
consumer . subscribeTo (profile, constraints);

long recoveryld = consumer.recover (templatelId, this) ;

Writing JMS applications

* We assume here that users are a bit familiar with JMS.
There are several excellent books available for that.

* Here we give details regarding the creation of the
TopicConnectionFactory.
— Once this is set up interactions proceed as defined in the JMS
specification.
Properties props = new Properties();
/** This pertains to setting up a TCP link */
props.put ("hostname", hostInfo) ;
props.put ("portnum", portInfo);
NBJIJmsInitializer ini =
new NBJmsInitializer (props, “niotcp”, entityId) ;
TopicConnectionFactory conFactory =
(TopicConnectionFactory)ini.lookup() ;

Durable JMS subscriptions

* For every topic that you wish to be durable, set up
the RDS node as outlined earlier.

* Further, include the mapping of the templateld to
the JMS topic in the properties used for initializing
the bridge.

— This has to be done prior to constructing the
NBJmsInitializer

props.put("/Sports/NBA", "34567");

* Note that even though you are using NB’s reliable
delivery service you do not need to import any NB
related packages in your JMS application.

Us@gm of

NB’s JMS mode in the Anabas Sy

o] ‘ You do not have priviledge to present any documents or applications currenthy

Video

Whiteboard

(z

Poll

Erne:
8 Beethoven's Silence

! | Mow
Playing

Media
Guide

Copy from
o

1 am a participant

Media
Library

2, Matrix Reload...
§ %% & Shrideep Palli...

Radio
Tuner

Copy to CD
or Device

Premium

Services |)

Skin
Chooser

[l 0 i (R LR PIAL

!. Towe Playing 'i - OX

stem

[& Public Chat |

Text Chat Board:

] 5 TeriChat
;astarti_'

2 Normal v @
1’:"

T A

M3 & ¥
vl NE

Enter Chat Message here:|

EETE

=

| &Inbox - Qutlook Expr... ! Elnbox - Microsoft Out...l ?f%il:noahsark.ucs.india... J @Z:Wahsark.ucs‘india... éﬁS:noahsark.ucs.india... ! gfj :noahsark, ucs.india. . I
|
|

| ﬁs:noahsark.ucs.lndla...i @Anabas Conferencmg...i @Anabas Conferencmg...l B o\ wINNT System3z., . I @Anahas Collaborati... mndobe Photoshop I

