
 1

Introduction to Web Services Practical

This practical will guide you through the creation and deployment of a Java web
service and client. We will be using the following software packages:

• Java 2 Enterprise Edition (J2EE) 1.4
(http://java.sun.com/j2ee/index.jsp)

• Java Web Services Developer Pack (JWSDP) 1.1 (http://java.sun.com/web
services/jwsdp/index.jsp)

• Tomcat-JWSDP (http://java.sun.com/web
services/containers/tomcat_for_JWSDP_1_4.html)

These software packages should already be installed on your tutorial machines. If not,
or you are installing all the software on your own machine, please ensure that you
install the JWSDP package last, and that when asked to select an application server
you make sure that the JWSDP version of Tomcat that you have installed is in the list
and selected (if not, use the browse button).

Contents

Introduction to Web Services Practical..1

Contents ...1
Environment...2
Service..4

Setup directory structure ..4
Write interface and implementation .java files ..4
Create the WAR structure..5
Compile the code ...5
Write the "WEB-INF\jaxrpc-ri.xml" file ...5
Write the "WEB-INF\web.xml" file ..6
Package it all up into a portable WAR file ..6
Make the WAR file deployable ...6
Deploy your web service ...7

Client..8
WSDL ..8
Generate the glue components ...8
Write the client...8
Run the Client ..10

 2

Environment
Developing and using Java web services requires a relatively complex set of
environment variables. For occasional developers, it is convenient to set these
variables in a batch file that you run every time you open a command-prompt
window. Alternatively, these settings can be permanently added to the command-
prompt shortcut. Here is what you should add to a “classpath.bat” file in your tutorial
directory (note that only “set” commands are in this listing, any line that doesn’t
start with “set” is a continuation of the previous line):

set WS_HOME=\Sun
set JWSDP_HOME=\tomcat-jwsdp-1.4

set PATH=%WS_HOME%\Appserver\bin;
%WS_HOME%\Appserver\jdk\jre;
%WS_HOME%\Appserver\jdk\bin;
%JWSDP_HOME%\apache-ant;
%JWSDP_HOME%\apache-ant\bin;
%JWSDP_HOME%\jwsdp-shared\bin;
%JWSDP_HOME%\bin;
%JWSDP_HOME%\jaxr\bin;
%PATH%

set JAVA_HOME=%WS_HOME%\Appserver\jdk
set J2EE_HOME=%WS_HOME%\Appserver

set JAXRPC_HOME=%JWSDP_HOME%\jaxrpc
set JAXR_HOME=%JWSDP_HOME%\jaxr
set ANT_HOME=%JWSDP_HOME%\apache-ant

set JAVA_XML_HOME=%JWSDP_HOME%
set JAXM_HOME=%J2EE_HOME%\imq\demo
set JAXM_LIB=%J2EE_HOME%\imq\lib
set JAXP_HOME=%JWSDP_HOME%\jaxp
set JAXP_LIB=%JWSDP_HOME%\jaxp\lib
set JAXRPC_LIB=%JWSDP_HOME%\jaxrpc\lib
set
XERCES_JAR=%JAXP_HOME%\lib\endorsed\xercesImpl.jar
set JSSE_HOME=%J2EE_HOME%\jdk\jre\lib
set SAAJ_HOME=%JWSDP_HOME%\saaj

set
CLASSPATH=.;%WS_HOME%\Appserver\jdk\lib\tools.jar;
%WS_HOME%\Appserver\jdk\lib\rt.jar;

 3

%JAVA_HOME%\jre\javaws\javaws.jar;
%J2EE_HOME%\lib\activation.jar;
%JWSDP_HOME%\jwsdp-shared\lib\mail.jar;
%JAXRPC_HOME%;
%JAXR_HOME%;
%JAXRPC_HOME%\lib\jaxrpc-api.jar;
%JAXRPC_HOME%\lib\jaxrpc-impl.jar;
%JAXRPC_HOME%\lib\jaxrpc-spi.jar;
%SAAJ_HOME%\lib\saaj-api.jar;
%SAAJ_HOME%\lib\saaj-impl.jar;
%JAXP_HOME%;
%JAXP_LIB%\jaxp-api.jar;
%JAXP_LIB%\endorsed\xalan.jar;
%JAXP_LIB%\endorsed\sax.jar;
%JAXP_LIB%\endorsed\dom.jar;
%J2EE_HOME%\lib\j2ee.jar;
%XERCES_JAR%

This environment setup is specific to the application server and tool kit that you are
using, although any Java-based web services setup will likely suffer from the same
problem. If you get errors during compilation or deployment, the first thing to check
is usually that your CLASSPATH variable is correctly configured in the command
prompt that you are currently using.

 4

Service
The first part of this tutorial will show you how to construct and deploy a web service
using Sun’s Java Web Services Developer Pack (JWSDP) and the JWSDP version of
the Tomcat web application server.

Setup directory structure
In your home directory, create a "tutorial" folder. Inside this folder, create a "service"
folder. This will be the base folder for the remainder of this tutorial, and all relative
paths will assume that you are somewhere within this folder.
Create the following directories:

 src/
 war/

Write interface and implementation .java files
Create a "qotd" folder inside your "src/" directory. Firstly, we have to create a Java
interface class for the service. Open a new text file, called "Qotd.java". The first thing
we have to do is specify the package and import the classes that we need:

package qotd; // This is just to keep the code neat

// This class enables remote method invocation
import java.rmi.Remote;

// This is for handling remote exceptions
import java.rmi.RemoreException;

Now we must define the interface itself. For our example service, this is very
simple indeed:

public interface Qotd extends Remote {
 public String getQuote() throws
RemoteException;
}

That's it for the interface. Save this file. Now, we must write the class that implements
the functionality that we have just described in the interface. Open another new text
file, called "Qotd_Impl.java". This file is also very short:

package qotd; // Same package as our interface

public class Qotd_Impl implements Qotd {
 private static String quote = "Your quote";

 public String getQuote() {

 5

 return this.quote;
 }
}

Save this file. That is all of the programming that we need to do for this (rather trivial)
web service.

Create the WAR structure
The various files that we have created so far now have to be bundled up into a WAR
file, which is a JAR file with a specific folder structure so that web application servers
can deploy the software automatically.

First, create a "\service\war" folder. Then, create a "WEB-INF" subfolder (note the
capitalisation - very important).
 - WEB-INF\
 - WEB-INF\classes\

Compile the code
Compile the two .java files by running this command in the "\src" folder:

 javac -d ..\war\WEB-INF\classes\ qotd*.java

The "-d" flag and path tells the compiler to place the compiled ".class" files in the
appropriate directory of our war file structure.

Write the "WEB-INF\jaxrpc-ri.xml" file
The jaxrpc-ri.xml file tells the wsdeploy utility how to generate the various pieces of
code and configuration information in order for the portable WAR to be converted
and deployed on a specific web application server.

Open a new text file called jaxrpc-ri.xml under your WEB-INF folder. Enter the
following XML:

<webServices
 xmlns="http://java.sun.com/xml/ns/jax-
rpc/ri/dd"
 version="1.0"

targetNamespaceBase="http://nesc.ed.ac.uk/wsdl"

typeNamespaceBase="http://nesc.ed.ac.uk/types"
 urlPatternBase="/ws">
 <endpoint
 name="Qotd"
 displayName="Quote Of The Day Service"
 description="A simple web service"

 6

 interface="qotd.Qotd"
 implementation="qotd.Qotd_Impl"/>
 <endpointMapping
 endpointName="Qotd"
 urlPattern="/qotd"/>
</webServices>

This tells wsdeploy about the namespaces that we want to use, and defines a web
service endpoint in terms of the Java interface that it exposes, and an endpoint
mapping which tells the application server how to translate the endpoint into a URL.

Write the "WEB-INF\web.xml" file
Next we have to write the web.xml file which is used by the application server to
setup our web service.

Open a new text file under your WEB-INF folder, called "web.xml", and enter the
following XML:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems,
Inc.//DTD Web Application
2.3//EN" "http://java.sun.com/j2ee/dtds/web-
app_2_3.dtd">

<web-app>
 <display-name>Quote of the day
service</display-name>
 <description>Returns some philosophical
dribble</description>
</web-app>

This simply tells the application server what to call our service, and the description of
what it does, both in a user-readable form (this is used primarily for the management
interface).

Package it all up into a portable WAR file
Use this command line in your "war\" directory:

 jar cfv temp.tar *

This packages up all of the files and directory structure into a portable WAR file. You
should be able to migrate this file to other web services environments if necessary.

Make the WAR file deployable
You should now run the wsdeploy command in your "\war" folder:

 7

 wsdeploy -o Qotd.war temp.war

This tool converts the portable WAR file into an implementation specific WAR file
by generating all of the tie classes and a WSDL file from your Java interface class.

Deploy your web service
The final step is to copy your deployable WAR file, Qotd.war, to the "webapps"
folder of your JWSDP Tomcat installation. This should automatically deploy the web
service contained in the WAR file into the server. You will have to restart the server
in order for these changes to take effect. You can inspect your service by going to
"http://localhost:8080/manager/html". Your service should be listed here.

If you now go to "http://localhost:8080/Qotd/qotd", you should be able to inspect the
services WSDL file. You should save the WSDL file so that you can use it to write
your client software in the next tutorial.

 8

Client
A web service is not much use without a client with which it can interact. The second
part of this tutorial will show you how to construct a simple command-line client for
the service that you have just written and deployed.

WSDL
Create a directory for you to work in. Call it "client", and make it in your tutorial
directory.

Get the WSDL from your service running in your container, using the following URL:

http://localhost:8080/Qotd/qotd?wsdl

Copy this into your "client" directory.

Generate the glue components
First, create a file called config.xml, and add the following lines to it:

<configuration
xmlns="http://java.sun.com/xml/ns/jax-
rpc/ri/config">
 <wsdl location="Qotd.wsdl" packageName="qotd"
/>
</configuration>

This is the configuration file for the wscompile utility that will generate all of the glue
code. The file tells wscompile which WSDL file to use, and what package name we
would like the glue code placed in.

Next, we run the wscompile utility itself:

wscompile -gen:client -keep -d . config.xml

This gets wscompile to generate the client code (-gen:client), keep the generated
source code so we can examine it later (-keep), work in the current directory (-d .),
using the configuration described in config.xml.

This will create a "qotd" directory, which will contain a number of .class and .java
files that allow us to talk to the web service.

Write the client

Create a new file called qotdClient.java in your "client" directory.

 9

First, we must import the various RPC libraries and glue code that we have just
generated:

// Standard libraries
import javax.xml.rpc.Service;
import javax.xml.rpc.Stub;

// Our glue code
import qotd.Qotd_Service_Impl;
import qotd.Qotd_PortType;

Next, we create our client class and give it two methods:

public class qotdClient {

 public static String getQuote() throws
Exception
 {

 }

 public static void main(String[] args)
 {

 }
}

Now, we'll write the getQuote function so that it calls a remote function via web
services. Add the following to the getQuote function:

 Qotd_Service_Impl service = new
Qotd_Service_Impl();
 Qotd_PortType port = service.getQotdPort();

The Qotd_Impl class can be seen as the "class" of the web service, and QotdPortType
can be seen as an "instance" of that class.
Now we call the remote "getQuote" method, as defined in our WSDL, and return it to
our caller:

 String quote = port.getQuote();
 return (quote);

And that is all that our getQuote client method needs. Now, we'll write some code in
our "main" method so that it calls our getQuote method:

 10

 try{
 String quote = getQuote();
 System.out.println(quote);
 }
 catch (Exception e) {e.printStackTrace();}

That should now be all of the code that is required. Compile the code with:

javac qotdClient.java

Run the Client

Try the client out with:

java qotdClient

If the client seems to hang, it could be because the remote service is down (welcome
to the world of web services! ;-)

