
Running the Example Code for the Final Exercise

To download and set up the code for searching for pillars work through the following
steps.

1. Create a new directory for the final exercise in your home directory named e.g.
finalExercise.

2. Download the file finalExercise.tar.gz from the summer school web
repository: http://www.gs.unina.it/

3. Unzip and extract the files using the commands
$ gunzip finalExercise.tar.gz
$ tar xvf finalExercise.tar

4. Set the classpath using the script classpath.sh
$ source ./classpath.sh
Do not use previous versions of this script.

5. Compile the “glue” component code for accessing the web services by running
the script wscompile.sh i.e.
$./wscompile.sh
If the script is not executable then use the command
$ chmod 755 wscompile.sh
And run the script again

6. Compile the code
$ javac –classpath $CLASSPATH *.java

The code should now be set up to run.

Look at the code. Most of it has been provided previously for the “Day 2 Web
Services” progressive exercise. The new code is contained in “Scanner.java”. The
description of how this works is given below. The idea is to use Scanner to identify an
edge of a pillar and then use the program “Regular.java” to visualise the pillar, and
locate the plaque and read the text. Regular generates a postscript file and the program
will have to be used repeatedly for ever smaller bounding boxes to close in on the
plaque and the text.
The Regular program can be run using the command line:

$ java –classpath $CLASSPATH Regular <lowerX> <lowerY> <upperX> <upperY>
<count> <postscript file> <surface service URL>

Where the command is all on one line.

The inputs <lowerX>, <lowerY>, <upperX>, <upperY> are all doubles specifying the
bounding box for sampling the surface (the lower corner and the upper corner).
<count> is the number of grid points to use for sampling the surface (this is only an
approximate number, the program does not necessarily produce that number only a
number close to <count>). <postscript file> is the name for the output file and the
<surface service URL> = http://server5.gs.unina.it:8080/PillarsOfWisdom/surface.

To visualise a postscript file with name “pillar.eps” use ghostview with the command:

$ gv pillar.eps

Scanner

The feature scanner program is designed to look for flat features embedded in the
surface that you have been working with. To run the scanner, use the following
command line:

java –classpath $CLASSPATH Scanner <start X> <start Y> <radius>
<step>

The scanner repetitively samples a square section of the surface, retrieving at most
one hundred sample points per section. It examines every point in the sample set,
looking for a point on the surface with a gradient of zero. If it finds such a point, then
it prints a message in the console detailing the coordinates of that point. The scanner
moves the sample section around the surface in ever increasing concentric squares,
scanning a larger area each time (but never over-lapping). This is shown in the
diagram below, where the first square to be scanned is labelled ‘1’ and is centred on
<start X> <start Y> .
The second set of sampling sections are labelled ‘2’ and form a square surrounding
the first, and so on. The <radius> parameter determines the size of the largest
concentric square, and thus the size of the area that is searched (in the diagram below
the radius is half the length of the side of the square).
The <step> parameter is the size of the sample area (i.e. the dimensions of each
square), and thus determines the density of the samples retrieved. All of these
parameters are represented by double precision floating point variables.

Example Usage

A good general search configuration, for finding the initial location of features:

java –classpath $CLASSPATH Scanner <start X> <start Y> 10.0 1.0

To find a very small feature, the following parameters would be a good start:

java –classpath $CLASSPATH Scanner <start X> <start Y> 2.0 0.01

