Linux Shell And Utilities
Most UNIX users are familiar with "the shell"; it is where you input commands and get output on your screen. Often, the only contact users have with the shell is logging in and immediately starting some application. Some administrators, however, have modified the system to the point where users never even see the shell, or in extreme cases, have eliminated the shell completely for the users.

Because the Linux GUI has become so easy to use, it is possible that you can go for quite a long time without having to input commands at a shell prompt. If your only interaction with the operating system is logging into the GUI and starting applications, most of this entire site can only serve to satisfy your curiosity. Obviously, if all you ever do is start a graphical application, then understanding about shell is not all that important. However, if you are like most Linux users, understanding the basic workings of the shell will do wonders to improve your ability to use the system to its fullest extent.

Up to this point, we have referred to the shell as an abstract entity. In fact, in most texts, it is usually referred to as simply "the shell", although there are many different shells that you can use, and there is always a program that must be started before you can interact with "the shell". Each has its own characteristics (or even quirks), but all behave in the same general fashion. Because the basic concepts are the same, I will avoid talking about specific shells until later.

In this chapter, we are going to cover the basic aspects of the shell. We'll talk about how to issue commands and how the system responds. Along with that, we'll cover how commands can be made to interact with each other to provide you with the ability to make your own commands. We'll also talk about the different kinds of shells, what each has to offer, and some details of how particular shells behave.

The shell

As I mentioned in the section on introduction to operating systems, the shell is essentially a user's interface to the operating system. The shell is a command line interpreter, just like other operating systems. In Windows you open up a "command window" or "DOS box" to input commands, which is nothing other than a command line interpreter. Through it, you issue commands that are interpreted by the system to carry out certain actions. Often, the state where the system is sitting at a prompt, waiting for you to type input, is referred to (among other things) as being at the shell prompt or at the command line.

For many years before the invention of graphical user interfaces, such as X-Windows (the X Windowing System, for purists), the only way to input commands to the operating system was through a command line interpreter, or shell. In fact, shells themselves were thought of as wondrous things during the early days of computers because prior to them, users had no direct way to interact with the operating system.

Most shells, be they under DOS, UNIX, VMS, or other operating systems, have the same input characteristics. To get the operating system to do anything, you must give it a command. Some commands, such as the date command under UNIX, do not require anything else to get them to work. If you type in date and press Enter, that's what appears on your screen: the date.

Some commands need something else to get them to work: an argument. Some commands, like mkdir (used to create directories), work with only one argument, as in mkdir directory_name. Others, like cp (to copy files), require multiple arguments, as in

cp file1 file2
In many cases, you can pass flags to commands to change their behavior. These flags are generally referred to as options. For example, if you wanted to create a series of sub-directories without creating every one individually, you could run mkdir with the -p option, like this:

mkdir -p one/two/three/four
In principle, anything added to the command line after the command itself is an argument to that command. The convention is that an option changes the behavior, whereas an argument is acted upon by the command. Let's take the mkdir command as an example:

mkdir dir_name
Here we have a single argument which is the name of the directory to be created. Next, we add an option:

mkdir -p sub_dir/dir_name
The -p is an option. Using the terminology discussed, some arguments are optional and some options are required. That is, with some commands you must always have an option, such as the tar command. Some commands don't always need to have an argument, like the date command.

Generally, options are preceded by a dash (-), whereas arguments are not. I've said it before and I will say it again, nothing is certain when it comes to Linux or UNIX, in general. By realizing that these two terms are often interchanged, you won't get confused when you come across one or the other. I will continue to use option to reflect something that changes the command's behavior and argument to indicate something that is acted upon. In some places, you will also see arguments referred to as "operands". An operand is simply something on which the shell "operates", such as a file, directory or maybe even simple text.

Each program or utility has its own set of arguments and options, so you will have to look at the man-pages for the individual commands. You can call these up from the command line by typing in

man <command_name>
where <command_name> is the name of the command you want information about. Also, if you are not sure what the command is, many Linux versions have the whatis command that will give you a brief description. There is also the apropos command, which searches through the man-pages for words you give as arguments. Therefore, if you don't know the name of the command, you can still find it.

Arguments (whether they are options or operands) which are enclosed in square brackets ([]) are optional. In some cases, there are optional components to the optional arguments, so you may end up having brackets within brackets.

An ellipsis (...) Indicates that the preceding arguments can be repeated. For example, the ls command can take multiple file or directory names as arguments as well as multiple options. Therefore, you might have a usage message that looks like this:

ls [OPTION] ... [FILE] ...
This tells us that no options are required, but if you wanted you could use multiple options. It also tells us that no file name is required, but if you wanted you could use multiple ones.

Words that appeared in angle brackets (< >) or possibly in italics in the printed form, indicate that the word is a place holder. Like in the example below:

man <filename>
Many commands require that an option appear immediately after the command and before any arguments. Others have options and arguments interspersed. Again, look at the man-page for the specifics of a particular command.

Often, you just need a quick reminder as to what the available options are and what their syntax is. Rather than going through the hassle of calling up the man-page, a quick way is to get the command to give you a usage message. As its name implies, a usage message reports the usage of a particular command. I normally use -? as the option to force the usage message, as I cannot think of a command where -? is a valid option. Your system may also support the --help (two dashes) option. More recent versions of the various commands will typically give you a usage message if you use the wrong option. Note that fewer and fewer commands support the -?.

To make things easier, the letter used for a particular option is often related to the function it serves. For example, the -a option to ls says to list "all" files, even those that are "hidden". On older versions of both Linux and Unix, options typically consisted of a single letter, often both upper and lowercase letters. Although this meant you could have 52 different options it made remembering them difficult, if they were multiple functions that all began with the same letter. Multiple options can either be placed separately, each preceded by a dash, or combined. For example, both of these commands are valid and have the exact same effect:

ls -a -l
ls -al
In both cases you get a long listing which also included all of the hidden files.

Newer versions of commands typically allow for both single letter options and "long options" which use full words. For example, the long equivalent of -a would be --all. Note that the long options are preceded with two dashes because it would otherwise be indistinguishable from the -a followed by two -l options.

Although it doesn't happen too often, you might end up with a situation where one of the arguments to your command starts with a dash (-), for example a file name. Since options typically start with a dash, the shell cannot figure out that it is an argument and not a long line of options. Let's assume that some application I had created a file called "-jim". If I wanted to do a simple listing of the file, I might try this:

ls -jim
However, since the shell first tries to figure out what options are being used before it shows you the listing, it thinks that these are all options and gives you the error message:

ls: invalid option -- j

Try `ls --help' for more information.

You can solve this problem with some commands by using two dashes to tell the command that what follows is actually an argument. So to get the listing in the previous example, the command might look like this:

ls -- -jim

The Search Path

It may happen that you know there is a program by a particular name on the system, but when you try to start it from the command line, you are told that the file is not found. Because you just ran it yesterday, you assume it has gotten removed or you don't remember the spelling.

The most common reason for this is that the program you want to start is not in your search path. Your search path is a predefined set of directories in which the system looks for the program you type in from the command line (or is started by some other command). This saves time because the system does not have to look through every directory trying to find the program. Unfortunately, if the program is not in one of the directories specified in your path, the system cannot start the program unless you explicitly tell it where to look. To do this, you must specify either the full path of the command or a path relative to where you are currently located.

Lets look at this issue for a minute. Think back to our discussion of files and directories. I mentioned that every file on the system can be referred to by a unique combination of path and file name. This applies to executable programs as well. By inputting the complete path, you can run any program, whether it is in your path or not.

Lets take a program that is in everyones path, like date (at least it should be). The date program resides in the /bin directory, so its full path is /bin/date. If you wanted to run it, you could type in /bin/date, press Enter, and you might get something that looks like this:

Sat Jan 28 16:51:36 PST 1995

However, because date is in your search path, you need to input only its name, without the path, to get it to run.

One problem that regularly crops up for users coming from a DOS environment is that the only place UNIX looks for commands is in your path. However, even if not specified in your path, the first place DOS looks is in your current directory. This is not so for UNIX. UNIX only looks in your path.

For most users, this is not a problem as the current directory is included in your path by default. Therefore, the shell will still be able to execute something in your current directory. Root does not have the current directory in its path. In fact, this is the way it should be. If you want to include the current directory in roots path, make sure it is the last entry in the path so that all "real" commands are executed before any other command that a user might try to "force" on you. In fact, I suggest that every user adds entries to the end of their path.

Assume a malicious user created a "bad" program in his/her directory called more. If root were to run more in that users directory, it could have potentially disastrous results. (Note that the current directory normally always appears at the end of the search path. So, even if there was a program called more in the current directory, the one in /bin would probably get executed first. However, you can see how this could cause problems for root.) To figure out exactly which program is actually being run, you can use the (what else?) which command.

Newer versions of the bash-Shell can be configured to not only complete commands automatically by inputting just part of the command, but also arguments to the command, as well as directory names. See the bash man-page for more details.

Commands can also be starting by including a directory path, whether or not they are in you search path. You can use relative or absolute paths, usually with the same result. Details on this can be found in the section on directory paths.

One very important environment variable is the PATH variable. Remember that the PATH tells the shell where it needs to look when determining what command it should run. One of the things the shell does to make sense of your command is to find out exactly what program you mean. This is done by looking for the program in the places specified by your PATH variable.

Although it is more accurate to say that the shell looks in the directories specified by your PATH environment variable, it is commonly said that the shell "searches your path." Because this is easier to type, I am going to use that convention here.

If you were to specify a path in the command name, the shell does not use your PATH variable to do any searching. That is, if you issued the command bin/date, the shell would interpret that to mean that you wanted to execute the command date that was in the bin subdirectory of your current directory. If you were in / (the root directory), all would be well and it would effectively execute /bin/date. If you were somewhere else, the shell might not be able to find a match.

If you do not specify any path (that is, the command does not contain any slashes), the system will search through your path. If it finds the command, great. If not, you get a message saying the command was not found.

Let's take a closer look at how this works by looking at my path variable. From the command line, if I type

echo $PATH

I get

/usr/local/bin:/bin:/usr/bin:/usr/X11/bin:/home/jimmo/bin:/:.

WATCH THE DOT!

If I type in date, the first place in which the shell looks is the /bin directory. Because that's where date resides, it is executed as /bin/date. If I type in vi, the shell looks in /bin, doesn't find it, then looks in /usr/bin, where it does find vi. Now I type in getdev. (This is a program I wrote to translate major device numbers into the driver name. Don't worry if you don't know what a major number is. You will shortly.) The shell looks in /usr/local/bin and doesn't find it. It then looks in /bin. Still not there. It then tries /usr/bin and /usr/X11/bin and still can't find it. When it finally gets to /home/jimmo/bin, it finds the getdev command and executes it. (Note that because I wrote this program, you probably won't have it on your system.)

What would happen if I had not yet copied the program into my personal bin directory? Well, if the getdev program is in my current directory, the shell finds a match with the last "." in my path. (Remember that the "." is translated into the current directory, so the program is executed as ./getdev.) If that final "." was missing or the getdev program was somewhere else, the shell could not find it and would tell me so with something like

getdev: not found

One convention that I (as well as most other authors) will use with is that commands that we talk about will be in your path unless we specifically say otherwise. Therefore, to access them, all you need to do is input the name of the command without the full path.

Directory Paths

As we discussed in the section on the seach path, you can often start programs simply by inputting their name, provided they lie in your search path. You could also start a program by referencing it through a relative path, the path in relation to your current working directory. To understand the syntax of relative paths, we need to backtrack a moment. As I mentioned, you can refer to any file or directory by specifying the path to that directory. Because they have special significance, there is a way of referring to either your current directory or its parent directory. The current directory is referenced by "." and its parent by ".." (often referred to in conversation as "dot" and "dot-dot").

Because directories are separated from files and other directories by a /, a file in the current directory could be referenced as ./file_name and a file in the parent directory would be referenced as ../file_name. You can reference the parent of the parent by just tacking on another ../, and then continue on to the root directory if you want. So the file ../../file_name is in a directory two levels up from your current directory. This slash (/) is referred to as a forward slash, as compared to a back-slash (\), which is used in DOS to separate path components.

When interpreting your command line, the shell interprets everything up to the last / as a directory name. If we were in the root (upper-most) directory, we could access date in one of several ways. The first two, date and /bin/date, we already know about. Knowing that ./ refers to the current directory means that we could also get to it like this: ./bin/date. This is saying relative to our current directory (./), look in the bin subdirectory for the command date. If we were in the /bin directory, we could start the command like this: ./date. This is useful when the command you want to execute is in your current directory, but the directory is not in your path. (More on this in a moment.)

We can also get the same results from the root directory by starting the command like this: bin/date. If there is a ./ at the beginning, it knows that everything is relative to the current directory. If the command contains only a /, the system knows that everything is relative to the root directory. If no slash is at the beginning, the system searches until it gets to the end of the command or encounters a slash whichever comes first. If there is a slash there (as in our example), it translates this to be a subdirectory of the current directory. So executing the command bin/date is translated the same as ./bin/date.

Let's now assume that we are in our home directory, /home/jimmo (for example). We can obviously access the date command simply as date because it's in our path. However, to access it by a relative path, we could say ../../bin/date. The first ../ moves up one level into /home. The second ../ moves up another level to /. From there, we look in the subdirectory bin for the command date. Keep in mind that throughout this whole process, our current directory does not change. We are still in /home/jimmo.

Searching your path is only done for commands. If we were to enter vi file_name (vi is a text editor) and there was no file called file_name in our current directory, vi would start editing a new file. If we had a subdirectory called text where file_name was, we would have to access it either as vi ./text/file_name or vi text/file_name. Of course, we could access it with the absolute path of vi /home/jimmo/text/file_name.

When you input the path yourself (either a command or a file) The shell interprets each component of a pathname before passing it to the appropriate command. This allows you to come up with some pretty convoluted pathnames if you so choose. For example:

cd /home/jimmo/data/../bin/../../chuck/letters

This example would be interpreted as first changing into the directory /home/jimmo/data/, moving back up to the parent directory (..), then into the subdirectory bin, back into the parent and its parent (../../) and then into the subdirectory chuck/letters. Although this is a pretty contrived example, I know many software packages that rely on relative paths and end up with directory references similar to this example.

	Current directory
	Target directory
	Relative path
	Absolute path

	/data/home/jimmo/letter
	/data/home/jimmo/letter/dave
	./dave or dave
	/data/home/jimmo/letter/dave

	/data/home/jimmo/letter
	/data/home/jimmo
	../
	/data/home/jimmo

	/data/home/jimmo/letter
	/data/home/
	../..
	/data/home

	/data/home/jimmo/letter
	/tmp
	../../../../tmp
	/tmp

Shell Variables

The shell's environment is all the information that the shell will use as it runs. This includes such things as your command search path, your logname (the name you logged in under), and the terminal type you are using. Collectively, they are referred to as your environment variables and individually, as the "so-and-so" environment variable, such as the TERM environment variable, which contains the type of terminal you are using.

When you log in, most of these are set for you in one way or another. (The mechanism that sets all environment variables is shell-dependent, so we will talk about it when we get to the individual shells.) Each environment variable can be viewed by simply typing echo $VARIABLE. For example, if I type

echo $LOGNAME
I get:

jimmo

Typing

echo $TERM
I get:

ansi

In general, variables that are pre-defined by the system (e.g. PATH, LOGNAME, HOME) are written in capital letters. Note that this is not a requirement as there are exceptions.

Note that shell variables are only accessible from the current shell. In order for them to be accessible to child processes (i.e. sub-processes) they must be made available using the export command. In the system-wide shell configuration file or "profile" (etc/profile) many variables, such as PATH are exported. More information on processes can be found in the section on processes in the chapter "Introduction to Operating Systems".

It is very common that users' shell prompt is defined by the systems. For example, you might have something that looks like this:

PS1='\u@\h:\w> '

What this does is to set the first level prompt variable PS1 to include the username, hostname and the current working directory. This ends up looking something like this:

jimmo@linux:/tmp>

Adding the \A to display the time, we end up with something that looks like this:

10:09 jimmo@linux:/tmp>

	Variable
	Meaning

	\u
	Username

	\h
	Hostname

	\h
	The fully-qualified hostname

	\w
	Current working directory

	\d
	date

	\t
	the current time in 24-hour HH:MM:SS format

	\T
	the current time in 12-hour HH:MM:SS format

	\@
	the current time in 12-hour am/pm format

	\A
	the current time in 24-hour HH:MM format

	\l
	the basename of the shell's terminal device

	\e
	Escape character

	\n
	newline

	\r
	carriage return

One way of using the escape character in your prompt is to send a terminal control sequence. The can be used, for example, to change the prompt so that the time is shown in red:

PS1='\e[31m\A\e[0m \u@\h:\w> '
Which then looks like this:

10:09 jimmo@linux:/tmp>

Permissions

All this time we have been talking about finding and executing commands, but there is one issue that I haven't mentioned. That is the concept of permissions. To access a file, you need to have permission to do so. If you want to read a file, you need to have read permission. If you want to write to a file, you need to have write permission. If you want to execute a file, you must have execute permission.

Permissions are set on a file using the chmod command or when the file is created (the details of which I will save for later). You can read the permissions on a file by using either the l command or ls -l. At the beginning of each line will be ten characters, which can either be dashes or letters. The first position is the type of the file, whether it is a regular file (-), a directory (d), a block device file (b), and so on. Below are some examples of the various file types.

[image: image1.png]
Image - Various file types. (interactive)

- - regular file
c - character device
b - block device
d - directory
p - named pipe
l - symbolic link

We'll get into the details of these files as we move along. If you are curious about the format of each entry, you can look at the ls man-page.

The next nine positions are broken into three groups. Each group consists of three characters indicating the permissions. They are, in order, read(r), write(w), and execute(x). The first set of characters indicates what permissions the owner of the file has. The second set of characters indicates the permissions for the group of that file. The last set of characters indicates the permissions for everyone else.

If a particular permission is not given, a dash (-) will appear here. For example, rwx means all three permissions have been given. In our example above, the symbolic link /usr/bin/vi has read, write, and execute permissions for everyone. The device nodes /dev/tty1 and /dev/hda1 have permissions rw- for the owner and group, meaning only read and write, but not execute permissions have been given. The directory /bin has read and execute permissions for everyone (r-x), but only the owner can write to it (rwx).

For directories, the situation is slightly different than for regular files. If you do not have read permission on a directory, you cannot read the contents of that directory. Also, if you do not have write permission on a directory, you cannot write to it. This means that you cannot create a new file in that directory. Execute permissions on a directory mean that you can search it or list its contents. That is, if the execution bit is not set on a directory but the read bit is, you can see what files are in the directory but cannot execute any of the files or even change into that directory. If you have execution permission but no read permission, you can execute the files, change directories, but not see what is in the files.

Write permission on a directory also has an interesting side effect. Because you need to have write permission on a directory to create a new file, you also need to have write permission to remove an existing file. Even if you do not have write permission on the file itself, if you can write to the directory, you can erase the file.

At first this sounds odd. However, remember that a directory is nothing more than a file in a special format. If you have write permission to a directory-file, you can remove the references to other files, thereby removing the files themselves.

If we were to set the permissions for all users so that they could read, write, and execute a file, the command would look this:

chmod 777 filename
You can also use symbolic permissions to accomplish the same thing. We use the letters u, g, and o to specify the user(owner), group, and others for this file, respectively. The permissions are then r for read, w for write, and x for execute. So to set the permissions so that the owner can read and write a file, the command would look like this:

chmod u=rw filename
Note that in contrast to the absolute numbers, setting the permissions symbolically is additive. So, in this case, we would just change the user's permissions to read and write, but the others would remain unchanged. If we changed the command to this

chmod u+w filename
we would be adding write permission for the user of that file. Again, the permissions for the others would be unchanged.

To make the permissions for the group and others to be the same as for the user, we could set it like this

chmod go=u filename
which simply means "change the mode so that the permissions for the group and others equals the user." We also could have set them all explicitly in one command, like this

chmod u=rw,g=rw,o=rw filename
which has the effect of setting the permissions for everyone to read and write. However, we don't need to write that much.

Combining the commands, we could have something that looks like this:

chmod u=rw, go=u filename
This means "set the permissions for the user to read and write, then set the permissions for group and others to be equal to the user."

Note that each of these changes is done in sequence. So be careful what changes are made. For example, let's assume we have a file that is read-only for everyone. We want to give everyone write permission for it, so we try

chmod u+w,gu=o filename
This is a typo because we meant to say go=u. The effect is that we added read permissions for the user, but then set the permissions on the group and user to the same as others.

We might want to try adding the write permissions like this:

chmod +w filename
This works on some systems, but not on the Linux distributions that I have seen. According to the man-page, this will not change those permissions where the bits in the UMASK are set. (More on this later. See the chmod man-page for details.)

To get around this, we use a to specify all users. Therefore, the command would be

chmod a+w filename
There are a few other things that you can do with permissions. For example, you can set a program to change the UID of the process when the program is executed. For example, some programs need to run as root to access other files. Rather than giving the user the root password, you can set the program so that when it is executed, the process is run as root. This is a Set-UID, or SUID program. If you want to run a program with a particular group ID, you would use the SGID program with the s option to chmod, like this

chmod u+s program
or

chmod g+s program
There are a few other special cases, but I will leave it up to you to check out the chmod man-page if you are interested.

When you create a file, the access permissions are determined by their file creation mask. This is defined by the UMASK variable and can be set using the umask command. One thing to keep in mind is that this is a mask. That is, it masks out permissions rather than assigning them. If you remember, permissions on a file can be set using the chmod command and a three-digit value. For example

chmod 600 letter.john
explicitly sets the permissions on the file letter.john to 600 (read and write permission for the user and nothing for everyone else). If we create a new file, the permissions might be 660 (read/write for user and group). This is determined by the UMASK. To understand how the UMASK works, you need to remember that the permissions are octal values, which are determined by the permissions bits. Looking at one set of permissions we have

	bit:
	2
	1
	0

	value:
	4
	2
	1

	symbol:
	r
	w
	x

which means that if the bit with value 4 is set (bit 2), the file can be read; if the bit with value 2 is set (bit 1), the file can be written to; and if the bit with value 1 is set (bit 0), the file can be executed. If multiple bits are set, their values are added together. For example, if bits 2 and 1 are set (read/write), the value is 4+2=6. Just as in the example above, if all three are set, we have 4+2+1=7. Because there are three sets of permissions (owner, group, others), the permissions are usually used in triplets, just as in the chmod example above.

The UMASK value masks out the bits. The permissions that each position in the UMASK masks out are the same as the file permissions themselves. So, the left-most position masks out the owner permission, the middle position the group, and the right most masks out all others. If we have UMASK=007, the permissions for owner and group are not touched. However, for others, we have the value 7, which is obtained by setting all bits. Because this is a mask, all bits are unset. (The way I remember this is that the bits are inverted. Where it is set in the UMASK, it will be unset in the permissions, and vice versa.)

The problem many people have is that the umask command does not force permissions, but rather limits them. For example, if we had UMASK=007, we could assume that any file created has permissions of 770. However, this depends on the program that is creating the file. If the program is creating a file with permissions 777, the umask will mask out the last bits and the permissions will, in fact, be 770. However, if the program creates permissions of 666, the last bits are still masked out. However, the new file will have permissions of 660, not 770. Some programs, like the C compiler, do generate files with the execution bit (bit 0) set. However, most do not. Therefore, setting the UMASK=007 does not force creation of executable programs, unless the program creating the file does itself).

Lets look at a more complicated example. Assume we have UMASK=047. If our program creates a file with permissions 777, then our UMASK does nothing to the first digit, but masks out the 4 from the second digit, giving us 3. Then, because the last digit of the UMASK is 7, this masks out everything, so the permissions here are 0. As a result, the permissions for the file are 730. However, if the program creates the file with permissions 666, the resulting permissions are 620. The easy way to figure out the effects of the UMASK are to subtract the UMASK from the default permissions that the program sets. (Note that all negative values become 0.)

As I mentioned, one way the UMASK is set is through the environment variable UMASK. You can change it anytime using the umask command. The syntax is simply

umask <new_umask>

Here the <new_umask> can either be the numeric value (e.g., 007) or symbolic. For example, to set the umask to 047 using the symbolic notation, we have

umask u=,g=r,o=rwx

This has the effect of removing no permissions from the user, removing read permission from the group, and removing all permissions from others.

Being able to change the permissions on a file is often not enough. What if the only person that should be able to change a file is not the owner? Simple! You change the owner. This is accomplished with the chown command, which has the general syntax:

chown new_owner filename
Where "new_owner" is the name of the user account we want to sent the owner of the file to, and "filename" is the file we want to change. In addition, you can use chown to change not only the owner, but the group of the file as well. This has the general syntax:

chown new_owner.new:group filename
Another useful trick is the ability to set the owner and group to the same ones as another file. This is done with the --reference= option, which sets to the name of the file you are referencing. If you want to change just the group, you can use the chgrp command, which has the same basic syntax as chown. Not that both chgrp and chmod can also take the --reference= option. Further, all three of these commands take the -R option, which recursively changes the permissions, owner or group.

Regular Expressions and Metacharactes

Often, the arguments that you pass to commands are file names. For example, if you wanted to edit a file called letter, you could enter the command vi letter. In many cases, typing the entire name is not necessary. Built into the shell are special characters that it will use to expand the name. These are called metacharacters.

The most common metacharacter is *. The * is used to represent any number of characters, including zero. For example, if we have a file in our current directory called letter and we input

vi let*
the shell would expand this to

vi letter
Or, if we had a file simply called let, this would match as well.

Instead, what if we had several files called letter.chris, letter.daniel, and letter.david? The shell would expand them all out to give me the command

vi letter.chris letter.daniel letter.david
We could also type in vi letter.da*, which would be expanded to

vi letter.daniel letter.david
If we only wanted to edit the letter to chris, we could type it in as vi *chris. However, if there were two files, letter.chris and note.chris, the command vi *chris would have the same results as if we typed in:

vi letter.chris note.chris
In other words, no matter where the asterisk appears, the shell expands it to match every name it finds. If my current directory contained files with matching names, the shell would expand them properly. However, if there were no matching names, file name expansion couldn't take place and the file name would be taken literally.

For example, if there were no file name in our current directory that began with letter, the command

vi letter*
could not be expanded and we would end up editing a new file called (literally) letter*, including the asterisk. This would not be what we wanted.

What if we had a subdirectory called letters? If it contained the three files letter.chris, letter.daniel, and letter.david, we could get to them by typing

vi letters/letter*
. This would expand to be:

vi letters/letter.chris letters/letter.daniel letters/letter.david
The same rules for path names with commands also apply to files names. The command

vi letters/letter.chris
is the same as

vi ./letters/letter.chris
which as the same as

vi /home/jimmo/letters/letter.chris
This is because the shell is doing the expansion before it is passed to the command. Therefore, even directories are expanded. And the command

vi le*/letter.*
could be expanded as both letters/letter.chris and lease/letter.joe., or any similar combination

The next wildcard is ?. This is expanded by the shell as one, and only one, character. For example, the command vi letter.chri? is the same as vi letter.chris. However, if we were to type in vi letter.chris? (note that the "?" comes after the "s" in chris), the result would be that we would begin editing a new file called (literally) letter.chris?. Again, not what we wanted. This wildcard could be used if, for example, there were two files named letter.chris1 and letter.chris2. The command vi letter.chris? would be the same as

vi letter.chris1 letter.chris2
Another commonly used metacharacter is actually a pair of characters: []. The square brackets are used to represent a list of possible characters. For example, if we were not sure whether our file was called letter.chris or letter.Chris, we could type in the command as: vi letter.[Cc]hris. So, no matter if the file was called letter.chris or letter.Chris, we would find it. What happens if both files exist? Just as with the other metacharacters, both are expanded and passed to vi. Note that in this example, vi letter.[Cc]hris appears to be the same as vi letter.?hris, but it is not always so.

The list that appears inside the square brackets does not have to be an upper- and lowercase combination of the same letter. The list can be made up of any letter, number, or even punctuation. (Note that some punctuation marks have special meaning, such as *, ?, and [], which we will cover shortly.) For example, if we had five files, letter.chris1-letter.chris5, we could edit all of them with vi letter.chris[12435].

A nice thing about this list is that if it is consecutive, we don't need to list all possibilities. Instead, we can use a dash (-) inside the brackets to indicate that we mean a range. So, the command

vi letter.chris[12345]
could be shortened to

vi letter.chris[1-5]
What if we only wanted the first three and the last one? No problem. We could specify it as

vi letter.chris[1-35]
This does not mean that we want files letter.chris1 through letter.chris35! Rather, we want letter.chris1, letter.chris2, letter.chris3, and letter.chris5. All entries in the list are seen as individual characters.

Inside the brackets, we are not limited to just numbers or just letters. we can use both. The command vi letter.chris[abc123] has the potential for editing six files: letter.chrisa, letter.chrisb, letter.chrisc, letter.chris1, letter.chris2, and letter.chris3.

If we are so inclined, we can mix and match any of these metacharacters any way we want. We can even use them multiple times in the same command. Let's take as an example the command

vi *.?hris[a-f1-5]
Should they exist in our current directory, this command would match all of the following:

	letter.chrisa
	note.chrisa
	letter.chrisb
	note.chrisb
	letter.chrisc

	note.chrisc
	letter.chrisd
	note.chrisd
	letter.chrise
	note.chrise

	letter.chris1
	note.chris1
	letter.chris2
	note.chris2
	letter.chris3

	note.chris3
	letter.chris4
	note.chris4
	letter.chris5
	note.chris5

	letter.Chrisa
	note.Chrisa
	letter.Chrisb
	note.Chrisb
	letter.Chrisc

	note.Chrisc
	letter.Chrisd
	note.Chrisd
	letter.Chrise
	note.Chrise

	letter.Chris1
	note.Chris1
	letter.Chris2
	note.Chris2
	letter.Chris3

	note.Chris3
	letter.Chris4
	note.Chris4
	letter.Chris5
	note.Chris5

Also, any of these names without the leading letter or note would match. Or, if we issued the command:

vi *.d*
these would match

letter.daniel note.daniel letter.david note.david

Remember, I said that the shell expands the metacharacters only with respect to the name specified. This obviously works for file names as I described above. However, it also works for command names as well.

If we were to type dat* and there was nothing in our current directory that started with dat, we would get a message like

dat*: not found

However, if we were to type /bin/dat*, the shell could successfully expand this to be /bin/date, which it would then execute. The same applies to relative paths. If we were in / and entered ./bin/dat* or bin/dat*, both would be expanded properly and the right command would be executed. If we entered the command /bin/dat[abcdef], we would get the right response as well because the shell tries all six letters listed and finds a match with /bin/date.

An important thing to note is that the shell expands as long as it can before it attempts to interpret a command. I was reminded of this fact by accident when I input /bin/l*. If you do an

ls /bin/l*
you should get the output:

-rwxr-xr-x 1 root root 22340 Sep 20 06:24 /bin/ln

-r-xr-xr-x 1 root root 25020 Sep 20 06:17 /bin/login

-rwxr-xr-x 1 root root 47584 Sep 20 06:24 /bin/ls

At first, I expected each one of the files in /bin that began with an "l" (ell) to be executed. Then I remembered that expansion takes place before the command is interpreted. Therefore, the command that I input, /bin/l*, was expanded to be

/bin/ln /bin/login /bin/ls
Because /bin/ln was the first command in the list, the system expected that I wanted to link the two files together (what /bin/ln is used for). I ended up with error message:

/bin/ln: /bin/ls: File exists

This is because the system thought I was trying to link the file /bin/login to /bin/ls, which already existed. Hence the message.

The same thing happens when I input /bin/l? because the /bin/ln is expanded first. If I issue the command /bin/l[abcd], I get the message that there is no such file. If I type in

/bin/l[a-n]

I get:

/bin/ln: missing file argument

because the /bin/ln command expects two file names as arguments and the only thing that matched is /bin/ln.

I first learned about this aspect of shell expansion after a couple of hours of trying to extract a specific subdirectory from a tape that I had made with the cpio command. Because I made the tape using absolute paths, I attempted to restore the files as /home/jimmo/letters/*. Rather than restoring the entire directory as I expected, it did nothing. It worked its way through the tape until it got to the end and then rewound itself without extracting any files.

At first I assumed I made a typing error, so I started all over. The next time, I checked the command before I sent it on its way. After half an hour or so of whirring, the tape was back at the beginning. Still no files. Then it dawned on me that hadn't told the cpio to overwrite existing files unconditionally. So I started it all over again.

Now, those of you who know cpio realize that this wasn't the issue either. At least not entirely. When the tape got to the right spot, it started overwriting everything in the directory (as I told it to). However, the files that were missing (the ones that I really wanted to get back) were still not copied from the backup tape.

The next time, I decided to just get a listing of all the files on the tape. Maybe the files I wanted were not on this tape. After a while it reached the right directory and lo and behold, there were the files that I wanted. I could see them on the tape, I just couldn't extract them.

Well, the first idea that popped into my mind was to restore everything. That's sort of like fixing a flat tire by buying a new car. Then I thought about restoring the entire tape into a temporary directory where I could then get the files I wanted. Even if I had the space, this still seemed like the wrong way of doing things.

Then it hit me. I was going about it the wrong way. The solution was to go ask someone what I was doing wrong. I asked one of the more senior engineers (I had only been there less than a year at the time). When I mentioned that I was using wildcards, it was immediately obvious what I was doing wrong (obvious to him, not to me).

Lets think about it for a minute. It is the shell that does the expansion, not the command itself (like when I ran /bin/l*). The shell interprets the command as starting with /bin/l. Therefore, I get a listing of all the files in /bin that start with "l". With cpio , the situation is similar.

When I first ran it, the shell interpreted the files (/home/jimmo/data/*) before passing them to cpio. Because I hadn't told cpio to overwrite the files, it did nothing. When I told cpio to overwrite the files, it only did so for the files that it was told to. That is, only the files that the shell saw when it expanded /home/jimmo/data/*. In other words, cpio did what it was told. I just told it to do something that I hadn't expected.

The solution is to find a way to pass the wildcards to cpio. That is, the shell must ignore the special significance of the asterisk. Fortunately, there is a way to do this. By placing a back-slash (\) before the metacharacter, you remove its special significance. This is referred to as "escaping" that character.

So, in my situation with cpio, when I referred to the files I wanted as /home/jimmo/data/*, the shell passed the arguments to cpio as /home/jimmo/data/*. It was then cpio that expanded the * to mean all the files in that directory. Once I did that, I got the files I wanted.

You can also protect the metacharacters from being expanded by enclosing the entire expression in single quotes. This is because it is the shell that first expands wildcard before passing them to the program. Note also that if the wild card cannot be expanded, the entire expression (including the metacharacters) is passed as an argument to the program. Some programs are capable of expanding the metacharacters themselves.

As in places, other the exclamation mark (!) has a special meaning. (That is, it is also a metacharacter) When creating a regular expression, the exclamation mark is used to negate a set of characters. For example, if we wanted to list all files that did not have a number at the end, we could do something like this

ls *[!0-9]

This is certainly faster than typing this

ls *[a-zA-z]

However, this second example does not mean the same thing. In the first case, we are saying we do not want numbers. In the second case, we are saying we only want letters. There is a key difference because in the second case we do not include the punctuation marks and other symbols.

Another symbol with special meaning is the dollar sign ($). This is used as a marker to indicate that something is a variable. I mentioned earlier in this section that you could get access to your login name environment variable by typing:

echo $LOGNAME
The system stores your login name in the environment variable LOGNAME (note no "$"). The system needs some way of knowing that when you input this on the command line, you are talking about the variable LOGNAME and not the literal string LOGNAME. This is done with the "$".Several variables are set by the system. You can also set variables yourself and use them later on. I'll get into more detail about shell variables later.

So far, we have been talking about metacharacters used for searching the names of files. However, metacharacters can often be used in the arguments to certain commands. One example is the grep command, which is used to search for strings within files. The name grep comes from Global Regular Expression Print (or Parser). As its name implies, it has something to do with regular expressions. Lets assume we have a text file called documents, and we wish to see if the string "letter" exists in that text. The command might be

grep letter documents
This will search for and print out every line containing the string "letter." This includes such things as "letterbox," "lettercarrier," and even "love-letter." However, it will not find "Letterman," because we did not tell grep to ignore upper- and lowercase (using the -i option). To do so using regular expressions, the command might look like this

grep [Ll]etter documents
Now, because we specified to look for either "L" or "l" followed by "etter," we get both "letter" and "Letterman." We can also specify that we want to look for this string only when it appears at the beginning of a line using the caret (^) symbol. For example

grep ^[Ll]etter documents
This searches for all strings that start with the "beginning-of-line," followed by either "L" or "l," followed by "etter." Or, if we want to search for the same string at the end of the line, we would use the dollar sign to indicate the end of the line. Note that at the beginning of a string, the dollar sign is treated as the beginning of the string, whereas at the end of a string, it indicates the end of the line. Confused? Lets look at an example. Lets define a string like this:

VAR=^[Ll]etter

If we echo that string, we simply get ^[Ll]etter. Note that this includes the caret at the beginning of the string. When we do a search like this

grep $VAR documents
it is equivalent to

grep ^[Ll]etter documents
Now, if write the same command like this

grep VAR documents
This says to find the string defined by the VAR variable(^[Ll]etter) , but only if it is at the end of the line. Here we have an example, where the dollar sign has both meanings. If we then take it one step further:

grep ^VAR documents
This says to find the string defined by the VAR variable, but only if it takes up the entry line. In other words, the line consists only of the beginning of the line (^), the string defined by VAR, and the end of the line ($).

Here I want to side step a little. When you look at the variable VAR it might be confusing to some people. Further, if you were to combine this variable with other characters you may end with something you do not expect because the shell decides to include as part of the variable name. To prevent this, it is a good idead to include the variable name within curly-braces, like this:

${VAR}$
The curly-braces tell the shell what exactly belongs to the variable name. I try to always include the variable name within curly-braces to ensure that there is no confusion. Also, you need to use the curly-braces when comining variables like this:

${VAR1}${VAR2}

Often you need to match a series of repeated characters, such as spaces, dashes and so forth. Although you could simply use the asterisk to specify any number of that particular character, you can run into problems on both ends. First, maybe you want to match a minimum number of that character. This could easily solved by first repeating that character a certain number of times before you use the wildcard. For example, the expression

====*

would match at least three equal signs. Why three? Well, we have explicitly put in three equal signs and the wildcard follows the fourth. Since the asterisk can be zero or more, it could mean zero and therefore the expression would only match three.

The next problem occurs when we want to limit the maximum number of characters that are matched. If you know exactly how many to match, you could simply use that many characters. What do you do if you have a minimum and a maximum? For this, you enclose the range with curly-braces: {min,max}. For example, to specify at least 5 and at most 10, it would look like this: {5,10}. Keep in mind that the curly braces have a special meaning for the shell, so we would need to escape them with a back-slash when using them on the command line. So, lets say we wanted to search a file for all number combinations between 5 and 10 number long. We might have something like this:

grep "[0-9]\{5,10\}" FILENAME
This might seem a little complicated, but it would be far more complicated to write an regular expression that searches for each combination individually.

As we mentioned above, to define a specific number of a particular character you could simply input that character the desired number of times. However, try counting 17 periods on a line or 17 lower-case letters ([a-z]). Imagine trying to type in this combination 17 times! You could specify a range with a maximum of 17 and a minimum of 17, like this: {17,17}. Although this would work, you could save yourself a little typing by simply including just the single value. Therefore, to match exactly 17 lower-case letters, you might have something like this:

 grep "[a-z]\{17\}" FILENAME
If we want to specify a minimum number of times, without a maximum, we simply leave off the maximum, like this:

grep "[a-z]\{17,\}" FILENAME
This would match a pattern of at least 17 lower-case letters.

Another problem occurs when you are trying to parse data that is not in English. If you were looking for all letters in an English text, you could use something like this: [a-zA-Z]. However, this would not include German letters, like ä,Ö,ß and so forth. To do so, you would use the expressions [:lower:], [:upper:] or [:alpha:] for the lower-case letters, upper-case letters or all letters, respectively, regardless of the language. (Note this assumes that national language support (NLS) is configured on your system, which it normally is for newer Linux distributions.

Other expressions include:

 [:alnum:] - Alpha-numeric characters.

 [:cntrl:] - Control characters.

 [:digit:] - Digits.

 [:graph:] - Graphics characters.

 [:print:] - Printable characters.

 [:punct:] - Punctuation.

 [:space:] - White spaces.

One very important thing to note is that the brackets are part of the expression. Therefore, if you want to include more in a bracket expression you need to make sure you have the correction number of brackets. For example, if you wanted to match any number of alpha-numeric or punctuation, you might have an expression like this: [[:alnum:][:digit:]]*.

Another thing to note is that in most cases, regular expression are expanded as much as possible. For example, let's assume I was parsing an HTML file and wanted to match the first tag on the line. You might think to try an expression like this: "<.*>". This says to match any number of characters between the angle brackets. This works if there is only one tag on the line. However, if you have more than one tag, this expression would match everything from the first opening angle-bracket to the last closing angle bracket with everything inbetween.

There are a number of rules that are defined for regular expression, the understanding of which helps avoid confusion:

1. An non-special character is equivalent to that character.

2. When preceeded by a backslash (\) is every special character equivalent to itself

3. A period specifies any single character

4. An asterisk specifies zero or more copies of the preceeding chacter

5. When used by itself, an asterisk species everything or nothing

6. A range of characters is specified within square brackets ([])

7. The beginning of the line is specified with a caret (^) and the end of the line with a dollar sign ($)

8. If included within square brackets, a caret (^) negates the set of characters

Quotes

One last issue that causes its share of confusion is quotes. In Linux, there are three kinds of quotes: double-quotes ("), single-quotes ('), and back-quotes(``) (also called back-ticks). On most US keyboards, the single-quotes and double-quotes are on the same key, with the double-quotes accessed by pressing Shift and the single-quote key. Usually this key is on the right-hand side of the keyboard, next to the Enter key. On a US-American keyboard the back-quote is usually in the upper left-hand corner of the keyboard, next to the 1.

To best understand the difference between the behavior of these quotes, I need to talk about them in reverse order. I will first describe the back-quotes, or back-ticks.

When enclosed inside back-ticks, the shell interprets something to mean "the output of the command inside the back-ticks." This is referred to as command substitution, as the output of the command inside the back-ticks is substituted for the command itself. This is often used to assign the output of a command to a variable. As an example, lets say we wanted to keep track of how many files are in a directory. From the command line, we could say

ls | wc
The wc command gives me a word count, along with the number of lines and number of characters. The | is a "pipe" symbol that is used to pass the output of one command through another. In this example, the output of the ls command is passed or piped through wc. Here, the command might come up as:

7 7 61

However, once the command is finished and the value has been output, we can only get it back again by rerunning the command. Instead, If we said:

count=`ls |wc`
The entire line of output would be saved in the variable count. If we then say echo $count, we get

7 7 61

showing me that count now contains the output of that line. If we wanted, we could even assign a multi-line output to this variable. We could use the ps command, like this

trash=`ps`
then we could type in

echo $trash
which gives us:

PID TTY TIME CMD 29519 pts/6 00:00:00 bash 12565 pts/6 00:00:00 ps

This is different from the output that ps would give when not assigned to the variable trash:

 PID TTY TIME CMD

29519 pts/6 00:00:00 bash

12564 pts/6 00:00:00 ps

The next kind of quote, the single-quote ('), tells the system not to do any expansion at all. Lets take the example above, but this time, use single quotes:

count='ls |wc'
If we were to now type

echo $count
we would get

ls |wc
And what we got was exactly what we expected. The shell did no expansion and simply assigned the literal string "ls | wc" to the variable count. This even applies to the variable operator "$." For example, if we simply say

echo '$LOGNAME'
what comes out on the screen is

$LOGNAME

No expansion is done at all and even the "$" is left unchanged.

The last set of quotes is the double-quote. This has partially the same effect as single-quotes, but to a limited extent. If we include something inside of double-quotes, everything loses its special meaning except for the variable operator ($), the back-slash (\), the back-tick (`), and the double-quote itself. Everything else takes on its absolute meaning. For example, we could say

echo "`date`"
which gives us

Wed Feb 01 16:39:30 PST 1995

This is a round-about way of getting the date, but it is good for demonstration purposes. Plus, I often use this in shell scripts when I want to log something and keep track of the date. Remember that the back-tick first expands the command (by running it) and then the echo echoes it to the screen.

That pretty much wraps up the quote characters. For details on other characters that have special meaning to the shell check out the section on regular expressions. You can get more details from any number of references books on Linux or UNIX in general (if you need it). However, the best way to see what's happening is to try a few combinations and see if they behave as you expect.

Previously, I mentioned that some punctuation marks have special meaning, such as *, ?, and []. In fact, most of the other punctuation marks have special meaning, as well. We'll get into more detail about them in the section on basic shell scripting.

It may happen that you forget to close the quotes, and you end up on a new line that starts with (typically) a greater than symbol >. This is the secondary prompt (PS2) and is simply telling you that your previous line continues. You can continue the line and the close the quotes later, like this:

VAR="Now is the time for all good admins

> to come to the aid of their operating system."

It is as if you wrote the entire line at once.

Sometimes it is necessary to include the literal quotes in your output variable. This is a problem because your shell interprets the quotes before assinging the value to the variable. To get around this you need to "escape" or "protect" the quotes using a backslash", like this:

echo \"hello, world\"
Pipes and Redirection

Perhaps the most commonly used character is "|", which is referred to as the pipe symbol, or simply pipe. This enables you to pass the output of one command through the input of another. For example, say you would like to do a long directory listing of the /bin directory. If you type ls -l and then press Enter, the names flash by much too fast for you to read. When the display finally stops, all you see is the last twenty entries or so.

If instead we ran the command

ls -l | more
the output of the ls command will be "piped through more". In this way, we can scan through the list a screenful at a time.

In our discussion of standard input and standard output in Chapter 1, I talked about standard input as being just a file that usually points to your terminal. In this case, standard output is also a file that usually points to your terminal. The standard output of the ls command is changed to point to the pipe, and the standard input of the more command is changed to point to the pipe as well.

The way this works is that when the shell sees the pipe symbol, it creates a temporary file on the hard disk. Although it does not have a name or directory entry, it takes up physical space on the hard disk. Because both the terminal and the pipe are seen as files from the perspective of the operating system, all we are saying is that the system should use different files instead of standard input and standard output.

Under Linux (as well as other UNIX dialects), there exist the concepts of standard input, standard output, and standard error. When you log in and are working from the command line, standard input is taken from your terminal keyboard and both standard output and standard error are sent to your terminal screen. In other words, the shell expects to be getting its input from the keyboard and showing the output (and any error messages) on the terminal screen.

Actually, the three (standard input, standard output, and standard error) are references to files that the shell automatically opens. Remember that in UNIX, everything is treated as a file. When the shell starts, the three files it opens are usually the ones pointing to your terminal.

When we run a command like cat, it gets input from a file that it displays to the screen. Although it may appear that the standard input is coming from that file, the standard input (referred to as stdin) is still the keyboard. This is why when the file is large enough and you are using something like more to display the file one screen at a time and it stops after each page, you can continue by pressing either the Spacebar or Enter key. That's because standard input is still the keyboard.

As it is running, more is displaying the contents of the file to the screen. That is, it is going to standard output (stdout). If you try to do a more on a file that does not exist, the message

file_name: No such file or directory

shows up on your terminal screen as well. However, although it appears to be in the same place, the error message was written to standard error (stderr). (I'll show how this differs shortly.)

One pair of characters that is used quite often, "<" and ">," also deal with stdin and stdout. The more common of the two, ">," redirects the output of a command into a file. That is, it changes standard output. An example of this would be ls /bin > myfile. If we were to run this command, we would have a file (in my current directory) named myfile that contained the output of the ls /bin command. This is because stdout is the file myfile and not the terminal. Once the command completes, stdout returns to being the terminal. What this looks like graphically, we see in the figure below.

[image: image2.png]
Now, we want to see the contents of the file. We could simply say more myfile, but that wouldn't explain about redirection. Instead, we input

more <myfile
This tells the more command to take its standard input from the file myfile instead of from the keyboard or some other file. (Remember, even when stdin is the keyboard, it is still seen as a file.)

What about errors? As I mentioned, stderr appears to be going to the same place as stdout. A quick way of showing that it doesn't is by using output redirection and forcing an error. If wanted to list two directories and have the output go to a file, we run this command:

ls /bin /jimmo > /tmp/junk

We then get this message:

/jimmo not found

However, if we look in /tmp, there is indeed a file called junk that contains the output of the ls /bin portion of the command. What happened here was that we redirected stdout into the file /tmp/junk. It did this with the listing of /bin. However, because there was no directory /jimmo (at least not on my system), we got the error /jimmo not found. In other words, stdout went into the file, but stderr still went to the screen.

If we want to get the output and any error messages to go to the same place, we can do that. Using the same example with ls, the command would be:

ls /bin /jimmo > /tmp/junk 2>&1

The new part of the command is 2>&1, which says that file descriptor 2 (stderr) should go to the same place as file descriptor 1 (stdout). By changing the command slightly

ls /bin /jimmo > /tmp/junk 2>/tmp/errors

we can tell the shell to send any errors someplace else. You will find quite often in shell scripts throughout the system that the file that error messages are sent to is /dev/null. This has the effect of ignoring the messages completely. They are neither displayed on the screen nor sent to a file.

Note that this command does not work as you would think:

ls /bin /jimmo 2>&1 > /tmp/junk

The reason is that we redirect stderr to the same place as stdout before we redirect stdout. So, stderr goes to the screen, but stdout goes to the file specified.

Redirection can also be combined with pipes like this:

sort < names | head
or

ps | grep sh > ps.save
In the first example, the standard input of the sort command is redirected to point to the file names. Its output is then passed to the pipe. The standard input of the head command (which takes the first ten lines) also comes from the pipe. This would be the same as the command

sort names | head
which we see here:

[image: image3.png]
In the second example, the ps command (process status) is piped through grep and all of the output is redirected to the file ps.save.

If we want to redirect stderr, we can. The syntax is similar:

command 2> file

It's possible to input multiple commands on the same command line. This can be accomplished by using a semi-colon (;) between commands. I have used this on occasion to create command lines like this:

man bash | col -b > man.tmp; vi man.tmp; rm man.tmp
This command redirects the output of the man-page for bash into the file man.tmp. (The pipe through col -b is necessary because of the way the man-pages are formatted.) Next, we are brought into the vi editor with the file man.tmp. After I exit vi, the command continues and removes my temporary file man.tmp. (After about the third time of doing this, it got pretty monotonous, so I created a shell script to do this for me. I'll talk more about shell scripts later.)

Interpretating Commands

When you input a command-line, the shell needs to be able intepret it correctly in order to know what exactly to do. Maybe you have multiple options or redirect the output to a file. In any event the shell goes through several steps to figure out that needs to be done.

One question I had was, "In what order does everything get done?" We have shell variables to expand, maybe an alias or function to process, "real" commands, pipes and input/output redirection. There are a lot of things that the shell must consider when figuring out what to do and when.

For the most part, this is not very important. Commands do not get so complex that knowing the evaluation order becomes an issue. However, on a few occasions I have run into situations in which things did not behave as I thought they should. By evaluating the command myself (as the shell would), it became clear what was happening. Let's take a look.

The first thing that gets done is that the shell figures out how many commands there are on the line. (Remember, you can separate multiple commands on a single line with a semicolon.) This process determines how many tokens there are on the command line. In this context, a token could be an entire command or it could be a control word such as "if." Here, too, the shell must deal with input/output redirection and pipes.

Once the shell determines how many tokens there are, it checks the syntax of each token. Should there be a syntax error, the shell will not try to start any of the commands. If the syntax is correct, it begins interpreting the tokens.

First, any alias you might have is expanded. Aliases are a way for some shells to allow you to define your own commands. If any token on the command line is actually an alias that you have defined, it is expanded before the shell proceeds. If it happens that an alias contains another alias, they are both expanded before continuing with the next step.

The next thing the shell checks for is functions. Like the functions in programming languages such as C, a shell function can be thought of as a small subprogram. Check the other sections for details on aliases and functions.

Once aliases and functions have all been completely expanded, the shell evaluates variables. Finally, it uses any wildcards to expand them to file names. This is done according to the rules we talked about previously.

After the shell has evaluated everything, it is still not ready to run the command. It first checks to see if the first token represents a command built into the shell or an external one. If it's not internal, the shell needs to go through the search path.

At this point, it sets up the redirection, including the pipes. These obviously must be ready before the command starts because the command may be getting its input from someplace other than the keyboard and may be sending it somewhere other than the screen. The figure below shows how the evaluation looks graphically.

[image: image4.png]
Image - Steps in interpreting command line input. (interactive)

This is an oversimplification. Things happen in this order, though many more things occur in and around the steps than I have listed here. What I am attempting to describe is the general process that occurs when the shell is trying to interpret your command.

Once the shell has determined what each command is and each command is an executable binary program (not a shell script), the shell makes a copy of itself using the fork() system call. This copy is a child process of the shell. The copy then uses the exec() system call to overwrite itself with the binary it wants to execute. Keep in mind that even though the child process is executing, the original shell is still in memory, waiting for the child to complete (assuming the command was not started in the background with &).

If the program that needs to be executed is a shell script, the program that is created with fork() and exec() is another shell. This new shell starts reading the shell script and interprets it, one line at a time. This is why a syntax error in a shell script is not discovered when the script is started, but rather when the erroneous line is first encountered.

Understanding that a new process is created when you run a shell script helps to explain a very common misconception under UNIX. When you run a shell script and that script changes directories, your original shell knows nothing about the change. This confuses a lot of people who are new to UNIX as they come from the DOS world, where changing the directory from within a batch file does change the original shell. This is because DOS does not have the same concept of a process as UNIX does.

Look at it this way: The sub-shell's environment has been changed because the current directory is different. However, this is not passed back to the parent. Like "real" parent-child relationships, only the children can inherit characteristics from their parent, not the other way around. Therefore, any changes to the environment, including directory changes, are not noticed by the parent. Again, this is different from the behavior of DOS .bat files.

You can get around this by either using aliases or shell functions (assuming that your shell has them). Another way is to use the dot command in front of the shell script you want to execute. For example:

. myscript
<--NOTICE THE DOT!

This script will be interpreted directly by the current shell, without forking a sub-shell. If the script makes changes to the environment, it is this shell's environment that is changed.

You can use this same functionality if you ever need to reset your environment. Normally, your environment is defined by the start-up files in your home directory. On occasion, things get a little confused (maybe a variable is changed or removed) and you need to reset things. You can you the dot command to do so. For example, with either sh or ksh, you can write it like this:

. $HOME/.profile
<--NOTICE THE DOT!

Or, using a function of bash you can also write

. ~/.profile
<--NOTICE THE DOT!

This uses the tilde (~), which I haven't mentioned yet. Under many shells, you can use the tilde as a shortcut to refer to a particular users home directory.

If you have csh, the command is issued like this:

source $HOME/.login
<--NOTICE THE DOT!

Some shells keep track of your last directory in the OLDPWD environment variable. Whenever you change directories, the system saves your current directory in OLDPWD before it changes you to the new location.

You can use this by simply entering cd $OLDPWD. Because the variable $OLDPWD is expanded before the cd command is executed, you end up back in your previous directory. Although this has more characters than just popd, it's easier because the system keeps track of my position, current and previous, for you. Also, because it's a variable, I can access it in the same way that I can access other environment variables.

For example, if there were a file in your old directory that you wanted to move to your current one, you could do this by entering:

cp $OLDPWD/<file_name> ./

However, things are not as difficult as they seem. Typing in cd $OLDPWD is still a bit cumbersome. It is a lot less characters to type in popd -like in the csh. Why isn't there something like that in the ksh or bash? There is. In fact, it's much simpler. When I first found out about it, the adjective that first came to mind was "sweet." To change directories to your previous directory, simply type "cd -".

Different kinds of shells

The great-grandfather of all shells is /bin/sh, called simply sh or the Bourne Shell, named after its developer, Steven Bourne. When it was first introduced in the mid-1970s, this was almost a godsend as it allowed interaction with the operating system. This is the "standard" shell that you will find on every version in UNIX (at least all those I have seen). Although many changes have been made to UNIX, sh has remained basically unchanged.

All the capabilities of "the shell" I've talked about so far apply to sh. Anything I've talked about that sh can do, the others can do as well. So rather than going on about what sh can do (which I already did), I am going to talk about the characteristics of some other shells.

Later, I am going to talk about the C-Shell, which kind of throws a monkey wrench into this entire discussion. Although the concepts are much the same between the C-Shell and other shells, the constructs are often quite different. On the other hand, the other shells are extensions of the Bourne Shell, so the syntax and constructs are basically the same.

Be careful here. This is one case in which I have noticed that the various versions of Linux are different. Not every shell is in every version. Therefore, the shells I am going to talk about may not be in your distribution. Have no fear! If there is a feature that you really like, you can either take the source code from one of the other shells and add it or you can find the different shells all over the Internet, which is much easier.

Linux includes several different shells and we will get into the specific of many of them as we move along. In addition, many different shells are available as either public domain, shareware, or commercial products that you can install on Linux.

As I mentioned earlier, environment variables are set up for you as you are logging in or you can set them up later. Depending on the shell you use, the files used and where they are located is going to be different. Some variables are made available to everyone on the system and are accessed through a common file. Others reside in the user's home directory.

Normally, the files residing in a users home directory can be modified. However, a system administrator may wish to prevent users from doing so. Often, menus are set up in these files to either make things easier for the user or to prevent the user from getting to the command line. (Often users never need to get that far.) In other cases, environment variables that shouldn't be changed need to be set up for the user.

One convention I will be using here is how I refer to the different shells. Often, I will say "the bash" or just "bash" to refer to the Bourne-Again Shell as a concept and not the program /bin/bash. I will use "bash" to refer to the "Bourne Shell" as an abstract entity and not specifically to the program /bin/sh.

Why the Bourne-Again Shell? Well, this shell is compatible with the Bourne Shell, but has many of the same features as both the Korn Shell (ksh) and C-Shell (csh). This is especially important to me as I flail violently when I don't have a Korn Shell.

Most of the issues I am going to address here are detailed in the appropriate man-pages and other documents. Why cover them here? Well, in keeping with one basic premise of this book, I want to show you the relationships involved. In addition, many of the things we are going to look at are not emphasized as much as they should be. Often, users will go for months or years without learning the magic that these shells can do.

Only one oddity really needs to be addressed: the behavior of the different shells when moving through symbolic links. As I mentioned before, symbolic links are simply pointers to files or directories elsewhere on the system. If you change directories into symbolic links, your "location" on the disk is different than what you might think. In some cases, the shell understands the distinction and hides from you the fact that you are somewhere else. This is where the problem lies.

Although the concept of a symbolic link exists in most versions of UNIX, it is a relatively new aspect. As a result, not all applications and programs behave in the same way. Let's take the directory /usr/spool as an example. Because it contains a lot of administrative information, it is a useful and commonly accessed directory. It is actually a symbolic link to /var/spool. If we are using ash as our shell, when we do a cd /usr/spool and then pwd, the system responds with: /var/spool. This is where we are "physically" located, despite the fact that we did a cd /usr/spool. If we do a cd .. (to move up to our parent directory), we are now located in /var. All this seems logical. This is also the behavior of csh and sh on some systems.

If we use bash, things are different. This time, when we do a cd /usr/spool and then pwd, the system responds with /usr/spools. This is where we are "logically". If we now do a cd .., we are located in /usr. Which of these is the "correct" behavior? Well, I would say both. There is nothing to define what the "correct" behavior is. Depending on your preference, either is correct. I tend to prefer the behavior of ksh. However, the behavior of ash is also valid.

Command Line Editing

When I first started working in tech support, I was given a csh and once I figured out all it could do, I enjoyed using it. I found the editing to be cumbersome from time to time, but it was better than retyping everything.

One of my co-workers, Kamal (of IguanaCam fame), was an avid proponent of the Korn Shell. Every time he wanted to show me something on my terminal, he would grumble when he forgot that I wasn't using ksh. Many times he tried to convert me, but learning a new shell wasn't high on my list of priorities.

I often complained to Kamal how cumbersome vi was (at least I thought so at the time). One day I asked him for some pointers on vi, because every time I saw him do something in vi, it looked like magic. He agreed with the one condition that I at least try the ksh. All he wanted to do was to show me one thing and if after that I still wanted to use the csh, that was my own decision. Not that he would stop grumbling, just that it was my own choice.

The one thing that Kamal showed me convinced me of the errors of my ways. Within a week, I had requested the system administrator to change my login shell to ksh.

What was that one thing? Kamal showed me how to configure the ksh to edit previous commands using the same syntax as the vi editor. I felt like the csh editing mechanism was like using a sledge-hammer to pound in a nail. It does what you want, but it is more work than you need.

Many different shells have a history mechanism. The history mechanism of both the ksh and bash has two major advantages over that of the csh. First, the information is actually saved to a file. This is either defined by the HISTFILE environment variable before the shell is invoked, or it defaults to .bash_history (for the bash) in your home directory. At any point you can edit this file and make changes to what the ksh perceives as your command history.

This could be useful if you knew you were going to be issuing the same commands every time you logged in and you didn't want to create aliases or functions. If you copied a saved version of this file (or any other text file) and named it .sh_history, you would immediately have access to this new history. (Rewriting history? I shudder at the ramifications.)

The second advantage is the ability to edit directly any of the lines in your .bash_history file from the command line. If your EDITOR environment variable is set to vi or you use the set -o vi command, you can edit previous commands using many of the standard vi editing commands.

To enter edit mode, press Esc. You can now scroll through the lines of your history file using the vi movement keys (h-j-k-l). Once you have found the line you are looking for, you can use other vi commands to delete, add, change, or whatever you need. If you press "v," you are brought into the full-screen version of vi (which I found out by accident). For more details, check out the vi or ksh man-page or the later section on vi.

Note that by default, the line editing commands are similar to the emacs editor. If vi-mode is activated, you can activate emacs-mode with set -o emacs". Turning either off can be done with +o emacs or +o vi.

One exciting thing that bash can do is extend the command line editing. There are a large number of key combinations to which you can get bash to react. You say that the key combinations are "bound" to certain actions. The command you use is bind. To see what keys are currently bound, use bind -v. This is useful for finding out all the different editing commands to which you can bind keys.

Functions

Most (all?) shells have the means of creating new "internal" commands. This is done by creating shell functions. Shell functions are just like those in a programming language. Sets of commands are grouped together and jointly called by a single name.

The format for functions is:

function_name()

{

first thing to do

second thing to do

third thing to do

}

Functions can be defined anywhere, including from the command line. All you need to do is simply type in the lines one at a time, similar to the way shown above. The thing to bear in mind is that if you type a function from a command line, once you exit that shell, the function is gone.

Shell functions have the ability to accept arguments, just like commands. A simple example is a script that looks like this:

display()

{

echo $1

}

display Hello
The output would be

Hello

Here we need to be careful. The variable $1 is the positional parameter from the call to the display function and not to the script. We can see this when we change the script to look like this:

display()

{

echo $1

}

echo $1

display Hello

Lets call the script display.sh and start it like this:

display.sh Hi
The output would then look like this:

Hi

Hello

The first echo shows us the parameter from the command line and the second one shows us the parameter from the function.

Job Control

Job control is the ability to move processes between the foreground and background. This is very useful when you need to do several things at once, but only have one terminal. For example, let's say there are several files spread out across the system that we want to edit. Because we don't know where they are, we can't use full paths. Because they don't have anything common in their names, we can't use find. So we try ls -R > more.

After a minute or two, we find the first file we want to edit. We can then suspend this job by pressing Ctrl+Z. We then see something that looks like this:

[1]+ Stopped ls -R | more

This means that the process has been stopped or suspended. One very important thing to note is that this process is not in the background as if we had put an "&" at the end. When a process is suspended, it stops doing anything, unlike a process in the background, which keeps on working.

Once the ls is in the background, we can run vi. When we are done with vi, we can bring the ls command back with the fg (foreground) command.

If we wanted to, we could have more than just one job suspended. I have never had the need to have more than two running like this, but I have gotten more than ten during tests. One thing that this showed me was the meaning of the plus sign (+). This is the "current" job, or the one we suspended last.

The number in brackets is the process entry in the job table, which is simply a table containing all of your jobs. Therefore, if we already had three jobs, the next time we suspended a job, the entry would look like this:

[4]+ Stopped ls -R >> output

To look at the entire job table, we simply enter the command jobs, which might give us

[1] Stopped ls -R /usr >> output.usr

[2] Stopped find / -print > output.find

[3]- Stopped ls -R /var >> output.var

[4]+ Stopped ls -R >> output.root

The plus sign indicates the job that we suspended last. So this is the one that gets called if we run fg without a job number. In this case, it was Job 4. Note that there is a minus sign (-) right after Job 3. This was the second to last job that we suspended. Now, we bring Job 2 in the foreground with fg 2 and then immediately suspend it again with Ctrl+Z. The table now looks like this:

[1] Stopped ls -R /usr >> output

[2]+ Stopped find / -print > output.find

[3] Stopped ls -R /var >> output

[4]- Stopped ls -R >> output

Note that Job 2 now has the plus sign following it and Job 4 has the minus sign.

In each of these cases, we suspended a job that was running in the foreground. If we had started a job and put it in the background from the command line, the table might have an entry that looked like this:

[3] Running ls -R /var >> output &

This shows us that although we cannot see the process (because it is in the background), it is still running. We could call it to the foreground if we wanted by running fg 3. And, if we wanted, we could use the bg command to send one of the stopped jobs to the background. So

bg %1
would send Job 1 to the background just as if we had included & from the command line.

One nice thing is that we don't have to use just the job numbers when we are pulling something into the foreground. Because we know that we started a process with the find command, we can get it by using

fg %find
Actually, we could have used %f or anything else that was not ambiguous. In this case, we were looking for a process that started with the string we input. We could even look for strings anywhere within the command. To do this, the command might be

fg %?print
which would have given us the same command. Or, if we had tried

fg %?usr
we would have gotten Job 1 because it contains the string usr.

If we find that there is a job that we want to kill (stop completely), we can use the kill command. This works the same way, so kill %<nr> kills the job with number <nr>, kill %<string> kills the job starting with string, and so on.

Keep in mind that process takes up resources whether they are in the foreground or not. That is, background processes take up resources,too.

Aliases

What is an alias? It isn't the ability to call yourself Thaddeus Jones when your real name is Jedediah Curry. Instead, in a Linux-context it is the ability to use a different name for a command. In principle, personal aliases can be anything you want. They are special names that you define to accomplish tasks. They aren't shell scripts, as a shell script is external to your shell. To start up a shell script, type in its name. The system then starts a shell as a child process of your current shell to run the script.

Aliases, too, are started by typing them in. However, they are internal to the shell (provided your shell uses aliases). That is, they are internal to your shell process. Instead of starting a sub-shell, the shell executes the alias internally. This has the obvious advantage of being quicker, as there is no overhead of starting the new shell or searching the hard disk.

Another major advantage is the ability to create new commands. You can do this with shell scripts (which we will get into later), but the overhead of creating a new process does not make it worthwhile for simple tasks. Aliases can be created with multiple commands strung together. For example, I created an alias, t, that shows me the time. Although the date command does that, all I want to see is the time. So, I created an alias, t, like this:

alias t=`date | cut -c12-16`

When I type in t, I get the hours and minutes, just exactly the way I want.

Aliases can be defined in either the .profile, .login or the .cshrc, depending on your shell. However, as I described above, if you want them for all sub-shells, they need to go in .cshrc. If you are running a Bourne Shell, aliasing may be the first good reason to switch to another shell.

Be careful when creating aliases or functions so that you don't redefine existing commands. Either you end up forgetting the alias, or some other program uses the original program and fails because the alias gets called first. I once had a call from a customer with a system in which he could no longer install software. We tried replacing several programs on his system, but to no avail. Fortunately, he had another copy of the same product, but it, too, died with the same error. It didn't seem likely that it was bad media. At this point, I had been with him for almost an hour, so I decided to hand it off to someone else (often, a fresh perspective is all that is needed).

About an hour later, one of the other engineers came into my cubicle with the same problem. He couldn't come up with anything either, which relieved me, so he decided that he needed to research the issue. Well, he found the exact same message in the source code and it turned out that this message appeared when a command could not run the sort command. Ah, a corrupt sort binary. Nope! Not that easy. What else was there? As it turned out, the customer had created an alias called sort that he used to sort directories in a particular fashion. Because the Linux command couldn't work with this version of sort, it died.

Why use one over the other? Well, if there is something that can be done with a short shell script, then it can be done with a function. However, there are things that are difficult to do with an alias. One thing is making long, relatively complicated commands. Although you can do this with an alias, it is much simpler and easier to read if you do it with a function. I will go into some more detail about shell functions later in the section on shell scripting. You can also find more details in the bash man-page.

On some systems, you will find that they have already provide a number of aliases for you. To see what alias are currently configured, just run alias with no options and you might get something like this:
alias +='pushd .'

alias -='popd'

alias ..='cd ..'

alias ...='cd ../..'

alias beep='echo -en "\007"'

alias dir='ls -l'

alias l='ls -alF'

alias la='ls -la'

alias ll='ls -l'

alias ls='ls $LS_OPTIONS'

alias ls-l='ls -l'

alias md='mkdir -p'

alias o='less'

alias rd='rmdir'

alias rehash='hash -r'

alias unmount='echo "Error: Try the command: umount" 1>&2; false'

alias which='type -p'

alias you='yast2 online_update'

As you can see there are many different ways you can use aliases.

More constructs

There are a few more loop constructs that we ought to cover as you are likely to come across them in some of the system scripts. The first is for a for-loop and has the following syntax:

for var in word1 word2 ...

do

list of commands

done

We might use this to list a set of pre-defined directories like this:

or dir in bin etc usr

do

ls -R $dir

done

This script does a recursive listing three times. The first time through the loop, the variable dir is assigned the value bin, next etc, and finally usr.

You may also see that the do/done pair can be replaced by curly braces ({ }). So, the script above would look like this:

for dir in bin etc usr

{

ls -R $dir

}

Next, we have while loops. This construct is used to repeat a loop while a given expression is true. Although you can use it by itself, as in

while ($VARIABLE=value)
I almost exclusively use it at the end of a pipe. For example:

cat filename | while read line

do

commands

done

This sends the contents of the file filename through the pipe, which reads one line at a time. Each line is assigned to variable line. I can then process each line, one at a time. This is also the format that many of the system scripts use.

For those of you who have worked with UNIX shells before, you most certainly should have noticed that I have left out some constructs. Rather than turning this into a book on shell programming, I decided to show you the constructs that occur most often in the shell scripts on your system. I will get to others as we move along. The man-pages of each of the shells provide more details.

Editing files

Because my intent here is not to make you shell or awk programming experts, there are obviously things that we didn't have a chance to cover. However, I hope I have given you the basics to create your own tools and configure at least your shell environment the way you need or want it.

Like any tool or system, the way to get better is to practice. Therefore, my advice is that you play with the shell and programs on the system to get a better feeling for how they behave. By creating your own scripts, you will become more familiar with both vi and shell script syntax, which will help you to create your own tools and understand the behavior of the system scripts. As you learn more, you can add awk and sed components to your system to make some very powerful commands and utilities.

Vi
No one can force you to learn vi, just as no one can force you to do backups. However, in my opinion, doing both will make you a better administrator. There will come a time when having done regular backups will save your career. There may also come a time when knowing vi will save you the embarrassment of having to tell your client or boss that you can't accomplish a task because you need to edit a file and the only editor is the system default: vi.

On the other hand it is my favorite editor. In fact, most of my writing is done using vi. That includes both books and articles. I find it a lot easier than using a so-called wysiwyg editor as I generally don't care what the text is going to look like as my editors are going to change the appearance anyway. Therefore, whether I am writing on Linux, Solaris, or even Windows, I have the same, familiar editor.

Then there is the fact that the files edited with vi are portable to any word processor, regardless of the operating system. Plus it makes making global changes a whole lot easier.

Vi Basics

The uses and benefits of any editor like vi are almost religious. Often, the reasons people choose one editor over another are purely a matter of personal taste. Each offers its own advantages and functionality. Some versions of UNIX provide other editors, such as emacs. However, the nice thing about vi is that every dialect of UNIX has it. You can sit down at any UNIX system and edit a file. For this reason more than any other, I think it is worth learning.

One problem vi has is that can be very intimidating. I know, I didn't like it at first. I frequently get into discussions with people who have spent less than 10 minutes using it and then have ranted about how terrible it was. Often, I then saw them spending hours trying to find a free or relatively cheap add-on so they didn't have to learn vi. The problem with that approach is that if they has spent as much time learning vi as they did trying to find an alternative, they actually could have become quite proficient with vi.

There is more to vi than just its availability on different UNIX systems. To me, vi is magic. Once you get over the initial intimidation, you will see that there is a logical order to the way the commands are laid out and fit together. Things fit together in a pattern that is easy to remember. So, as we get into it, let me tempt you a little.

Among the "magical" things vi can do:

· Automatically correct words that you misspell often

· Accept user-created vi commands

· Insert the output of UNIX commands into the file you are editing

· Automatically indent each line

· Shift sets of lines left or right

· Check for pairs of {}, () and [] (great for programmers)

· Automatically wrap around at the end of a line

· Cut and paste between documents

I am not going to mention every single vi command. Instead, I am going to show you a few and how they fit together. At the end of this section, there is a table containing the various commands you can use inside vi. You can then apply the relationships to the commands I don't mention.

To see what is happening when you enter commands, first find a file that you can poke around in. Make a copy of the termcap file (/etc/termcap) in a temporary directory and then edit it (cd /tmp; cp /etc/termcap . ; vi termcap). The termcap file contains a list of the capabilities of various terminals. It is usually quite large and gives you a lot of things to play with in vi.

Before we can jump into the more advanced features of vi, I need to cover some of the basics. Not command basics, but rather some behavioral basics. In vi, there are two modes: command mode and input mode. While you are in command mode, every keystroke is considered part of a command. This is where you normally start when you first invoke vi. The reverse is also true. While in input mode, everything is considered input.

Well, that isn't entirely true and we'll talk about that in a minute. However, just remember that there are these two modes. If you are in command mode, you go into input mode using a command to get you there, such as append or insert (I'll talk about these in a moment). If you want to go from input mode to command mode, press Esc.

When vi starts, it goes into full-screen mode (assuming your terminal is set up correctly) and it essentially clears the screen (see the following image). If we start the command as

vi search

at the bottom of the screen, you see

"search" [New File]

Your cursor is at the top left-hand corner of the screen, and there is a column of tildes (~) down the left side to indicate that these lines are nonexistent.

In the image below we see a vi session started from a terminal window running under X-Windows. This is essentially the same thing you will see when starting vi from any command line.

[image: image5.png]
Image - Main vi window. (interactive)

As with most text editors or word processors, vi gives you the ability to save the file you are editing without stopping the program. To issue the necessary command we first input a colon (:) when in command mode. When then press w (for write) and the press the entry key. This might look like the following figure:

[image: image6.png]
Image - Writing a file in vi.

After you press the enter key, you end up with something like the following image:

[image: image7.png]Image - Writing a file in vi. (interactive)

If you are editing a file that already existing and try to save it like this, you may get an error message that says the file is read only. You will also get this message, when trying to save a file from "view", which is the "read-only" version of vi. To force the file to be written, you follow the w with an exclamation mark. (:w!)

The ex-mode (or command mode) also allows you to do many other things with the file itself. Among them are

· :q to quit the file (:q! if the file has been changed and you don't want to save the changes)

· :wq to write the file and quit

· :e to edit a new file (or even the same file)

· :r to read in a new file starting at the current location

Changing Text in Vi

In addition to "standard" editing, there are a several special editing commands. Pressing dd will delete the entire line you are on; 5dd would then delete five complete lines. To open up a line for editing, we press o to open the line after the line you are currently on and O for the line before. Use x to delete the character (including numbers) that the cursor is on.

When we want to move something we just deleted, we put the cursor on the spot where we want it. Then press either p to put that text after the current cursor position or P to put it before the current position. A nice trick that I always use to swap characters is xp. The x deletes the character you are on and the p immediately inserts it. The result is that you swap characters. So if I had typed the word "into" as "inot," I would place the cursor on the "o" and type xp, which would swap the "o" and the "t."

To repeat the edit we just did, be it deleting 18 lines or inputting "I love you," we could do so by pressing "." (dot) from command mode. In fact, any edit command can be repeated with the dot.

To make a change, press c followed by a movement command or number and movement command. For example, to change everything from where you are to the next word, press cw. To change everything from where you are to the end of the line, press C or c$. If you do that, then a dollar sign will appear, indicating how much you intend to change.

If we go back into command mode (press Esc) before we reach the dollar sign, then everything from the current position to the dollar sign is removed. When you think about this, it is actually logical. By pressing C, you tell vi that you want to change everything to the end of the line. When you press Enter, you are basically saying that you are done inputting text; however, the changes should continue to the end of the line, thereby deleting the rest of the line.

To undo the last edit, what would we press? Well, whats the first letter of the word "undo"? Keep in mind that pressing u will only undo the last change. For example, lets assume we enter the following:

o to open a new line and go into input mode

I love

Esc to go back to command mode

a to append from current location

you

Esc to return to command mode

The result of what we typed was to open a new line with the text "I love you." We see it as one change, but from the perspective of vi, two changes were made. First we entered "I love," then we entered "you." If we were to press u, only "you" would be removed. However, if u undoes that last change, what command do you think returns the line to its original state? What else: U. As you are making changes, vi keeps track of the original state of a line. When you press U, the line is returned to that original state.

If you want to replace all of the text on the current line, you could simply delete the line and insert a new one. However, you could also replace the existing line by using the R (for replace) command. This puts vi into replace mode and each character you type replaces the existing characters as you write.

Moving around in vi

Most editing and movement commands are single letters and are almost always the first letter of what they do. For example, to insert text at your current cursor position, press i. To append text, press a. To move forward to the beginning of the next word, press w. To move back to the beginning of the previous word, press b.

The capital letter of each command has a similar behavior. Use I to insert at the beginning of a line. Use A to start the append from the end of the line. To move "real" words, use W to move forward and B to move back.

Real words are those terminated by whitespaces (space, tab, newline). Assume we wanted to move across the phrase 'static-free bag'. If we start on the 's', pressing 'w', will move me to the '-'. Pressing 'w' again, we move to the 'f' and then to the 'b'. If we are on the 's' and press 'W', we jump immediately to the 'b'. That is, to the next "real" word.

Moving in vi is also accomplished in other ways. Depending on your terminal type, you can use the traditional method of arrow keys to move within the file. If vi doesn't like your terminal type, you can use the keys h-j-k-l. If we want to move to the left we press 'h'. If you think about it, this make sense since 'h' is on the left end of these four characters. To move right, press l. Again, this makes sense as the 'l' is on the right end.

Movement up and down is not as intuitive. One of the two remaining characters (j and k) will move us up and the other will move us down. But which one moves in which direction? Unfortunately, I don't have a very sophisticated way of remembering. If you look at the two letters physically, maybe it helps. If you imagine a line running through the middle of these characters, then you see that j hangs down below that line. Therefore, use j to move down. On the other hand, k sticks up above the middle, so we use k to move up. However, in most cases, the arrow keys will work, so you won't need to remember. But it is nice to know them, as you can then leave your fingers on the keyboard.

As I mentioned, some keyboard types will allow you to use the arrow keys. However, you might be surprised by their behavior in input mode. This is especially true if you are used to a word processor where the arrow and other movement keys are the same all the time. The problem lies in the fact that most keyboards actually send more than one character to indicate something like a left-arrow or page-up key. The first of these is normally an escape (Esc). When you press one of these characters in input mode, the Esc is interpreted as your wish to leave input mode.

If we want to move to the first character on a line, we press '0' (zero) or '^'. To move to the last character, press $. Now, these are not intuitive. However, if you think back to our discussion on regular expressions, you'll remember that ^ (caret) represents the beginning of a line and $ (dollar sign) represents the end of a line. Although, these two characters do not necessarily have an intuitive logic, they do fit in with other commands and programs that you find on a Linux system.

We can also take advantage of the fact that vi can count as well as combine movement with this ability to count. By pressing a number before the movement command, vi will behave as if we had pressed the movement key that many times. For example, 4w will move us forward four words or 6j will move us six lines down.

If we want to move to a particular line we input the number and G. So, to move to line 43, we would press 42G, kind of like 42-Go! If instead of G we press Enter, we would move ahead that many lines. For example, if we were on line 85, pressing 42 and Enter would put us on line 127. (No, you don't have to count lines; vi can display them for you, as we'll see in a minute.)

As you might have guessed, we can also use these commands in conjunction with the movement keys (all except Ctrl-u and Ctrl-d). So, to delete everything from your current location to line 83, we would input d83G. (Note that delete begins with d.) Or, to change everything from the current cursor position down 12 lines, we would input c12+ or press c12 Enter.

Searching in Vi

If you are trying to find a particular text, you can get vi to do it for you. You tell vi that you want to enter a search pattern by pressing / (slash). This will bring you down to the bottom line of the screen where you will see your slash. You then can type in what you want to look for. When you press Enter, vi will start searching from your current location down toward the bottom of the file. If you use press ? instead of /, then vi will search from your string toward the top of the file.

If the search is successful, that is, the string is found, you are brought to that point in the text. If you decide that you want to search again, you have three choices. You can press ? or / and input the search string again; press n, which is the first letter of the word "next"; or simply press ? or / with no text following it for vi to continue the search in the applicable direction. If you wanted to find the next string that matches but in the opposite direction, what do you think the command would be? (Hint: the capital form of the "next" command.)

Once you have found what you are looking for, you can edit the text all you want and then continue searching. This is because the search string you entered is kept in a buffer. So, when you press /, ?, n, or N, the system remembers what you were looking for.

You can also include movement commands in these searches. First, you enclose the search pattern with the character used to search (/ or ?), then add the movement command. For example, if you wanted to search backward for the phrase "hard disk" and then move up a line, you would enter ?hard disk?-. If you wanted to search forward for the phrase "operating system" and then move down three lines, you would enter /operating system/+3.

All this time, we have been referring to the text patterns as search strings. As you just saw, you can actually enter phrases. In fact, you can use any regular expression you want when searching for patterns. For example, if you wanted to search for the pattern "Linux," but only when it appears at the beginning of a line, you would enter /^Linux. If you wanted to search for it at the end of the line, you would enter /Linux$.

You can also do more complicated searches such as /^new [Bb][Oo][Aa][Tt], which will search for the word "new" at the beginning of a line, followed by the word "boat" with each letter in either case.

No good text editor would be complete without the ability to not only search for text but to replace it as well. One way of doing this is to search for a pattern and then edit the text. Obviously, this starts to get annoying after the second or third instance of the pattern you want to replace. Instead, you could combine several of the tools you have learned so far.

For example, lets say that everywhere in the text you wanted to replace "Unix" with "UNIX." First, do a search on Unix with /Unix, tell vi that you want to change that word with cw, then input UNIX. Now, search for the pattern again with /, and simply press . (dot). Remember that the dot command repeats your last command. Now do the search and press the dot command again.

Actually, this technique is good if you have a pattern that you want to replace, but not every time it appears. Instead, you want to replace the pattern selectively. You can just press n (or whatever) to continue the search without carrying out the replacement.

What if you know that you want to replace every instance of a pattern with something else? Are you destined to search and replace all 50 occurrences? Of course not. Silly you. There is another way.

Here I introduce what is referred to as escape or ex-mode, because the commands you enter are the same as in the ex editor. To get to ex-mode, press : (colon). As with searches, you are brought down to the bottom of the screen. This time you see the : (colon). The syntax is

: <scope> <command>

An example of this would be:

:45,100s/Unix/UNIX/
This tells vi the scope is lines 45 through 100. The command is s/Unix/UNIX/, which says you want to substitute (s) the first pattern (Unix) with the second pattern (UNIX). Normally in English, we would say "substitute UNIX for Unix." However, the order here is in keeping with the UNIX pattern of source first, then destination (or, what it was is first, and what it will become is second, like mv source destination).

Note that this only replaces the first occurrence on each line. To get all occurrences, we must include g for global at the end of each line, like this:

:45,100s/Unix/UNIX/g

A problem arises if you want to modify only some of the occurrences. In this instance, you could add the modifier c for confirm. The command would then look like this:

:45,100s/Unix/UNIX/gc
This causes vi to ask for confirmation before it makes the change.

If you wanted to search and replace on every line in the file, you could specify every line, such as :1,48., assuming there were 48 lines in the file. (By the way, use Ctrl-g to find out what line you are on and how many lines there are in the file.) Instead of checking how many lines there are each time, you can simply use the special character $ to indicate the end of the file. (Yes, $ also means the end of the line, but in this context, it means the end of the file.) So, the scope of the command would look like :1,$.

Once again, the developers of vi made life easy for you. They realized that making changes throughout a file is something that is probably done a lot. They included a special character to mean the entire file: %. Therefore, the command is written as % = 1,$.

Here again, the search patterns can be regular expressions. For example, if we wanted to replace every occurrence of "boat" (in either case) with the word "ship," the command would look like this:

:%s/[Bb][Oo][Aa][Tt]/ship/g
As with regular expressions in other cases, you can use the asterisk (*) to mean any number of the preceding characters or a period (.) to mean any single character. So, if you wanted to look for the word "boat" (again, in either case), but only when it was at the beginning of a line and only if it were preceded by at least one dash, the command would look like this:

:%s/^--*[Bb][Oo][Aa][Tt]/ship/g
The reason you have two dashes is that the search criteria specified at least one dash. Because the asterisk can be any number, including zero, you must consider the case where it would mean zero. That is, where the word "boat" was at the beginning of a line and there were no spaces. If you didn't care what the character was as long as there was at least one, you could use the fact that in a search context, a dot means any single character. The command would look like this:

:%s/^..*[Bb][Oo][Aa][Tt]/ship/g
Vi Buffers

Remember when we first starting talking about searching, I mentioned that the expression you were looking for was held in a buffer. Also, whatever was matched by /[Bb][Oo][Aa][Tt] can be held in a buffer. We can then use that buffer as part of the replacement expression. For example, if we wanted to replace every occurrence of "UNIX" with "Linux," we could do it like this:

:%s/UNIX/Linux/g

The scope of this command is defined by the %, the shortcut way of referring to the entire text. Or, you could first save "UNIX" into a buffer, then use it in the replacement expression. To enclose something in a buffer, we enclose it within a matching pair of back slashes \(and \) to define the extent of a buffer. You can even have multiple pairs that define the extent of multiple buffers. These are reference by \#, where # is the number of the buffer.

In this example

:%s/\(UNIX\)/Linux \1/g
the text "UNIX," is placed into the first buffer. You then reference this buffer with \1 to say to vi to plug in the contents of the first buffer. Because the entire search pattern is the same as the pattern buffer, you could also have written it like this

:%s/\(UNIX\)/Linux &/g
in which the ampersand represents the entire search pattern.

This obviously doesn't save much typing. In fact, in this example, it requires more typing to save "UNIX" into the buffer and then use it. However, if what you wanted to save was longer, you would save time. You also save time if you want to use the buffer twice. For example, assume you have a file with a list of other files, some of them C language source files. All of them end in .c. You now want to change just the names of the C files so that the ending is "old" instead of .c. To do this, insert mv at the beginning of each line as well as produce two copies of the file name: one with .c and one with .old. You could do it like this:

:%s/^\(.*\)\.c/mv \1.c \1.old/g
In English, this line says:

· For every line (%)

· substitute (s)

· for the pattern starting at the beginning of the line (^), consisting of any number of characters (\(.*\)) (placing this pattern into buffer #1) followed by .c

· and use the pattern mv, followed by the contents of buffer #1 (\1), followed by a .c, which is again followed by the contents of buffer #1, (\1) followed by .old

· and do this for every line (g), (i.e., globally)

Now each line is of the form

 mv file.c file.old

Note the slash preceeding the dot in the expression "\.c". The slash "protects" the dot from being interpreted as the metacharacter for "any character". Instead, you want to search for a literal dot, so you need to protect it.

We can now change the permissions to make this a shell script and execute it. We would then move all the files as described above.

Using numbers like this is useful if there is more that one search pattern that you want to process. For example, assume that we have a three-column table for which we want to change the order of the columns. For simplicity's sake, lets also assume that each column is separated by a space so as not to make the search pattern too complicated.

Before we start, we need to introduce a new concept to vi, but one that you have seen before: []. Like the shell, the square bracket pair ([]) of vi is used to limit sets of characters. Inside of the brackets, the caret (^) takes on a new meaning. Rather than indicating the beginning of a line, here it negates the character we are searching for. So we could type

%s/\([^]*\) \([^]*\) \([^]*\)/\3 \1 \2/g

Here we have three regular expressions, all referring to the same thing: \([^]*\). As we discussed above, the slash pair \(and \) delimits each of the buffers, so everything inside is the search pattern. Here, we are searching for [^]*, which is any number of matches to the set enclosed within the brackets. Because the brackets limit a set, the set is ^, followed by a space. Because the ^ indicates negation, we are placing any number of characters that is not a space into the buffer. In the replacement pattern, we are telling vi to print pattern3, a space, pattern1, another space, then pattern2.
In the first two instances, we followed the pattern with a space. As a result, those spaces were not saved into any of the buffers. We did this because we may have wanted to define our column separator differently. Here we just used another space.

I have often had occasion to want to use the pattern buffers more than once. Because they are not cleared after each use, you can use them as many times as you want. Using the example above, if we change it to

%s/\([^]*\) \([^]*\) \([^]*\)/\3 \1 \2 \1/g

we would get pattern3, then pattern1, then pattern2, and at the end, pattern1 again.

Believe it or not, there are still more buffers. In fact, there are dozens that we haven't touched on. The first set is the numbered buffers, which are numbered 1-9. These are used when we delete text and they behave like a stack. That is, the first time we delete something, say a word, it is placed in buffer number 1. We next delete a line that is placed in buffer 1 and the word that was in buffer 1 is placed in buffer 2. Once all the numbered buffers all full, any new deletions push the oldest ones out the bottom of the stack and are no longer available.

To access these buffers, we first tell vi that we want to use one of the buffers by pressing the double-quote ("). Next, we specify then the number of the buffer, say 6, then we type either p or P to put it, as in "6p. When you delete text and then do a put without specifying any buffer, it automatically comes from buffer 1.

There are some other buffers, in fact, 26 of them, that you can use by name. These are the named buffers. If you can't figure out what their names are, think about how many of them there are (26). With these buffers, we can intentionally and specifically place something into a particular buffer. First, we say which buffer we want by preceding its name with a double-quote ("); for example, "f. This says that we want to place some text in the named buffer f. Then, we place the data in the buffer, for example, by deleting an entire line with dd or by deleting two words with d2w. We can later put the contents of that buffer with "fp. Until we place something new in that buffer, it will contain what we originally deleted.

If you want to put something into a buffer without having to delete it, you can. You do this by "yanking it." To yank an entire line, you could done one of several things. First, there is yy. Next, Y. Then, you could use y, followed by a movement commands, as in y-4, which would yank the next four lines (including the current one), or y/expression, which would yank everything from your current position up to and including expression.

To place yanked data into a named buffer (rather than the default buffer, buffer number 1), it is the same procedure as when you delete. For example, to yank the next 12 lines into named buffer h, we would do "h12yy. Now those 12 lines are available to us. Keep in mind that we do not have to store full lines. Inputting "h12yw will put the next 12 words into buffer h.

Some of the more observant readers might have noticed that because there are 26 letters and each has both an upper- and lowercase, we could have 52 named buffers. Well, up to now, the uppercase letters did something different. If uppercase letters were used to designate different buffers, then the pattern would be compromised. Have no fear, it is.

Instead of being different buffers than their lowercase brethren, the uppercase letters are the same buffer. The difference is that yanking or deleting something into an uppercase buffer appends the contents rather that overwriting them.

You can also have vi keep track of up to 26 different places with the file you are editing. These functions are just like bookmarks in word processors. (Pop quiz: If there 26 of them, what are their names?)

To mark a spot, move to that place in the file, type m for mark (what else?), then a single back quote (`), followed by the letter you want to use for this bookmark. To go back to that spot, press the back quote (`), followed by the appropriate letter. So, to assign a bookmark q to a particular spot, you would enter `q. Keep in mind that reloading the current file or editing a new one makes you lose the bookmarks.

Note that with newer version of vi (particularly vim) you don't press the backquote to set the mark, just m followed by the appropriate letter.
Vi Magic

I imagine that long before now, you have wondered how to turn on all that magic I said that vi could do. Okay, let's do it.

The first thing I want to talk about is abbreviations. You can tell vi that when you type in a specific set of characters it is supposed to automagically change it to something else. For example, we could have vi always change USA to United States of America. This is done with the abbr command.

To create a new abbreviation, you must get into ex-mode by pressing the colon (:) in command mode. Next, type in abbr, followed by what you want to type in, and what vi should change it to. For example:

:abbr USA United States of America

Note that the abbreviation cannot contain any spaces because vi interprets everything after the second word as being part of the expansion.

If we later decide we don't want that abbreviation anymore, we enter

:unabbr USA

Because it is likely that we will want to use the abbreviation USA, it is not a good idea to use an abbreviation that would normally occur, such as USA. It would be better, instead, to use an abbreviation that doesn't occur normally, like Usa. Keep in mind, that abbreviations only apply to complete words. Therefore, something like the name "Sousa" won't be translated to "SoUSA." In addition, when your abbreviation is followed by a space, Tab, Enter, or Esc, the change is made.

Lets take this one step further. What if we were always spelling "the" as "teh." We could then create an abbreviation

:abbr teh the

Every time we misspell "the" as "teh," vi would automatically correct it. If we had a whole list of words that we regularly misspelled and created similar abbreviations, then every time we entered one of these misspelled words, it would be replaced with the correctly spelled word. Wouldn't that be automatic spell correction?

If we ever want to "force" the spelling to be a particular way (that is, turn off the abbreviation momentarily), we simply follow the abbreviation with a Ctrl-V. This tells vi to ignore the special meaning of the following character. Because the next character is a white space, which would force the expansion of the abbreviation (which makes the white space special in this case), "turning off" the white space keeps the abbreviation from being expanded.

We can also use vi to re-map certain sequences. For example, I have created a command so that all I need to do to save a file is Ctrl-W (for write). If I want to save the file and quit, I enter Ctrl-X with the "map" command.

The most common maps that I have seen have used control sequences, because most of the other characters are already taken up. Therefore, we need to side-step a moment. First, we need to know how to access control characters from within vi. This is done in either command mode or input mode by first pressing Ctrl-V and then pressing the control character we want. So to get Ctrl-W, I would type Ctrl-V, then Ctrl-W. This would appear on the screen as ^W. This looks like two characters, but if you inserted it into a text and moved over it with the cursor, you would realize that vi sees it as only one character. Note that although I pressed the lowercase w, it will appear as uppercase on the screen.

So, to map Ctrl-W so that every time we press it, we write our current file to disk, the command would be

map ^W :w^M

This means that when we press Ctrl-W, vi interprets it as though we actually typed :w and pressed Enter (the Ctrl-M, ^M). The Enter at the end of the command is a good idea because you usually want the command to be executed right away. Otherwise, you would have to press Enter yourself.

Also keep in mind that this can be used with the function keys. Because I am accustomed to many Windows and DOS applications in which the F2 key means to save, I map F2 to Ctrl-V, then F2. It looks like this:

map ^[[N :w^M (The ^[[N is what the F2 key displays on the screen)

If we want, we can also use shifted function characters. Therefore, we can map Shift-F2 to something else. Or, for that matter, we can also use shifted and control function keys.

It has been my experience that, for the most part, if you use Shift and Ctrl with non-function keys, vi only sees Ctrl and not Shift. Also, Alt may not work because on the system console, Alt plus a function key tells the system to switch to multiscreens.

I try not to use the same key sequences that vi already does. First, it confuses me because I often forget that I remapped something. Second, the real vi commands are then inaccessible. However, if you are used to a different command set (that is, from a different editor), you can "program" vi to behave like that other editor.

Never define a mapping that contains its own name, as this ends up recursively expanding the abbreviation. The classic example is :map! n banana. Every time you typed in the word "banana," you'd get

bababababababababababababababababa...

and depending on what version you were running, vi would catch the fact that this is an infinite translation and stop.

Command output in Vi

It often happens that we want the output of UNIX commands in the file we are editing. The sledgehammer approach is to run the command and redirect it to a file, then edit that file. If that file containing the commands output already exists, we can use the :r from ex-mode to read it in. But, what if it doesn't yet exist. For example, I often want the date in text files as a log of when I input things. This is done with a combination of the :r (for read) from ex-mode and a shell-escape.

A shell-escape is when we start from one program and jump out of it (escape) to a shell. Our original program is still running, but we are now working in a shell that is a child process of that program.

To do a shell-escape, we need to be in ex-mode. Next, press the exclamation mark (!) followed by the command. For example, to see what time it is, type :!date. We then get the date at the bottom of the screen with the message to press any key to continue. Note that this didn't change our original text; it just showed us the output of the date command.

To read in a command's output, we need to include the :r command, as in :r!date. Now, the output of the date is read into the file (it is inserted into the file). We could also have the output replace the current line by pressing ! twice, as in !!date. Note that we are brought down to the last line on the screen, where there is a single !.

If we want, we can also read in other commands. What is happening is that vi is seeing the output of the command as a file. Remember that :r <file_name> will read a file into the one we are editing. Why not read from the output of a file? With pipes and redirection, both stdin and stdout can be files.

We can also take this one step further. Imagine that we are editing a file containing a long list. We know that many lines are duplicated and we also want the list sorted. We could do :%!sort, which, if we remember from our earlier discussion, is a special symbol meaning all the lines in the file. These are then sent through the command on the other side of the !. Now we can type

:%!uniq
to remove all the duplicate lines.

Remember that this is a shell-escape. From the shell, we can combine multiple commands using pipes. We can do it here as well. So to save time, we could enter

:%!sort | uniq

which would sort all the lines and remove all duplicate lines. If we only wanted to sort a set of lines, we could do it like this

:45,112!sort

which would sort lines 45 through 112. We can take this one step further by either writing lines 45-112 to a new file with :45,112w file_name or reading in a whole file to replace lines 45-112 with :45,112r file_name.

More magic in Vi

If we need to, we can also edit multiple files. This is done like this:

vi file1 file2 file3

Once we are editing, we can switch between files with :n for the next file and :p for the previous one. Keep in mind that the file names do not wrap around. In other words, if we keep pressing :n and get to file3, doing it again does not wrap around and bring me to file1. If we know the name of the file, we can jump directly there, with the ex-mode edit command, as in

:e file3

The ability to edit multiple files has another advantage. Do you remember those numbered and named buffers? They are assigned for a single instance of vi, not on a per-file basis. Therefore, you can delete or yank text from one file, switch to the next and then insert it. This is a crude but effective cut and paste mechanism between files.

You can specify line numbers to set your position within a file. If you switch to editing another file (using :n or :r), or reload an original file (using :rew!), the contents of the deletion buffers are preserved so that you can cut and paste between files. The contents of all buffers are lost, however, when you quit vi.

Vi Odd and Ends

You will find as you work with vi that you will often use the same vi commands over and again. Here too, vi can help. Because the named buffers are simply sequences of characters, you can store commands in them for later use. For example, when editing a file in vi, I needed to mark new paragraphs in some way as my word processor normally sees all end-of-line characters as new paragraphs. Therefore, I created a command that entered a "para-marker" for me.

First, I created the command. To do this, I opened up a new line in my current document and typed in the following text:

Para
Had I typed this from command mode, it would have inserted the text "Para" at the beginning of the line. I next loaded it into a named buffer with "pdd, which deletes the line and loads it into buffer p. To execute it, I entered @p. The @ is what tells vi to execute the contents of the buffer.

Keep in mind that many commands, abbreviations, etc., are transitive. For example, when I want to add a new paragraph, I don't write Para as the only characters on a line. Instead, I use something less common: {P}. I am certain that I will never have {P} at the beginning of a line; however, there are contexts where I might have Para at the beginning of a line. Instead, I have an abbreviation, Para, that I translated to {P}.

Now, I can type in Para at the beginning of a line in input mode and it will be translated to {P}. When I execute the command I have in buffer p, it inserts Para, which is then translated to {P}.

So why don't I just have {P} in buffer p? Because the curly braces are one set of movement keys that I did not mention yet. The { moves you back to the beginning of the paragraph and } moves you forward. Because paragraphs are defined by vi as being separated by a blank line or delimited by nroff macros, I never use them (nroff is an old UNIX text processing language). Because vi sees the brackets as something special in command mode, I need to use this transitivity.

If you are a C programmer, you can take advantage of a couple of nifty tricks of vi. The first is the ability to show you matching pairs of parentheses (()), square brackets ([]), and curly braces ({}). In ex-mode (:), type set showmatch. Afterward, every time you enter the closing paren'thesis, bracket, or brace, you are bounced back to its match. This is useful in checking whether or not you have the right number of each.

We can also jump back and forth between these pairs by using %. No matter where we are within a curly braces pair ({}), pressing % once moves us to the first (opening) brace. Press % again and we are moved to its match (the closing brace). We can also place the cursor on the closing brace and press % to move us to the opening brace.

If you are a programmer, you may like to indent blocks of code to make things more readable. Sometimes, changes within the code may make you want to shift blocks to the left or right to keep the spacing the same. To do this, use << (two less-than signs) to move the text one "shift-width" to the left, and >> (two greater-than signs) to move the text one "shift-width" to the right. A "shift-width" is defined in ex-mode with set shiftwidth=n, where n is some number. When you shift a line, it moves left or right n characters.

To shift multiple lines, input a number before you shift. For example, if you input 23>>, you shift the next 23 lines one shiftwidth to the right.

There are a lot of settings that can be used with vi to make life easier. These are done in ex-mode, using the set command. For example, use :set autoindent to have vi automatically indent. To get a listing of options which have been changed from their default, simply input ":set" and you get something like in the following image:

[image: image8.png]Image - Vi set command. (interactive)

Inputting ":set all" will show you the value of all options. Watch out! There are a lot and typically spread across multiple screens. See the vi(C) man-page for more details of the set command and options.

Some useful set commands include:

	· wrapmargin=n
	automatically "word wraps" when you get to within n spaces of the end of the line

	· showmode
	tells you whether you are in insert mode

	· number
	displays line numbers at the left-hand edge of the screen

	· autowrite
	Saves any changes that have been made to the current file when you issue the :n, :rew, or :! command

	· ignorecase
	Ignores the case of text while searching

	· list
	Prints end-of-line characters such as $ and tab characters such as ^I, which are normally invisible

	· tabstop=n
	Sets the number of spaces between each tab stop on the screen to n

	· shiftwidth
	Sets the number of spaces << and >> shifts each line

Configuring Vi

When we first started talking about vi, I mentioned that there were a lot things we could do to configure it. There are mappings and abbreviations and settings that we can control. The problem is that once we leave vi, everything we added is lost.

Fortunately, there is hope. Like many programs, vi has its own configuration file: .exrc (note the dot at the front). Typically, vi just uses its standard settings and does not create this file. However, if this file resides in our home directory, it will be valid every time we start vi unless we have an .exrc file in our current directory which will then take precedence. Having multiple .exrc files is useful when doing programming as well as when editing text. When writing text, I don't need line numbers or autoindent like I do when programming.

The content and syntax of the lines is exactly the same as in vi; however, we don't have the leading colon. Part of the .exrc file in my text editing directory looks like this:

map! ^X :wq

map x :wq

map! ^W :w

map w :w

set showmode

set wm=3

abbr Unix UNIX

abbr btwn between

abbr teh the

abbr refered referred

abbr waht what

abbr Para {P}

abbr inot into

