
Developing NaradaBrokering
Applications

Outline
• Primer on events, synopsis, profiles and

templates
• Developing a simple application

– Specifying different subscription formats and
available transports

– Utilizing different transports
• Exploiting available Quality-of-Service

capabilities
– Compression/Decompression of payloads
– Building a Reliable Delivery application

Outline – (II)
– Managing Replays
– Exactly once delivery of clients
– Fragmentation & Coalescing of Events

• Writing JMS applications in NaradaBrokering
– Simple applications
– Applications requiring reliable delivery

• An Audio/Video conferencing application
• Advanced applications

– GridFTP and NaradaBrokering
– Shared SVG application
– Shared Microsoft application

NaradaBrokering Overview
• Open source project. http://www.naradabrokering.org
• Based on a network of cooperating broker nodes

– Cluster based architecture allows system to scale in size
• Provides a variety of services

– Reliable, ordered and exactly once delivery.
– Compression and fragmentation of large payloads.
– Support for multiple subscription types

• Used in the context of A/V applications and to enhanced
Grid apps such as Grid-FTP

• Provides support for variety of transports: TCP, UDP,
HTTP, SSL, Multicast and parallel TCP streams.

• JMS compliant. Will provide WS-Notification support.
• Includes bridge to GT3. April 2004 release.
• Support for Web Services being incorporated.

Current NaradaBrokering Features

Prototype implementation of WS-ReliableMessagingWeb Service reliability

NaradaBrokering enhanced Grid-FTP. Bridge to the Globus TK3.Grid Application
Support

Java Message Service (JMS) 1.0.2b compliant
Support for routing P2P JXTA interactions.

Messaging Related
Compliance

Compression and Decompression of payloads
Fragmentation a nd Coalescing of payloads

Message Payload
options

Message-level WS-Security compatible securitySecurity

Recovery from failures and disconnects.
Replay of events/messages at any time.

Recovery and Replay

Producer Order and Total Order over a message type
Time Ordered delivery using Grid-wide NTP based absolute time

Ordered delivery

Robust and exactly-once delivery of messages in presence of
failures

Reliable delivery

Subscription can be Strings, Integers, XPath queries, Regular
Expressions, SQL and tag=value pairs.

Subscription Formats

Transport protocols supported include TCP, Parallel TCP streams,
UDP, Multicast, SSL, HTTP and HTTPS.
Communications through authenticating proxies/firewalls &
NATs. Network QoS based Routing

Multiple transport
support
In publish-subscribe
Paradigm with different
Protocols on each link

Primer (I)
• An event comprises of headers, content descriptors

and the payload encapsulating the content.
• An event’s headers provide information pertaining

to
– the type, unique identification, timestamps,

dissemination traces and other QoS related information
pertaining to the event.

• The content descriptors for an event describe
information pertaining to the encapsulated content.
– The content descriptors and the values these content

descriptors take collectively comprise the event’s
content synopsis.

Primer – (II)

• Complexity of content description can cause the
demarcation between synopsis and the content to blur
– Here they end up being indistinguishable from each other.

Headers

Content
Synopsis

Content Payload

Headers

Content
Synopsis & Payload

(b)(a)

Primer – (III)
• The set of headers and content descriptors

constitute the template of an event.
• Events containing identical sets of headers

and content descriptors are said to be
conforming to the same template.
– Values the content descriptors take and the

content payloads itself may be entirely different
for events conforming to the same template.

Primer (IV)
• Entities have multiple profiles each of which

signifies an interest in events conforming to a
certain template.

• Interest is in the form of constraints.
– Constraint also referred to as a subscription.

• Entities specify constraints on the content
descriptors and the values some or all of these
descriptors might take.

• Constraint complexity can vary from simple
strings to <tag, value> pairs to XPath queries to
Regular expressions.

Starting the broker
• In the bin directory of the NaradaBrokering

installation please update the NB_HOME variable.
– Note that that the location of the installation directory

does not have a trailing slash “/”.
– For Windows, update startBroker.bat.

• Please also include the %NB_HOME%\dll in your path variable.

– For UNIX users, modify the startbr.sh file
• Double click the startBroker.bat file or run
./startbr.sh
– Note that you need to download jms.jar (Version

1.0.2b) and jmf.jar. Move them into the
NB_HOME/lib directory.

Developing applications
• Entities need to specify an identifier

– Currently this is an integer value. We are
proposing to replace this by UUIDs.

• Next control the configuration of the client.
See the $NB_HOME/config/ServiceConfiguration.txt
for a sample configuration file.
– File is used to set up and control parameters

needed by various services.
– Defaults used if correct file not specified.

• Initialize roles of producer and consumer

Sample Service Configuration file (I)
FragmentationDirectory=D:/TempFiles/tmpFiles/fragment

#This specifies the location of the coalescing directory
CoalescingDirectory=D:/TempFiles/tmpFiles/coalesce

#Specifies location of stratum-1 time servers.
NTP_Servers =

129.6.15.28,129.6.15.29,132.163.4.101,132.163.4.102,132.163
.4.103,192.43.244.18

This is the time interval (milliseconds) between runs of
the NTP synchronization NTP_Interval=2000
NTP_Debug=OFF

#Time Ordered Buffering related parameters
TOB_MaximumTotalBufferSize=2500000
TOB_MaximumNumberOfBufferEntries=10000

#In milliseconds#
TOB_MaximumBufferEntryDuration=50000
TOB_BufferReleaseFactor=0.8

Sample Service Configuration file (II)
#These pertain to Reliable Delivery Service

Implementations (db=Database, file=FileStorage)
Storage_Type=db
Database_JDBC_Driver=org.gjt.mm.mysql.Driver
Database_ConnectionProvider=jdbc:mysql
Database_ConnectionHost=localhost
Database_ConnectionPort=3306
Database_ConnectionDatabase=NbPersistence

FileStorage_BaseDirectory=C:/NBStorage/filebased/persis
tent

Database_WSRM_Database=wsrm
#Database_WSRM_username=username
#Database_WSRM_password=password

Initializing the client service
• You can initialize the configurations associated

with services in your session using the following
String config =

"D:/NaradaSources/config/ServiceConfiguration.txt“;
SessionService.setServiceConfigurationLocation(config);

• Initialize the ClientService instance using the entity Id
ClientService clientService =

SessionService.getClientService(entityId);

• Note that last 2 method calls listed above throw the
NaradaBrokering ServiceException if it encounters
problems.

Initialize Broker communications
• It is very simple to initialize and load

communication libraries in NB clients.
• Create a Properties object and load t he

appropriate values.
• If the broker is running on localhost and

listening to TCP connections on 3045.
Properties props = new Properties();
props.put("hostname", “localhost”);
props.put("portnum", “3045”);
clientService.initializeBrokerCommunications(props,

“niotcp”);

Initializing the consumer role – (I)
• Every consumer needs to implement the
NBEventListener interface.
– This contains the onEvent(NBEvent nbEvent)

method that is invoked by the substrate upon
receipt of an appropriate event.

• To create a consumer and register with
substrate do the following
EventConsumer consumer =
clientService.createEventConsumer(this);

Note that this refers to the class, which
implements the NBEventListener interface.

Initializing the consumer role – (II)
• Next, you need to specify your subscription.

– Here we deal with the simplest form which is
String based.

• This is done by the creation of a Profile
int profileType =
TemplateProfileAndSynopsisTypes.STRING;

Profile profile =
clientService.createProfile(profileType,

"Movie/Casablanca");

• Next proceed to subscribe
consumer.subscribeTo(profile);

Initializing the consumer role – (III)
• Note that there is no limit on the number of

consumers that can be created from a client service.
• There is also no limit on the number of

subscriptions that you can subscribe to on a given
consumer.

• A given consumer can have subscriptions of
different types, such as XPath, Regular expressions
etc.

Initializing the producer role
• Creation of the event producer is done by

invoking the following method.
EventProducer producer =

clientService.createEventProducer();

• You can suppress redistribution of
generated events by using the following
producer.setSuppressRedistributionToSource(true);

• A sample of other utility methods include
producer.generateEventIdentifier(true);
producer.setTemplateId(12345);
producer.setDisableTimestamp(false);

Generating and Publishing events
• To generate events, one needs to specify the

event type, the content synopsis and the
payload for the event.

int eventType = TemplateProfileAndSynopsisTypes.STRING;
String synopsis = "Movie/Casablanca“;
byte[] payload;
NBEvent nbEvent =

producer.generateEvent(eventType, synopsis,payload);

• To publish an event simply use the
following method.

producer.publishEvent(nbEvent);

Dealing with the receipt of events
• Events that an entity receives are delivered

using the onEvent(NBEvent nbEvent) method.
• Processing logic associated with received

events can be put here in this method.
– Note that an entity can inspect this event to

retrieve its headers, synopsis, payloads etc.
• In the simplest case, you can print the

event’s payload.

Dealing with other profiles/templates
• NaradaBrokering provides support for other

profiles and event types.
• We will take a look at some of these. These

include
– Integers
– <tag, value> pairs based on equality.
– XPath queries and XML events
– Regular expressions’ based subscriptions

Availing of Quality of Services
• Quality of Services (QoS) pertaining to

compression, fragmentation, reliable
delivery, replay etc. in NaradaBrokering.

• Here we discuss building applications
which can avail of these services.

• Generally, this involves the creation of
ProducerConstraints & ConsumerConstraints.
– These constraints are associated with the

publishing and consumption of events.

Creation of Consumer Constraints
• ConsumerConstraints are created by the
EventConsumer by using the Profile on which
the constraints are to be specified.
ConsumerConstraints constraints =
consumer.createConsumerConstraints(profile);

• The QoS constraint on the subscription is
propagated using the following
consumer.subscribeTo(profile, constraints);

Creation of Producer constraints
• ProducerConstraints first require the creation of a

TemplateInfo.
– This requires the specification of the templateId,

templateType and template.
int templateId = 12345;
int templateType =
TemplateProfileAndSynopsisTypes.STRING;

Object template = "Movie/Casablanca“;
TemplateInfo templateInfo =

clientService.createTemplateInfo(templateId,
templateType, template);

• Next this is used to create the appropriate
ProducerConstraints.
ProducerConstraints producerConstraints =
producer.createProducerConstraints(templateInfo);

Using the producer constraints
• This producer constraints are specified

along with any events that need to be
published.
– Thus the constraints can be specified on a per-

event basis.
producer.publishEvent(nbEvent, producerConstraints);

Compression/Decompression
• This is the simplest QoS available for

applications.
• The QoS constraints are associated with

producer.
– The system automatically decompresses the

payloads prior to delivery.
Properties compressionProperties = new Properties();
compressionProperties.put("compressionAlgo", "zlib");
producerConstraints.
setSendAfterPayloadCompression(compressionProperties);

producer.publishEvent(nbEvent, producerConstraints);

Reliable Delivery
• Setting up of the Reliable Delivery Node
• You first need to install mySQL 4.0. This is

available from http://www.mysql.com/ .
– If you do not wish to install this you may also

use the files-storage based implementation of
the NB storage service.

Setting up the MySQL database
• If you have installed mySQL 4.0 you first

need to create the database. Use the
following command to create the database
utilized by NB.
– mysql create database NbPersistence;

• Next go the $NB_HOME/bin/mysql directory.
Double click on AutoNbDb.bat.
– You may need to comment the first line in this

files using a “#” if it is the first you are creating
tables.

Setting up the RDS node

Initialize reliable delivery consumer
• Creating the subscription constraints
ConsumerConstraints constraints =

consumer.createConsumerConstraints(profile);
constraints.setReceiveReliably(templateId);
consumer.subscribeTo(profile, constraints);

• Also, to retrieve events after a failure or disconnect
one needs to
– Implement the NBRecoveryListener interface.
– Initiate recovery by invoking the following method.
long recoveryId= consumer.recover(templateId, this);

this corresponds to the class which implements the
aforementioned NBRecoveryListener interface.

Initialize reliable delivery producer
• Initializing the constraints

TemplateInfo templateInfo =
clientService.createTemplateInfo(templateId,

templateType, template);
producerConstraints =

producer.createProducerConstraints(templateInfo);
producerConstraints.setSendReliably();
producer.publishEvent(nbEvent,producerConstraints);

• Also, to reinitialize producer after a failure or disconnect
one needs to
– Implement the NBRecoveryListener interface.
– Initiate recovery by invoking the following method.
long recoveryId= consumer.recover(templateId, this);

this corresponds to the class which implements the
aforementioned NBRecoveryListener interface.

Exactly-once delivery of events
• This uses the NaradaBrokering Reliable Delivery

Service.
• This mandates no changes to the NaradaBrokering

reliable delivery producer.
• On the consumer side specify both reliable and

ordered delivery.
ConsumerConstraints constraints =

consumer.createConsumerConstraints(profile);
constraints.setReceiveReliably(templateId);
constraints.setReceiveInOrder(templateId);

consumer.subscribeTo(profile, constraints);
long recoveryId = consumer.recover(templateId, this);

Managing replays – (I)
• Replay Service works with events that have been stored

reliably by the NB Reliable Delivery Service.
• Here we first need to use the ClientService to create a

replay request. There are 3 different ways to do so.
– Specify templateId and the sequence numbers to be replayed.
long[] sequenceNumbers;
ReplayRequest replayRequest =
clientService.createReplayRequest(templateId,

sequenceNumbers);
– Specify templateId, along with the start and end values of the

sequences to be replayed.
ReplayRequest replayRequest =

clientService.createReplayRequest(templateId,
start, end);

– Specify templateId, the range of sequences to be replayed, along
with any additional profile constraints for delivery.

Managing Replays (II)
• The replay client needs to implement the
ReplayServiceListener interface. This has two
methods
– public void

onReplay(ReplayEvent replayEvent)
– public void

onReplayResponse(ReplayResponse replayResponse)

• To initiate replay simply use the following method.
consumer.initiateReplay(replayRequest, this);

– The this here corresponds to the class implementing
the ReplayServiceListener interface.

Fragmentation/Coalescing
• Here we break up a large file into smaller

fragments and reliably coalesce them at the
receiver.

• This scheme is used in the NB-enhanced version of
GridFTP.
– This allows us to initiate file transfers without the

recipient being present.
– Furthermore, this also allows one-to-many transfers.

• The fragmentation/coalescing service requires the
NB Reliable Delivery Service.

• See the configuration file to configure the
fragmentation/coalescing service parameters.
– This includes the location of the temporary directories.

Fragmentation Producer
• The fragmentation properties takes two sets of

parameters. You can specify one of these sets.
– fileLocation and fragmentSize. This controls the

size of the fragments for the specified file.
– fileLocation and numOfFragments. This controls

the total number of fragments for a given file.
fragmentationProperties.put("numberOfFragments", 300);
fragmentationProperties.put("fileLocation", filename);

• Next proceed to send the file across after splitting
it into fragments.

producerConstraints.
setSendAfterFragmentation(fragmentationProperties);

producer.publishEvent(nbEvent, producerConstraints);

The coalescing consumer
• Here we specify the delivery of the coalesced

payload.
– Note that the large file will be coalesced in the directory

specified in the config file.
– The large file will not be in memory. Instead the user

will get a notification saying that the file has be written
to the appropriate location.

ConsumerConstraints constraints =
consumer.createConsumerConstraints(profile);

constraints.setReceiveReliably(templateId);
constraints.setReceiveAfterCoalescingFragments();
consumer.subscribeTo(profile, constraints);

long recoveryId = consumer.recover(templateId,this);

Writing JMS applications
• We assume here that users are a bit familiar with JMS.

There are several excellent books available for that.
• Here we give details regarding the creation of the

TopicConnectionFactory.
– Once this is set up interactions proceed as defined in the JMS

specification.
Properties props = new Properties();
/** This pertains to setting up a TCP link */
props.put("hostname", hostInfo);
props.put("portnum", portInfo);
NBJmsInitializer ini =

new NBJmsInitializer(props, “niotcp”, entityId);
TopicConnectionFactory conFactory =

(TopicConnectionFactory)ini.lookup();

Durable JMS subscriptions
• For every topic that you wish to be durable, set up

the RDS node as outlined earlier.
• Further, include the mapping of the templateId to

the JMS topic in the properties used for initializing
the bridge.
– This has to be done prior to constructing the
NBJmsInitializer

props.put("/Sports/NBA", "34567");

• Note that even though you are using NB’s reliable
delivery service you do not need to import any NB
related packages in your JMS application.

Use of NB’s JMS mode in the Anabas System

