
Alain Roy
Computer Sciences Department
University of Wisconsin-Madison

roy@cs.wisc.edu
http://www.cs.wisc.edu/condor

An Introduction To
Condor

International Summer School
on Grid Computing 2006

2http://www.cs.wisc.edu/condor

This Morning’s Condor Topics
› Matchmaking: Finding machines for jobs

› Running a job

› Running a parameter sweep

› Managing sets of dependent jobs

› Master-Worker applications

3http://www.cs.wisc.edu/condor

Part One

Matchmaking:
Finding Machines For Jobs
Finding Jobs for Machines

4http://www.cs.wisc.edu/condor

…And matches themCondor Takes Computers…

Dedicated Clusters Desktop Computers

…And jobs
I need a Mac!

I need a Linux box

with 2GB RAM!

Matchmaker

5http://www.cs.wisc.edu/condor

Quick Terminology

› Cluster: A dedicated set of computers
not for interactive use

› Pool: A collection of computers used by
Condor
hMay be dedicated

hMay be interactive

6http://www.cs.wisc.edu/condor

Matchmaking
› Matchmaking is fundamental to Condor

› Matchmaking is two-way
hJob describes what it requires:

I need Linux && 2 GB of RAM

hMachine describes what it requires:

I will only run jobs from the Physics department

› Matchmaking allows preferences
hI need Linux, and I prefer machines with more

memory but will run on any machine you provide me

7http://www.cs.wisc.edu/condor

Why Two-way Matching?

› Condor conceptually divides people into
three groups:
hJob submitters

hMachine owners

hPool (cluster) administrator

› All three of these groups have
preferences

}
May or may not

be the same

people

8http://www.cs.wisc.edu/condor

Machine owner preferences

› I prefer jobs from the physics group

› I will only run jobs between 8pm and 4am

› I will only run certain types of jobs

› Jobs can be preempted if something
better comes along (or not)

9http://www.cs.wisc.edu/condor

System Admin Prefs

› When can jobs preempt other jobs?

› Which users have higher priority?

10http://www.cs.wisc.edu/condor

ClassAds

› ClassAds state facts
hMy job’s executable is analysis.exe

hMy machine’s load average is 5.6

› ClassAds state preferences
hI require a computer with Linux

11http://www.cs.wisc.edu/condor

Example:
MyType = "Job"

TargetType = "Machine"

ClusterId = 1377

Owner = "roy“

Cmd = “analysis.exe“

Requirements =

(Arch == "INTEL")

&& (OpSys == "LINUX")

&& (Disk >= DiskUsage)

&& ((Memory * 1024)>=ImageSize)

…

ClassAds
• ClassAds are:

– semi-structured

– user-extensible

– schema-free

– Attribute =
Expression

String

Number

Boolean

12http://www.cs.wisc.edu/condor

Schema-free ClassAds
› Condor imposes some schema

hOwner is a string, ClusterID is a number…

› But users can extend it however they like, for
jobs or machines
hAnalysisJobType = “simulation”

hHasJava_1_4 = TRUE

hShoeLength = 7

› Matchmaking can use these attributes
hRequirements = OpSys == "LINUX"

&& HasJava_1_4 == TRUE

13http://www.cs.wisc.edu/condor

Submitting jobs
› Users submit jobs from a computer

hJobs described as ClassAds

hEach submission computer has a queue

hQueues are not centralized

hSubmission computer watches over queue

hCan have multiple submission computers

hSubmission handled by condor_schedd

a

acbb
x

2

42 −±−=

Condor_schedd
Queue

14http://www.cs.wisc.edu/condor

Advertising computers
› Machine owners describe computers

hConfiguration file extends ClassAd

hClassAd has dynamic features
• Load Average

• Free Memory

• …

hClassAds are sent to Matchmaker

Matchmaker

(Collector)
ClassAd
Type = “Machine”

Requirements = “…”

15http://www.cs.wisc.edu/condor

Matchmaking
› Negotiator collects list of computers

› Negotiator contacts each schedd
hWhat jobs do you have to run?

› Negotiator compares each job to each computer
hEvaluate requirements of job & machine

hEvaluate in context of both ClassAds

hIf both evaluate to true, there is a match

› Upon match, schedd contacts execution
computer

16http://www.cs.wisc.edu/condor

Matchmaking

Service

Job queue service

Information

service

Matchmaking diagram

condor_schedd

Queue

Matchmaker

CollectorNegotiator

12

3

17http://www.cs.wisc.edu/condor

Manages

Remote Job

Manages Machine

Running a Job

condor_schedd

Queue

Matchmaker

condor_collectorcondor_negotiator

condor_startd

condor_submit

Manages

Local Job
condor_shadow condor_starter

Job

18http://www.cs.wisc.edu/condor

Condor processes

› Master: Takes care of other processes

› Collector: Stores ClassAds

› Negotiator: Performs matchmaking

› Schedd: Manages job queue

› Shadow: Manages job (submit side)

› Startd: Manages computer

› Starter: Manages job (execution side)

19http://www.cs.wisc.edu/condor

Some notes

› One negotiator/collector per pool

› Can have many schedds (submitters)

› Can have many startds (computers)

› A machine can have any combination
hDedicated cluster: maybe just startds

hShared workstations: schedd + startd

hPersonal Condor: everything

20http://www.cs.wisc.edu/condor

Our Condor Pool
› Each student machine has

hSchedd (queue)

hStartd (with two virtual machines)

› Several servers
hMost: Only a startd

hOne: Startd + collector/negotiator

› At your leisure:
hRun: condor_status

21http://www.cs.wisc.edu/condor

Our Condor Pool
Name OpSys Arch State Activity Loa dAv Mem ActvtyTime

vm1@ws-01.gs. LINUX INTEL Unclaimed Idle 0.000 501 0+00:02:45

vm2@ws-01.gs. LINUX INTEL Unclaimed Idle 0.000 501 0+00:02:46

vm1@ws-03.gs. LINUX INTEL Unclaimed Idle 0.000 501 0+02:30:24

vm2@ws-03.gs. LINUX INTEL Unclaimed Idle 0.000 501 0+02:30:20

vm1@ws-04.gs. LINUX INTEL Unclaimed Idle 0.080 501 0+03:30:09

vm2@ws-04.gs. LINUX INTEL Unclaimed Idle 0.000 501 0+03:30:05

...

Machines Owner Claimed Unclaimed Matched Preempting

INTEL/LINUX 56 0 0 56 0 0

Total 56 0 0 56 0 0

If this is hard to read
run: condor_status

22http://www.cs.wisc.edu/condor

Summary

› Condor uses ClassAd to represent state
of jobs and machines

› Matchmaking operates on ClassAds to
find matches

› Users and machine owners can specify
their preferences

23http://www.cs.wisc.edu/condor

Part Two

Running a Condor Job

24http://www.cs.wisc.edu/condor

Getting Condor
› Available as a free download from

http://www.cs.wisc.edu/condor

› Download Condor for your operating
system
hAvailable for many UNIX platforms:

• Linux, Solaris, Mac OS X, HPUX, AIX…

hAlso for Windows

25http://www.cs.wisc.edu/condor

Condor Releases
› Naming scheme similar to the Linux Kernel…
› Major.minor.release

hStable: Minor is even (a.b.c)
• Examples: 6.4.3, 6.6.8, 6.6.9
• Very stable, mostly bug fixes

hDeveloper: Minor is odd (a.b.c)
• New features, may have some bugs
• Examples: 6.5.5, 6.7.5, 6.7.6

› Today’s releases:
hStable: 6.6.11
hDevelopment: 6.7.20
hVery soon now, Stable: 6.8.0

26http://www.cs.wisc.edu/condor

Try out Condor:
Use a Personal Condor
› Condor:

hon your own workstation

hno root access required

hno system administrator intervention
needed

› We’ll try this during the exercises

27http://www.cs.wisc.edu/condor

Personal Condor?!

What’s the benefit of a Condor
Pool with just one user and one
machine?

28http://www.cs.wisc.edu/condor

Your Personal Condor will ...
› … keep an eye on your jobs and will keep you

posted on their progress
› … implement your policy on the execution

order of the jobs
› … keep a log of your job activities
› … add fault tolerance to your jobs
› … implement your policy on when the jobs can

run on your workstation

29http://www.cs.wisc.edu/condor

After Personal Condor…

› When a Personal Condor pool works for
you…
hConvince your co-workers to add their

computers to the pool

hAdd dedicated hardware to the pool

30http://www.cs.wisc.edu/condor

Four Steps to Run a Job

1. Choose a Universe for your job

2. Make your job batch-ready

3. Create a submit description file

4. Run condor_submit

31http://www.cs.wisc.edu/condor

1. Choose a Universe
› There are many choices

hVanilla: any old job

hStandard: checkpointing & remote I/O

hJava: better for Java jobs

hMPI: Run parallel MPI jobs

h…

› For now, we’ll just consider vanilla

› (We’ll use Java universe in exercises: it
is an extension of the Vanilla universe

32http://www.cs.wisc.edu/condor

2. Make your job batch-ready

› Must be able to run in the background:
no interactive input, windows, GUI, etc.

› Can still use STDIN, STDOUT, and STDERR

(the keyboard and the screen), but
files are used for these instead of the
actual devices

› Organize data files

33http://www.cs.wisc.edu/condor

3. Create a Submit Description
File
› A plain ASCII text file

hNot a ClassAd
hBut condor_submit will make a ClassAd from it

› Condor does not care about file extensions
› Tells Condor about your job:

hWhich executable,
hWhich universe,
hInput, output and error files to use,
hCommand-line arguments,
hEnvironment variables,
hAny special requirements or preferences

34http://www.cs.wisc.edu/condor

Simple Submit Description File

Simple condor_submit input file
(Lines beginning with # are comments)
NOTE: the words on the left side are not
case sensitive, but filenames are!
Universe = vanilla
Executable = analysis
Log = my_job.log
Queue

35http://www.cs.wisc.edu/condor

4. Run condor_submit
› You give condor_submit the name of

the submit file you have created:

condor_submit my_job.submit

› condor_submit parses the submit file,
checks for it errors, and creates a
ClassAd that describes your job.

36http://www.cs.wisc.edu/condor

The Job Queue

› condor_submit sends your job’s
ClassAd to the schedd
hManages the local job queue

hStores the job in the job queue
• Atomic operation, two-phase commit

• “Like money in the bank”

› View the queue with condor_q

37http://www.cs.wisc.edu/condor

An example submission

% condor_submit my_job.submit

Submitting job(s).

1 job(s) submitted to cluster 1.

% condor_q

-- Submitter: perdita.cs.wisc.edu : <128.105.165.34:1 027> :

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

1.0 roy 7/6 06:52 0+00:00:00 I 0 0.0 analys is

1 jobs; 1 idle, 0 running, 0 held

%

% condor_submit my_job.submit

Submitting job(s).

1 job(s) submitted to cluster 1.

% condor_q

-- Submitter: perdita.cs.wisc.edu :

<128.105.165.34:1027> :

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

1.0 roy 7/6 06:52 0+00:00:00 I 0 0.0 foo

1 jobs; 1 idle, 0 running, 0 held

38http://www.cs.wisc.edu/condor

Some details
› Condor sends you email about events

hTurn it off: Notification = Never

hOnly on errors: Notification = Error

› Condor creates a log file (user log)
h“The Life Story of a Job”

hShows all events in the life of a job

hAlways have a log file

hSpecified with: Log = filename

39http://www.cs.wisc.edu/condor

Sample Condor User Log

000 (0001.000.000) 05/25 19:10:03 Job submitted from host: < 128.105.146.14 :1816>

...

001 (0001.000.000) 05/25 19:12:17 Job executing on host: < 128.105.146.14 :1026>

...

005 (0001.000.000) 05/25 19:13:06 Job terminated.

(1) Normal termination (return value 0)

Usr 0 00:00:37, Sys 0 00:00:00 - Run Remote Usage

Usr 0 00:00:00, Sys 0 00:00:05 - Run Local Usage

Usr 0 00:00:37, Sys 0 00:00:00 - Total Remote Usage

Usr 0 00:00:00, Sys 0 00:00:05 - Total Local Usage

9624 - Run Bytes Sent By Job

7146159 - Run Bytes Received By Job

9624 - Total Bytes Sent By Job

7146159 - Total Bytes Received By Job

...

Job submitted from host: <128.105.146.14:1816>

Job executing on host: <128.105.146.14:1026>

Job terminated.

(1) Normal termination (return value 0)

Usr 00:00:37, Sys 00:00:00 - Run Remote Usage

Usr 00:00:00, Sys 00:00:05 - Run Local Usage

Usr 00:00:37, Sys 00:00:00 - Total Remote Usage

Usr 00:00:00, Sys 00:00:05 - Total Local Usage

9624 - Run Bytes Sent By Job

7146159 - Run Bytes Received By Job

9624 - Total Bytes Sent By Job

7146159 - Total Bytes Received By Job

40http://www.cs.wisc.edu/condor

Universe = vanilla
Executable = /home/roy/condor/my_job.condor
Log = my_job.log
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr
Arguments = -arg1 -arg2
InitialDir = /home/roy/condor/run_1
Queue

More Submit Features

41http://www.cs.wisc.edu/condor

Using condor_rm
› If you want to remove a job from the

Condor queue, you use condor_rm

› You can only remove jobs that you own (you
can’t run condor_rm on someone else’s
jobs unless you are root)

› You can give specific job ID’s (cluster or
cluster.proc), or you can remove all of your
jobs with the “-a” option.
hcondor_rm 21.1 ·Removes a single job

hcondor_rm 21 ·Removes a whole cluster

42http://www.cs.wisc.edu/condor

condor_status

% condor_status

Name OpSys Arch State Activity Loa dAv Mem ActvtyTime

haha.cs.wisc. IRIX65 SGI Unclaimed Idle 0.198 192 0+00:00:04

antipholus.cs LINUX INTEL Unclaimed Idle 0.020 511 0+02:28:42

coral.cs.wisc LINUX INTEL Claimed Busy 0.990 511 0+01:27:21

doc.cs.wisc.e LINUX INTEL Unclaimed Idle 0.260 511 0+00:20:04

dsonokwa.cs.w LINUX INTEL Claimed Busy 0.810 511 0+00:01:45

ferdinand.cs. LINUX INTEL Claimed Suspend ed 1.130 511 0+00:00:55

vm1@pinguino. LINUX INTEL Unclaimed Idle 0.000 255 0+01:03:28

vm2@pinguino. LINUX INTEL Unclaimed Idle 0.190 255 0+01:03:29

Name

Haha.cs.wisc.

Antipholus.cs

OpSys

IRIX65

LINUX

Arch

SGI

INTEL

State

Unclaimed

Claimed

Activity

Idle

Busy

LoadAv

0.198

0.990

Mem

192

511

ActvtyTime

0+00:00:04

0+02:28:42

43http://www.cs.wisc.edu/condor

How can my jobs access
their data files?

44http://www.cs.wisc.edu/condor

Access to Data in Condor

› Use shared filesystem if available
hIn today’s exercises, we have a shared filesystem

› No shared filesystem?
hCondor can transfer files

• Can automatically send back changed files

• Atomic transfer of multiple files

• Can be encrypted over the wire

hRemote I/O Socket

hStandard Universe can use remote system calls
(more on this later)

45http://www.cs.wisc.edu/condor

Condor File Transfer
› ShouldTransferFiles = YES

h Always transfer files to execution site
› ShouldTransferFiles = NO

h Rely on a shared filesystem
› ShouldTransferFiles = IF_NEEDED

h Will automatically transfer the files if the submit and
execute machine are not in the same FileSystemDomain

Universe = vanilla
Executable = my_job
Log = my_job.log
ShouldTransferFiles = IF_NEEDED
Transfer_input_files = dataset$(Process), common.d ata
Transfer_output_files = TheAnswer.dat
Queue 600

46http://www.cs.wisc.edu/condor

Some of the machines in the
Pool do not have enough
memory or scratch disk
space to run my job!

47http://www.cs.wisc.edu/condor

Specify Requirements!

› An expression (syntax similar to C or Java)
› Must evaluate to True for a match to be

made

Universe = vanilla
Executable = my_job
Log = my_job.log
InitialDir = run_$(Process)
Requirements = Memory >= 256 && Disk > 10000
Queue 600

48http://www.cs.wisc.edu/condor

Specify Rank!

› All matches which meet the requirements
can be sorted by preference with a Rank
expression.

› Higher the Rank, the better the match
Universe = vanilla
Executable = my_job
Log = my_job.log
Arguments = -arg1 –arg2
InitialDir = run_$(Process)
Requirements = Memory >= 256 && Disk > 10000
Rank = (KFLOPS*10000) + Memory
Queue 600

49http://www.cs.wisc.edu/condor

We’ve seen how Condor can:

… keeps an eye on your jobs and will
keep you posted on their progress

… implements your policy on the
execution order of the jobs

… keeps a log of your job activities

50http://www.cs.wisc.edu/condor

My jobs run for 20 days…

› What happens when they get
pre-empted?

› How can I add fault tolerance to
my jobs?

51http://www.cs.wisc.edu/condor

Condor’s Standard Universeto
the rescue!

› Condor can support various combinations of
features/environments in different
“Universes”

› Different Universes provide different
functionality for your job:
hVanilla: Run any serial job

hScheduler: Plug in a scheduler

hStandard: Support for transparent process
checkpoint and restart

52http://www.cs.wisc.edu/condor

Process Checkpointing

› Condor’s process checkpointing
mechanism saves the entire state of a
process into a checkpoint file
hMemory, CPU, I/O, etc.

› The process can then be restarted from
right where it left off

› Typically no changes to your job’s source
code needed—however, your job must be
relinked with Condor’s Standard Universe
support library

53http://www.cs.wisc.edu/condor

Relinking Your Job for Standard
Universe

To do this, just place “condor_compile” in
front of the command you normally use to
link your job:

% condor_compile gcc -o myjob myjob.c

- OR -

% condor_compile f77 -o myjob filea.f
fileb.f

54http://www.cs.wisc.edu/condor

Limitations of the
Standard Universe
› Condor’s checkpointing is not at the

kernel level. Thus in the Standard
Universe the job may not:
hfork()
hUse kernel threads
hUse some forms of IPC, such as pipes

and shared memory

› Many typical scientific jobs are OK

55http://www.cs.wisc.edu/condor

When will Condor checkpoint your
job?
› Periodically, if desired (for fault tolerance)
› When your job is preempted by a higher

priority job
› When your job is vacated because the

execution machine becomes busy
› When you explicitly run:

hcondor_checkpoint
hcondor_vacate
hcondor_off
hcondor_restart

56http://www.cs.wisc.edu/condor

Remote System Calls

› I/O system calls are trapped and sent back
to submit machine

› Allows transparent migration across
administrative domains
hCheckpoint on machine A, restart on B

› No source code changes required
› Language independent
› Opportunities for application steering

57http://www.cs.wisc.edu/condor

Job
I/O

Lib

Remote I/O

condor_schedd condor_startd

condor_shadow condor_starter

File

58http://www.cs.wisc.edu/condor

Java Universe Job

universe = java

executable = Main.class

jar_files = MyLibrary.jar

input = infile

output = outfile

arguments = Main 1 2 3

queue

59http://www.cs.wisc.edu/condor

Why not use Vanilla Universe for
Java jobs?
› Java Universe provides more than just

inserting “java” at the start of the
execute line
hKnows which machines have a JVM installed
hKnows the location, version, and

performance of JVM on each machine
hCan differentiate JVM exit code from

program exit code
hCan report Java exceptions

60http://www.cs.wisc.edu/condor

Summary
› Use:

hcondor_submit
hcondor_q
hcondor_status

› Condor can run
hAny old program (vanilla)
hSome jobs with checkpointing & remote I/O

(standard)
hJava jobs with better understanding

› Files can be accessed via
hShared filesystem
hFile transfer
hRemote I/O

61http://www.cs.wisc.edu/condor

Part Three

Running a parameter sweep

62http://www.cs.wisc.edu/condor

Clusters and Processes
› If your submit file describes multiple jobs, we

call this a “cluster”
› Each cluster has a unique “cluster number”
› Each job in a cluster is called a “process”

h Process numbers always start at zero
› A Condor “Job ID” is the cluster number, a

period, and the process number (“20.1”)

› A cluster is allowed to have one or more
processes.
hThere is always a cluster for every job

63http://www.cs.wisc.edu/condor

Example Submit Description File for a
Cluster

Example submit description file that defines a
cluster of 2 jobs with separate working directori es
Universe = vanilla
Executable = my_job
log = my_job.log
Arguments = -arg1 -arg2
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr
InitialDir = run_0
Queue ·Becomes job 2.0
InitialDir = run_1
Queue ·Becomes job 2.1

64http://www.cs.wisc.edu/condor

% condor_submit my_job.submit-file

Submitting job(s).

2 job(s) submitted to cluster 2.

% condor_q

-- Submitter: perdita.cs.wisc.edu : <128.105.165.34:1 027> :

ID OWNER SUBMITTED RUN_TIME ST PR I SIZE CMD

2.0 frieda 4/15 06:56 0+00:00:00 I 0 0.0 my_ job

2.1 frieda 4/15 06:56 0+00:00:00 I 0 0.0 my_ job

2 jobs; 2 idle, 0 running, 0 held

Submitting The Job

65http://www.cs.wisc.edu/condor

Submit Description File for a BIG
Cluster of Jobs
› The initial directory for each job can be

specified as run_$(Process), and instead of
submitting a single job, we use “Queue 600”
to submit 600 jobs at once

› The $(Process) macro will be expanded to
the process number for each job in the
cluster (0 - 599), so we’ll have “run_0”,
“run_1”, … “run_599” directories

› All the input/output files will be in different
directories!

66http://www.cs.wisc.edu/condor

Submit Description File for a BIG
Cluster of Jobs

Example condor_submit input file that defines
a cluster of 600 jobs with different directories
Universe = vanilla
Executable = my_job
Log = my_job.log
Arguments = -arg1 –arg2
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr

InitialDir = run_$(Process) ·run_0 … run_599
Queue 600 ·Becomes job 3.0 … 3.599

67http://www.cs.wisc.edu/condor

More $(Process)

› You can use $(Process) anywhere.
Universe = vanilla
Executable = my_job
Log = my_job.$(Process).log
Arguments = -randomseed $(Process)
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr

InitialDir = run_$(Process) ·run_0 … run_599
Queue 600 ·Becomes job 3.0 … 3.599

68http://www.cs.wisc.edu/condor

Sharing a directory
› You don’t have to use separate

directories.

› $(Cluster) will help distinguish runs
Universe = vanilla
Executable = my_job
Arguments = -randomseed $(Process)
Input = my_job.input.$(Process)
Output = my_job.stdout.$(Cluster).$(Process)
Error = my_job.stderr.$(Cluster).$(Process)
Log = my_job.$(Cluster).$(Process).log
Queue 600

69http://www.cs.wisc.edu/condor

Job Priorities

› Are some of the jobs in your sweep more
interesting than others?

› condor_prio lets you set the job priority
hPriority relative to your jobs, not other peoples

hCondor 6.6: priority can be -20 to +20

hCondor 6.7: priority can be any integer

› Can be set in submit file:
hPriority = 14

70http://www.cs.wisc.edu/condor

What if you have LOTSof jobs?
› Set system limits to be high:

hEach job requires a shadow process
hEach shadow requires file descriptors and sockets
hEach shadow requires ports/sockets

› Each condor_schedd limits max number of jobs
running
hDefault is 200
hConfigurable

› Consider multiple submit hosts
hYou can submit jobs from multiple computers
hImmediate increase in scalability & complexity

71http://www.cs.wisc.edu/condor

Advanced Trickery

› You submit 10 parameter sweeps

› You have five classes of parameters
sweeps
hCall them A, B, C, D, E

› How can you look at the status of jobs
that are part of Type B parameter
sweeps?

72http://www.cs.wisc.edu/condor

Advanced Trickery cont.
› In your job file:

+SweepType = “B”

› You can see this in your job ClassAd
condor_q –l

› You can show jobs of a certain type:
condor_q –constraint ‘SweepType == “B”’

› Very useful when you have a complex variety of
jobs

› Try this during the exercises!
› Be careful with the quoting…

73http://www.cs.wisc.edu/condor

Part Four

Managing Job Dependencies

74http://www.cs.wisc.edu/condor

DAGMan

› DAGMan allows you to specify the
dependencies between your Condor jobs,
so it can manage them automatically for
you.

› Example: “Don’t run job B until job A has
completed successfully.”

Directed

Acyclic Graph Manager

75http://www.cs.wisc.edu/condor

What is a DAG?

› A DAG is the data structure used
by DAGMan to represent these
dependencies.

› Each job is a node in the DAG.

› Each node can have any number of
“parent” or “children” nodes – as
long as there are no loops!

A

B C

D

OK:

A

B C

Not OK:

76http://www.cs.wisc.edu/condor

Defining a DAG

› A DAG is defined by a .dag file, listing each of its
nodes and their dependencies:

Job A a.sub
Job B b.sub
Job C c.sub
Job D d.sub

Parent A Child B C
Parent B C Child D

Job A

Job B Job C

Job D

77http://www.cs.wisc.edu/condor

DAG Files….

› The complete DAG is five files

Job A a.sub

Job B b.sub

Job C c.sub

Job D d.sub

Parent A Child B C

Parent B C Child D

One DAG File: Four Submit Files:

Universe = Vanilla

Executable = analysis…

78http://www.cs.wisc.edu/condor

Submitting a DAG

› To start your DAG, just run condor_submit_dag
with your .dag file, and Condor will start a personal
DAGMan process which to begin running your jobs:

% condor_submit_dag diamond.dag

› condor_submit_dag submits a Scheduler Universe
job with DAGMan as the executable.

› Thus the DAGMan daemon itself runs as a Condor job,
so you don’t have to baby-sit it.

79http://www.cs.wisc.edu/condor

DAGMan

Running a DAG

› DAGMan acts as a scheduler, managing the
submission of your jobs to Condor based on
the DAG dependencies.

Condor
Job
Queue

B C

D

A

A

.dag
File

80http://www.cs.wisc.edu/condor

DAGMan

Running a DAG (cont’d)

› DAGMan holds & submits jobs to the Condor
queue at the appropriate times.

Condor
Job
Queue

C

D

B

C

B

A

81http://www.cs.wisc.edu/condor

DAGMan

Running a DAG (cont’d)

› In case of a job failure, DAGMan continues until it
can no longer make progress, and then creates a
“rescue” file with the current state of the DAG.

Condor
Job
Queue

X

D

A

B
Rescue

File

82http://www.cs.wisc.edu/condor

DAGMan

Recovering a DAG

› Once the failed job is ready to be re-run, the
rescue file can be used to restore the prior
state of the DAG.

Condor
Job
Queue

C

D

A

B
Rescue

File

C

83http://www.cs.wisc.edu/condor

DAGMan

Recovering a DAG (cont’d)

› Once that job completes, DAGMan will
continue the DAG as if the failure never
happened.

Condor
Job
Queue

C

D

A

B

D

84http://www.cs.wisc.edu/condor

DAGMan

Finishing a DAG

› Once the DAG is complete, the DAGMan job
itself is finished, and exits.

Condor
Job
Queue

C

D

A

B

85http://www.cs.wisc.edu/condor

DAGMan & Log Files
› For each job, Condor generates a log file

› DAGMan reads this log to see what has
happened

› If DAGMan dies (crash, power failure,
etc…)
hCondor will restart DAGMan

hDAGMan re-reads log file

hDAGMan knows everything it needs to know

86http://www.cs.wisc.edu/condor

Advanced DAGMan Tricks

› Throttles and degenerative DAGs

› Recursive DAGs: Loops and more

› Pre and Post scripts: editing your DAG

87http://www.cs.wisc.edu/condor

Throttles

› Failed nodes can be automatically re-
tried a configurable number of times
hCan retry N times

hCan retry N times, unless a node returns
specific exit code

› Throttles to control job submissions
hMax jobs submitted

hMax scripts running

88http://www.cs.wisc.edu/condor

› Submit DAG with:
h200,000 nodes

hNo dependencies

› Use DAGMan to throttle the jobs
hCondor is scalable, but it will have problems

if you submit 200,000 jobs simultaneously

hDAGMan can help you get scalability even if
you don’t have dependencies

Degenerative DAG

A1 A2 A3
…

89http://www.cs.wisc.edu/condor

Recursive DAGs
› Idea: any given DAG node can be a script

that does:
1. Make decision
2. Create DAG file
3. Call condor_submit_dag
4. Wait for DAG to exit

› DAG node will not complete until recursive
DAG finishes,

› Why?
h Implement a fixed-length loop
h Modify behavior on the fly

90http://www.cs.wisc.edu/condor

Recursive DAG

A

B C

D

V W

Z

X Y

91http://www.cs.wisc.edu/condor

DAGMan scripts

› DAGMan allows pre & post scripts
hDon’t have to be scripts: any executable

hRun before (pre) or after (post) job

hRun on the same computer you submitted from

› Syntax:
JOB A a.sub

SCRIPT PRE A before-script $JOB

SCRIPT POST A after-script $JOB $RETURN

92http://www.cs.wisc.edu/condor

So What?
› Pre script can make decisions

hWhere should my job run? (Particularly useful to
make job run in same place as last job.)

hShould I pass different arguments to the job?

hLazy decision making

› Post script can change return value
hDAGMan decides job failed in non-zero return value

hPost-script can look at {error code, output files,
etc} and return zero or non-zero based on deeper
knowledge.

93http://www.cs.wisc.edu/condor

Part Five
Master Worker Applications

(Slides adapted from Condor Week 2005
presentation by Jeff Linderoth)

94http://www.cs.wisc.edu/condor

Why Master Worker?
› An alternative to DAGMan

hDAGMan:
• Create a bunch of Condor jobs
• Run them in parallel

hMaster Worker (MW):
• You write a bunch of tasks in C++
• Uses Condor to run your tasks
• Don’t worry about the jobs
• But rewrite your application to fit MW

› Can efficiently manage large numbers of
short tasks

95http://www.cs.wisc.edu/condor

Master Worker Basics

Present Condor!

Y
es S

ir!

› Master assigns tasks to
workers

› Workers perform tasks
and report results

› Workers do not
communicate (except via
master)

› Simple

› Fault Tolerant
› Dynamic

Fi
x

Co
nd

or
!

Y
es

 S
ir

!

96http://www.cs.wisc.edu/condor

Master Worker Toolkit
› There are three abstractions (classes) in the

master-worker paradigm:
hMaster
hWorker
hTask

› Condor MW provides all three
› The API is via C++ abstract classes
› You writes about 10 C++ methods
› MW handles:

hInteraction with Condor
hAssigning tasks to workers
hFault tolerance

97http://www.cs.wisc.edu/condor

MW’s Runtime Structure

1. User code adds tasks to the master’s Todo list;

2. Each task is sent to a worker (Todo -> Running);

3. The task is executed by the worker;

4. The result is sent back to the master;

5. User code processes the result (can add/remove tasks).

Worker
Process

Worker
Process

Worker
Process

……

Master Process

ToDo
tasks

Running
tasks

Workers

98http://www.cs.wisc.edu/condor

Real MW Applications
› MWFATCOP (Chen, Ferris, Linderoth)

A branch and cut code for linear integer programming

› MWMINLP (Goux, Leyffer, Nocedal)
A branch and bound code for nonlinear integer programming

› MWQPBB (Linderoth)
A (simplicial) branch and bound code for solving quadratically constrained
quadratic programs

› MWAND (Linderoth, Shen)
A nested decomposition based solver for multistage stochastic linear
programming

› MWATR (Linderoth, Shapiro, Wright)
A trust-region-enhanced cutting plane code for linear stochastic programming
and statistical verification of solution quality.

› MWQAP (Anstreicher, Brixius, Goux, Linderoth)
A branch and bound code for solving the quadratic assignment problem

99http://www.cs.wisc.edu/condor

Example: Nug30

› nug30 (a Quadratic Assignment Problem
instance of size 30) had been the “holy grail”
of computational QAP research for > 30 years

› In 2000, Anstreicher, Brixius, Goux, &
Linderoth set out to solve this problem

› Using a mathematically sophisticated and well-
engineered algorithm, they still estimated that
we would require 11 CPU years to solve the
problem.

100http://www.cs.wisc.edu/condor

Nug 30 Computational Grid

Columbia U.Sun/Solaris 10

Columbia U. Intel/Linux 5

NorthwesternSun/Solaris 12

New Mexico Intel/Linux 25

Italy (INFN) Intel/Linux 54

Georgia Tech Intel/Solaris 94

Georgia Tech Intel/Linux 190

Wisconsin Sun/Solaris 133

Wisconsin Intel/Solaris 146

Wisconsin Intel/Linux 246

NCSA SGI/Irix45

NCSA Intel/Linux 16

NCSA SGI/Irix1024

Argonne SGI/Irix96

Argonne Intel/Linux 414

Location Arch/OS Number › Used tricks to make it look
like one Condor pool

h Flocking

h Glide-in

› 2510 CPUs total

101http://www.cs.wisc.edu/condor

Workers Over Time

102http://www.cs.wisc.edu/condor

Nug30 solved

93%Parallel
Efficiency

11 yearsCPU Time

653Avg # Machines

6 days

22:04:31 hours

Wall Clock Time

103http://www.cs.wisc.edu/condor

More on MW

› http://www.cs.wisc.edu/condor/mw

› Version 0.3 is the latest
hIt’s more stable than the version number

suggests!

› Mailing list available for discussion

› Active development by the Condor team

104http://www.cs.wisc.edu/condor

I could also tell you about…
› Running parallel jobs
› Condor-G: Condor’s ability to talk to other Grid

systems
hGlobus 2, 3, 4
hNorduGrid
hOracle
hCondor…

› Stork: Treating data placement like
computational jobs

› Nest: File server with space allocations
› GCB: Living with firewalls & private networks

105http://www.cs.wisc.edu/condor

But I won’t
› After break: Practical exercises

› Please ask me questions, now or later

106http://www.cs.wisc.edu/condor

Extra Slides

107http://www.cs.wisc.edu/condor

Remote I/O Socket

› Job can request that the condor_starter
process on the execute machine create a
Remote I/O Socket

› Used for online access of file on submit
machine, without Standard Universe.
hUse in Vanilla, Java, …

› Libraries provided for Java and for C, e.g. :
Java: FileInputStream -> ChirpInputStream

C : open() -> chirp_open()

108http://www.cs.wisc.edu/condor

Job

Fork

startershadow

Home
File

System

I/O Library

I/O Server I/O Proxy
Secure Remote I/O

Local System Calls

Submission Host
Execution Host

Local I/O
(Chirp)

