An Introduction To

Condor

International Summer School
on Grid Computing 2006

Alain Roy
Computer Sciences Department
University of Wisconsin-Madison
roy@cs.wisc.edu
http://www.cs.wisc.edu/condor

|
‘ﬂ(dllr"
-~/

This Morning’s Condor Topics

> Matchmaking: Finding machines for jobs
> Running a job

> Running a parameter sweep

> Managing sets of dependent jobs

> Master-Worker applications

Part One

Matchmaking:
Finding Machines For Jobs
Finding Jobs for Machines

|
P: .Cs. . \—/ 3

C oo rokeskhe Cibievputers. ..

I need a Mac!

2

E = mc : Desktop Computers
= 1kg ><(3><1ng5_1
— Tkg % (3x10%ms™)
= 1kg {910 m??)
:1><(9><1016)kg m?s™

Quick Terminology

> Cluster: A dedicated set of computers
not for interactive use

> Pool: A collection of computers used by
Condor

* May be dedicated
* May be interactive

(jl |

S

Matchmaking

> Matchmaking is fundamental o Condor

> Matchmaking is two-way
* Job describes what it requires:
I need Linux && 2 GB of RAM
* Machine describes what it requires:
I will only run jobs from the Physics department

> Matchmaking allows preferences

* I need Linux, and I prefer machines with more
memory but will run on any machine you provide me

.
(@m@l\@r
./

http://www.cs.wisc.edu/condor

6

Why Two-way Matching?

> Condor conceptually divides people into
three groups:
* Job submitters
* Machine owners May or may not
* Pool (cluster) adminis‘rra’ror} be the same

people
> All three of these groups have
preferences

-

S

Machine owner preferences

> I prefer jobs from the physics group
> T will only run jobs between 8pm and 4am
> T will only run certain types of jobs

> Jobs can be preempted if something
better comes along (or not)

-
P .CS. . \—/ o

System Admin Prefs

> When can jobs preempt other jobs?
> Which users have higher priority?

-
P .CS.) \—/

ClassAds

> ClassAds state facts

* My job's executable is analysis.exe
* My machine's load average is 5.6

> ClassAds state preferences
* T require a computer with Linux

|
P: .Cs. . \—/ 10

ClassAds

e ClassAds are:

— semi-structured
— user-extensible
— schema-free

— Attribute =
Expression

Example:
MyType ="Job" <—String
TargetType = "Machine"
Clusterld = 1377 <—Number
Owner = "roy"
Cmd = “analysis.exe"
Requirements =

(Arch =="INTEL") <—Boolean

&& (OpSys =="LINUX")
&& (Disk >= DiskUsage)
&& ((Memory * 1024)>=ImageSize)

Schema-free ClassAds

> Condor imposes some schema
* Owner is a string, ClusterID is a humber...
> But users can extend it however they like, for
jobs or machines
* AnalysisJobType = “simulation”
°* Hasdava 1 4 = TRUE
* ShoelLength =7

> Matchmaking can use these attributes
* Requirements = OpSys == "LINUX"
&& HasJava 1 4 == TRUE

|
http://www.cs.wisc.edu/condor (@lﬂ—ld@r
P .Cs. . \—/ 12

Submitting jobs

> Users submit jobs from a computer
* Jobs described as ClassAds
* Each submission computer has a queue
* Queues are not centralized
* Submission computer watches over queue
* Can have multiple submission computers
* Submission handled by condor_schedd

LS

—

« = —b++/b? - 4ac
2a

Condor_schedd

—E=

Advertising computers

> Machine owners describe computers
* Configuration file extends ClassAd

* ClassAd has dynamic features
* Load Average
* Free Memory

* ClassAds are sent to Matchmaker

—
ClassAd Matchmaker
Type = “Machine” (Collector)

Requirements = “...”

Matchmaking

> Negotiator collects list of computers
> Negotiator contacts each schedd
* What jobs do you have to run?

> Negotiator compares each job to each computer
* Evaluate requirements of job & machine
* Evaluate in context of both ClassAds
°* If both evaluate to true, there is a match

> Upon match, schedd contacts execution
computer

-
’ R W 15

Matchmaking diagram

Matchmaking

Service
P

condor_schedd

Matchmaker

Negotiator Collector

Job queue service

(Queue>
=

http://www.cs.wisc.edu/condor

Information
service

|
ondor
_/ 0

Running a Job

Matchmaker

COHdOf‘_SmeiT condor'_nego’ria’ror'

condor_collector

—

condor_schedd

(Queue>
-

Manages
Remote Job

Manages Machine

condor_startd

condor_shadow Manages | .ondor starter
Local Job

'

Job

http://www.cs.wisc.edu/condor

17

Condor processes

> Master: Takes care of other processes
> Collector: Stores ClassAds

> Negotiator: Performs matchmaking

> Schedd: Manages job queue

> Shadow: Manages job (submit side)

> Startd: Manages computer

> Starter: Manages job (execution side)

.
(@n@l\@r
_/ 18

http://www.cs.wisc.edu/condor

Some notes

> One negotiator/collector per pool
> Can have many schedds (submitters)
> Can have many startds (computers)

> A machine can have any combination
* Dedicated cluster: maybe just startds
* Shared workstations: schedd + startd
* Personal Condor: everything

-
’ R W 19

Our Condor Pool

> Each student machine has
* Schedd (queue)
* Startd (with two virtual machines)

> Several servers
* Most: Only a startd
* One: Startd + collector/negotiator

> At your leisure:
° Run: condor_status

-
’ R _/ 20

Our Condor Pool

Name OpSys Arch State Activity Loa dAv Mem ActvtyTime
vml@ws-01.gs. LINUX INTEL Unclaimed Idle 0.000 501 0+00:02:45
vm2@ws-01.gs. LINUX INTEL Unclaimed Idle 0.000 501 0+00:02:46
vml@ws-03.gs. LINUX INTEL Unclaimed Idle 0.000 501 0+02:30:24
vm2@ws-03.gs. LINUX INTEL Unclaimed Idle 0.000 501 0+02:30:20
vml@ws-04.gs. LINUX INTEL Unclaimed Idle 0.080 501 0+03:30:09
vm2@ws-04.gs. LINUX INTEL Unclaimed Idle 0.000 501 0+03:30:05

Machines Owner Claimed Unclaimed Matched Preempting
INTEL/LINUX 56 0 0 56 0 0

Total 5 0 0

If this is hard to read
run: condor status

http://www.cs.wisc.edu/condor

Summary

> Condor uses ClassAd to represent state
of jobs and machines

> Matchmaking operates on ClassAds to
find matches

> Users and machine owners can specify
their preferences

-
’ R _/ 22

Part Two

Running a Condor Job

Getting Condor

> Available as a free download from
http://www.cs.wisc.edu/condor
> Download Condor for your operating

system

* Available for many UNIX platforms:
* Linux, Solaris, Mac OS X, HPUX, AIX..

* Also for Windows

-
’ R _/ 24

Condor Releases

> Naming scheme similar to the Linux Kernel...

> Major.minor.release

* Stable: Minor is even (a.b.c)
+ Examples: 6.4.3,6.6.8,6.6.9
» Very stable, mostly bug fixes

* Developer: Minor is odd (a.b.c)
* New features, may have some bugs
+ Examples: 6.5.5,6.7.5,6.7.6

> Today's releases:
° Stable: 6.6.11
* Development: 6.7.20
* Very soon now, Stable: 6.8.0

http://www.cs.wisc.edu/condor

.
(@md\@r
A’ 25

Try out Condor:

Use a Personal Condor

> Condor:

° on your own workstation
° no root access required

° no system administrator intervention
heeded

> We'll try this during the exercises

-
’ R _/ 26

Personal Condor?!

What's the benefit of a Condor
Pool with just one user and one
machine?

-
’ R _/ 27

Your Personal Condor will ...

> ... keep an eye on your jobs and will keep you
posted on their progress

> ... implement your policy on the execution
order of the jobs

> ... keep a log of your job activities
> ... add fault tolerance to your jobs

> ... implement your policy on when the jobs can
run on your workstation

-
’ R W 28

After Personal Condor...

> When a Personal Condor pool works for
you...

* Convince your co-workers to add their
computers to the pool

* Add dedicated hardware to the pool

-
’ R _/ 29

Four Steps to Run a Job

Choose a Universe for your job
Make your job batch-ready
Create a submit description file
. Run condor _submit

»wr e

-
’ R _/ 30

1. Choose a Universe

> There are many choices
* Vanilla: any old job
* Standard: checkpointing & remote I/0
* Java: better for Java jobs
* MPT: Run parallel MPT jobs

> For now, we'll just consider vanilla

> (We'll use Java universe in exercises: it
is an extension of the Vanilla universe

@nd@r

http://www.cs.wisc.edu/condor

2. Make your job batch-ready

> Must be able to run in the background:
no interactive input, windows, GUI, etc.

> Can still use STDIN, STDOUT and STDERR
(the keyboard and the screen), but
files are used for these instead of the
actual devices

> Organize data files

-
’ R W 32

3. Create a Submit Description
File
> A plain ASCIT text file

°* Not a ClassAd

° But condor_submit will make a ClassAd from it
> Condor does not care about file extensions
> Tells Condor about your job:

°* Which executable,

°* Which universe,

* Input, output and error files to use,

* Command-line arguments,
° Environment variables,

* Any special requirements or preference |
p://www.cs.wisc.edu/condor 33
C\/

Simple Submit Description File

Simple condor_submit input file
(Lines beginning with # are comments)
NOTE: the words on the left side are not

case sensitive, but flenames are!
Universe = vanilla

Executable = analysis
Log = my_job.log
Queue

34

|
http://www.cs.wisc.edu/condor (@ﬂd@r
P .Cs. . \—/

4. Run condor submit

> You give condor_submit the name of
the submit file you have created:

condor_submit my_job.submit

> condor_submit parses the submit file,
checks for it errors, and creates a
ClassAd that describes your job.

-
’ R W 35

The Job Queue

> condor_submit sends your job's
ClassAd 1o the schedd
* Manages the local job queue

* Stores the job in the job queue
- Atomic operation, two-phase commit
» "Like money in the bank"

> View the queue with condor_g

-
’ R _/ 36

An example submission

% condor_submit my_job.submit

% condor_| Submitting job(s).
Submitting, _ . .
1job(s) sul 1 JOD(S) submitted to cluster 1.

% condor_qg

-- Submitter: perdita.cs.wisc.edu
<128.105.165.34:1027>

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
1.0 roy 7/6 06:52 0+00:00:001 O 0.0 foo

1 jobs; 1 idle, O running, O held

http:// isc.edu/cond ‘K VUL
//WWW.CSs.wiIsC.edu/condor 37
./

Some detalls

> Condor sends you email about events
* Turn it of f: Notification = Never
* Only on errors: Notification = Error

> Condor creates a log file (user log)
*"The Life Story of a Job"
* Shows all events in the life of a job
* Always have a log file
* Specified with: Log = filename

-
’ R W 38

Sample Condor User Log

Job submitted from host; <128.105.146.14:1816>

Job executing on host: <128.105.146.14:1026>

Job terminated.
(1) Normal termination (return value 0)
Usr 00:00:37, Sys 00:00:00 - Run Remote Usage
Usr 00:00:00, Sys 00:00:05 - Run Local Usage
Usr 00:00:37, Sys 00:00:00 - Total Remote Usage
Usr 00:00:00, Sys 00:00:05 - Total Local Usage
9624 - Run Bytes Sent By Job
7146159 - Run Bytes Received By Job
9624 - Total Bytes Sent By Job

More Submit Features

Universe = vanilla

Executable = /home/roy/condor/my_job.condor
Log = my_job.log

Input = my_job.stdin

Output = my_job.stdout

Error = my_job.stderr

Arguments = -argl -arg2

InitialDir = /home/roy/condor/run_1

Queue

http://www.cs.wisc.edu/condor

.
(@m\@r
A’ 40

Using condor_rm

> If you want to remove a job from the
Condor queue, you use condor_rm

> You can only remove jobs that you own (you
can't run condor rm on someone else's
jobs unless you are root)

> You can give specific job ID's (cluster or
cluster.proc), or you can remove all of your
jobs with the "-d" option.
°* condor_rm 21.1 -Removes a single job
° condor_rm 21 -Removes a whole cluste

¢

-
ondor
e’

http://www.cs.wisc.edu/condor a1

condor status

% condor_status

Name OpSys| Arch| State | Activity Loa(Mg ActvtyTime
Haha.cs.wig IRIX65| SGI | Unclait Idle 0.19 19 0+00:00:04
Antipholus.ﬂ LINUX| INTE| Claime Busy |0.99 51 0+02:28:42

doc.cs.wisc.e LINUX INTEL Unclaimed Tdle 0.260 511 0+00:20:04
dsonokwa.cs.w LINUX INTEL Claimed Busy 0.810 511 0+00:01:45
ferdinand.cs. LINUX INTEL Claimed Suspend ed 1.130 511 0+00:00:55
vml@pinguino. LINUX INTEL Unclaimed Idle 0.000 255 0+01:03:28
vm2@pinguino. LINUX INTEL Unclaimed Idle 0.190 255 0+01:03:29

http://www.cs.wisc.edu/condor

o

2

How can my jobs access
their data files?

-
’ R _/ 43

Access to Data in Condor

> Use shared filesystem if available
* In today's exercises, we have a shared filesystem

> No shared filesystem?

* Condor can transfer files
- Can automatically send back changed files
+ Atomic transfer of multiple files
- Can be encrypted over the wire

* Remote I/O Socket

* Standard Universe can use remote system calls
(more on this later)

http://www.cs.wisc.edu/condor

.
(@md\@r
| \/ 44

Condor File Transfer

> ShouldTransferFiles = YES

* Always transfer files to execution site
> ShouldTransferFiles = NO

* Rely on a shared filesystem
> ShouldTransferFiles = IF_NEEDED

* Will automatically transfer the files if the submit and
execute machine are not in the same FileSystemDomain

Universe = vanilla

Executable = my_job

Log = my_job.log

ShouldTransferFiles = IF_NEEDED
Transfer_input_files = dataset$(Process), common.d
Transfer_output_files = TheAnswer.dat

Queue 600

http://www.cs.wisc.edu/condor

ata

nd@r

o

Some of the machines in t "
Pool do not have enough
memory or scratch disk
space to run my job!

-
’ R W 46

Specify Requirements!

> An expression (syntax similar to C or Java)

> Must evaluate to True for a match to be
made

Universe =vanilla

Executable =my job

Log = my_job.log

InitialDir = run_$(Process)

Requirements = Memory >= 256 && Disk > 10000
Queue 600

http://www.cs.wisc.edu/condor

.
(@m\@r
| _/ 47

Specify Rank!

> All matches which meet the requirements
can be sorted by preference with a Rank
expression.

> Higher the Rank, the better the match

Universe = vanilla

Executable = my_job

Log = my_job.log

Arguments = -argl —arg?2

InitialDir = run_$(Process)

Requirements = Memory >= 256 && Disk > 10000
Rank = (KFLOPS*10000) + Memory

Queue 600

http://www.cs.wisc.edu/condor

.
(@n@l\@r
A’ 48

We've seen how Condor can:

.. keeps an eye on your jobs and will
keep you posted on their progress

.. implements your policy on the
execution order of the jobs

.. keeps a log of your job activities

http://www.cs.wisc.edu/condor

.
(@n@l\@r
_/ 49

My jobs run for 20 days...

> What happens when they get
pre-empted?

> How can I add fault tolerance to
my jobs?

http://www.cs.wisc.edu/condor

Condor’sStandard Universt®
the rescue!

> Condor can support various combinations of
features/environments in different
"Universes”

> Different Universes provide different
functionality for your job:
* Vanilla: Run any serial job
* Scheduler: Plug in a scheduler

* Standard: Support for transparent process
checkpoint and restart

-
’ R W 51

Process Checkpointing

> Condor's process checkpointing
mechanism saves the entire state of a
process into a checkpoint file

* Memory, CPU, I/0, eftc.

> The process can then be restarted from
right where it left of f

> Typically no changes to your job's source
code needed—however, your job must be
relinked with Condor’'s Standard Universe
support library

-
’ R _/ 52

Relinking Your Job for Standard

Universe

To do this, just place “"condor_compile” in
front of the command you normally use to
link your job:

% condor_compile gcc -0 myjob myjob.c

_OR -

% condor_compile 77 -o myjob filea.f
fileb.f

-
’ R _/ 53

Limitations of the

Standard Universe

> Condor's checkpointing is not at the
kernel level. Thus in the Standard
Universe the job may not:
* fork()
* Use kernel threads
* Use some forms of IPC, such as pipes
and shared memory

> Many typical scientific jobs are OK

-
’ R W 54

When will Condor checkpoint your
job?
> Periodically, if desired (for fault tolerance)
> When your job is preempted by a higher

priority job
> When your job is vacated because the

execution machine becomes busy
> When you explicitly run:

* condor_checkpoint

° condor_vacate
* condor_off

° condor_restart |

S

Remote System Calls

> I/0 system calls are trapped and sent back
to submit machine

> Allows transparent migration across
administrative domains

* Checkpoint on machine A, restart on B
> No source code changes required
> Language independent
> Opportunities for application steering

-
’ R W 56

Remote I/O

condor_schedd

—» CondO r‘_STar‘Td

|

{

condor_shadow

condor_starter

|

Job

-
’ R _/ 57

Java Universe Job

universe = java
executable = Main.class
jar_files = MyLlibrary.jar

iInput = infile

output = outfile
arguments =Mainl23
gueue

|
http://www.cs.wisc.edu/condor ﬂr
P .CS. . \—/ 53

Why not use Vanilla Universe for
Java Jobs?

> Java Universe provides more than just
inserting "java" at the start of the
execute line
* Knows which machines have a JVM installed

* Knows the location, version, and
performance of JVM on each machine

* Can differentiate JVM exit code from
program exit code

* Can report Java exceptions

-
s (\/)

Summary

> Use:
° condor_submit
° condor_q
° condor_status

> Condor can run
* Any old program (vanilla)

* Some jobs with checkpointing & remote I/0
(standard)

* Java jobs with better understanding
> Files can be accessed via
* Shared filesystem

* File transfer
* Remote I/0

http://www.cs.wisc.edu/condor

.
(@mcd\@r
A’ 60

Part Three

Running a parameter sweep

Clusters and Processes

> If your submit file describes multiple jobs, we
call this a “cluster”

> Each cluster has a unique “cluster number”
> Each job in a cluster is called a "process”
* Process numbers always start at zero

> A Condor "Job ID" is the cluster number, a
period, and the process number (*20.1")

> A cluster is allowed to have one or more
processes.

* There is always a cluster for every job

.
(@nd@r
_/ 62

http://www.cs.wisc.edu/condor

Example Submit Description File for a
Cluster

Example submit description file that defines a
cluster of 2 jobs with separate working directori es
Universe = vanilla

Executable = my_job

log =my_job.log
Arguments = -argl -arg2
Input = my_job.stdin
Output = my job.stdout
Error = my_job.stderr
InitialDir =run_0

Queue -Becomes job 2.0
InitialDir =run_1
Queue -Becomes job 2.1

http://www.cs.wisc.edu/condor

Submitting The Job

% condor_submit my_job.submit-file
Submitting job(s).

2 job(s) submitted to cluster 2.

% condor_q
-- Submitter: perdita.cs.wisc.edu :<128.105.165.34:1

ID OWNER SUBMITTED RUN_TIME ST PR
2.0 frieda 4/15 06:56 0+00:00:001 O 0.0 my_
2.1 frieda 4/15 06:56 0+00:00:001 O 0.0 my_

2 jobs; 2 idle, O running, O held

http://www.cs.wisc.edu/condor

027> :
| SIZE CMD
job
job

-
ondor
_/ 64

Submit Description File for a BIG
Cluster of Jobs

> The initial directory for each job can be
specified as run_%$(Process), and instead of
submitting a single job, we use "Queue 600"
to submit 600 jobs at once

> The $(Process) macro will be expanded to
the process number for each job in the
cluster (0 - 599), so we'll have "run_0",
“run_1", .. "run_b99" directories

> All the input/output files will be in different
directories!

-
’ R W 65

Submit Description File for BIG
Cluster of Jobs

Example condor_submit input file that defines
a cluster of 600 jobs with different directories
Universe = vanilla

Executable = my job

Log = my_job.log

Arguments = -argl —arg2

Input = my_job.stdin

Output = my_job.stdout

Error = my_job.stderr

InitialDir = run_$(Process) -run_0O ... run_599
Queue 600 -Becomes job 3.0 ... 3.599

http://www.cs.wisc.edu/condor

More $(Process)

> You can use $(Process) anywhere.

Universe = vanilla

Executable = my job

Log = my_job.$(Process).log

Arguments = -randomseed $(Process)

Input = my_job.stdin

Output = my_ job.stdout

Error = my_job.stderr

InitialDir = run_$(Process) -run_O ... run_599

Queue 600 -Becomes job 3.0 ... 3.599

o
ondor
\—/ 67

http://www.cs.wisc.edu/condor

Sharing a directory

> You don't have to use separate
directories.

> $(Cluster) will help distinguish runs

Universe = vanilla

Executable = my job

Arguments = -randomseed $(Process)

Input = my_job.input.$(Process)

Output = my_job.stdout.$(Cluster).$(Process)
Error = my_job.stderr.$(Cluster).$(Process)
Log = my_job.$(Cluster).$(Process).log
Queue 600

http://www.cs.wisc.edu/condor

.
(@md\@r
A’ 68

Job Priorities

> Are some of the jobs in your sweep more
intferesting than others?
> condor_prio lets you set the job priority
* Priority relative to your jobs, not other peoples
* Condor 6.6: priority can be -20 to +20
* Condor 6.7: priority can be any integer

> Can be set in submit file:
° Priority = 14

-
’ R W 69

What if you haved.OTS of jobs?

> Set system limits to be high:
* Each job requires a shadow process
* Each shadow requires file descriptors and sockets
* Each shadow requires ports/sockets
> Each condor_schedd limits max number of jobs
running

* Default is 200
* Configurable

> Consider multiple submit hosts
* You can submit jobs from multiple computers
* Immediate increase in scalability & complexity

-
’ R W 70

Advanced Trickery

> You submit 10 parameter sweeps

> You have five classes of parameters
sweeps
°Call them A,B,C, D, E
> How can you look at the status of jobs

that are part of Type B parameter
sweeps?

.

S

Advanced Trickery cont.
> In your job file:
+Sweep Type = "B"
> You can see this in your job ClassAd

condor_q -l
> You can show jobs of a certain type:
condor_q —constraint ‘SweepType == “B"

> Very useful when you have a complex variety of
jobs

> Try this during the exercises!

> Be careful with the quoting...

-
’ R W 72

Part Four

Managing Job Dependencies

DAGMan
Directed N) L —

Acyclic Graph

> DAGMan allows you to specify the
dependencies between your Condor jobs,
so it can manage them automatically for
you.

> Example: "Don't run job B until job A has
completed successfully.”

-
’ R W 74

What is a DAG?

> A DAG is the data structure used 6
by DAGMan to represent these |
dependencies. OK G‘Q

> Each job is a node in the DAG.

> Each node can have any number of 0
“parent” or "children” nodes -as ~ Not OK:
long as there are no loops! e

-
’ R _/ 75

Defining a DAG

> A DAG is defined by a .dag file, listing each of its
nodes and their dependencies:

Job A a.sub
Job B b.sub
Job C c.sub
Job D d.sub

Parent A Child B C
Parent B C Child D

=
’ R _/ 76

DAG Flles....

> The complete DAG is five files

One DAG File: Four Submit Files:

Job A asub »Universe = Vanilla

Job B Ifsub -Executable = analysis...
Job C ¢sub

Job D @’sub

G50

Parent A Child B C
Parent B C Child D

http://www.cs.wisc.edu/condor

-
ondor
J 77

Submitting a DAG

> To start your DAG, just run condor_submit_dag
with your .dag file, and Condor will start a personal
DAGMan process which to begin running your jobs:

% condor_submit_dag diamond.dag

> condor_submit_dag submits a Scheduler Universe
job with DAGMan as the executable.

> Thus the DAGMan daemon itself runs as a Condor job,
so you don't have to baby-sit it.

http://www.cs.wisc.edu/condor

.
(@n@l\@r
| _/ 78

Running a DAG

> DAGMan acts as a scheduler, managing the
submission of your jobs to Condor based on
the DAG dependencies.

—_—
—
—_—
.

.dag
i File

DAGMan

|
cs.wisc W, .

Running a DAG (cont'd)

> DAGMan holds & submits jobs to the Condor
queue at the appropriate times.

DAGMan

|
cs.wisc W, .

Running a DAG (cont'd)

> In case of a job failure, DAGMan continues until it
can no longer make progress, and then creates a
‘rescue” file with the current state of the DAG.

(o) D)
. Rescue
~ File
DAGMan

|
cs.wisc W, .

Recovering a DAG

> Once the failed job is ready to be re-run, the
rescue file can be used to restore the prior
state of the DAG.

(o) D)
B Rescu
_ - File

DAGMan

|
cs.wisc W, .

Recovering a DAG (cont’d)

> Once that job completes, DAGMan will
continue the DAG as if the failure never
happened.

[— —
—_—
— — —

DAGMan

|
cs.wisc W, N

Finishing a DAG

> Once the DAG is complete, the DAGMan job
itself is finished, and exits.

DAGMan

.
P .CS. . \—/ 84

DAGMan & Log Files

> For each job, Condor generates a log file

> DAGMan reads this log to see what has
happened
> If DAGMan dies (crash, power failure,

etc...)
* Condor will restart DAGMan

* DAGMan re-reads log file
* DAGMan knows everything it needs to know

-
’ R W 85

Advanced DAGMan Tricks

> Throttles and degenerative DAGs
> Recursive DAGs: Loops and more
> Pre and Post scripts: editing your DAG

-
’ R _/ 86

Throttles

> Failed nodes can be automatically re-

tried a

configurable number of times

°* Can retry N times

* Can retry N times, unless a node returns
specific exit code

> Thrott

* Max |

es to control job submissions

jobs submitted

* Max scripts running

-
’ R W 87

Degenerative DAG

> Submit DAG with:

+ 200,000 nodes (As) -

* No dependencies

> Use DAGMan 1o throttle the jobs

* Condor is scalable, but it will have problems
if you submit 200,000 jobs simultaneously

* DAGMan can help you get scalability even if
you don't have dependencies

-
’ R W 88

Recursive DAGsS

> Idea: any given DAG node can be a script
that does:

1. Make decision

2. Create DAG file

3. Call condor_submit_dag
4. Wait for DAG to exit

> DAG node will not complete until recursive
DAG finishes,

> Why?

° Implement a fixed-length loop

* Modify behavior on the fly |
http://www.cs.wisc.edu/condor ((@n[_l d"@m;g

./

Recursive DAG

) W0 O
B
e
p: .Cs.wisc. _/ 90

DAGMan scripts

> DAGMan allows pre & post scripts

* Don't have to be scripts: any executable

* Run before (pre) or after (post) job

* Run on the same computer you submitted from
> Syntax:

JOB A a.sub

SCRIPT PRE A before-script $JOB
SCRIPT POST A after-script $JOB $RETURN

-
’ R W 01

So What?

> Pre script can make decisions

* Where should my job run? (Particularly useful to
make job run in same place as last job.)

* Should T pass different arguments to the job?
* Lazy decision making

> Post script can change return value
* DAGMan decides job failed in non-zero return value

* Post-script can look at {error code, output files,
etc} and return zero or non-zero based on deeper
knowledge.

http://www.cs.wisc.edu/condor

.
(@m@l\@r
_/ 92

Part Five
Master Worker Applications

(Slides adapted from Condor Week 2005
presentation by Jeff Linderoth)

Why Master Worker?

> An alternative to DAGMan
* DAGMan:

* Create a bunch of Condor jobs
* Run them in parallel
°* Master Worker (MW):

* You write a bunch of tasks in C++
» Uses Condor to run your tasks
- Don't worry about the jobs

» But rewrite your application to fit MW
> Can efficiently manage large numbers of

short tasks u
s wisc. o/ y

Master Worker Basics

> Master assigns tasks to
workers

> Workers perform tasks
and report results

> Workers do not
communicate (except via
master)

> Simple
> Fault Tolerant
> Dynamic

|
http://www.cs.wisc.edu/condor ﬂ(‘(’l’lr
.CS. : \/ 95

Master Worker Toolkit

> There are three abstractions (classes) in the
master-worker paradigm:

° Master
* Worker
* Task

> Condor MW provides all three

> The APTI is via C++ abstract classes
> You writes about 10 C++ methods

> MW handles:

* Interaction with Condor
° Assighing tasks to workers

°* Fault tolerance | A
./

MW'’s Runtime Structure

User code adds tasks to the master's Todo list;

Each task is sent to a worker (Todo -> Running);
The task is executed by the worker;
The result is sent back to the master;

1.
2.
3.
4,
D.

User code processes the result (can add/remove tas

http://www.cs.wisc.edu/condor

Real MW Applications

MWFATCOP (Chen, Ferris, Linderoth)

A branch and cut code for linear integer programming

> MWMINLP (Goux, Leyffer, Nocedal)

A branch and bound code for nonlinear integer programming

> MWQPBB (Linderoth)

A (simplicial) branch and bound code for solving quadratically constrained
quadratic programs

> MWAND (Linderoth, Shen)

A nested decomposition based solver for multistage stochastic linear
programming

> MWATR (Linderoth, Shapiro, Wright)

A trust-region-enhanced cutting plane code for linear stochastic programming
and statistical verification of solution quality.

> MWQAP (Anstreicher, Brixius, Goux, Linderoth)
A branch and bound code for solving the quadratic assignment problem

http://www.cs.wisc.edu/condor

Example: Nug30

> nug30 (a Quadratic Assignment Problem
instance of size 30) had been the “holy grail”
of computational QAP research for > 30 years

> In 2000, Anstreicher, Brixius, Goux, &
Linderoth set out to solve this problem

> Using a mathematically sophisticated and well-
engineered algorithm, they still estimated that
we would require 11 CPU years to solve the
problem.

-
’ R W 99

Nug 30 Computational Grid

Number Arch/OS Location > Used tricks to make it look

414 Intel/Linux Argonne like one Condor POOl
96 SGI/Irix Argonne ° Flocking

1024 SGI/Irix NCSA ° Glide-in

16 Intel/Linux NCSA

45 SG1/1rix NCSA > 2510 CPUs totadl
246 Intel/Linux Wisconsin

146 Intel/Solaris Wisconsin

133 Sun/Solaris Wisconsin

190 Intel/Linux Georgia Tech

94 Intel/Solaris Georgia Tech

54 Intel/Linux Italy (INFN)

25 Intel/Linux New Mexico

12 Sun/Solaris Northwestern

5 Intel/Linux Columbia U.

10 Sun/Solaris Columbia U.

http://www.cs.wisc.edu/condor

d@r

100

Workers Over Time

Nug30 solved

Wall Clock Time |6 days
22:04:31 hours
Avg # Machines |653

CPU Time 11 years
Parallel 93%
Efficiency

|
m@ﬂd@lﬁz

S

More on MW

> http://www.cs.wisc.edu/condor/mw

> Version 0.3 is the latest

°* Tt's more stable than the version number
suggests!

> Mailing list available for discussion
> Active development by the Condor team

|
m@ﬂd@lﬁ

S

| could also tell you about...

> Running parallel jobs
> Condor-G: Condor's ability to talk o other Grid
systems
°*Globus 2, 3, 4
* NorduGrid
° Oracle
* Condor...

> Stork: Treating data placement like
computational jobs

> Nest: File server with space allocations
> GCB: Living with firewalls & private networks

.

S

But | won't

> After break: Practical exercises
> Please ask me questions, now or later

http://www.cs.wisc.edu/condor ﬂd’lr
o ' \/ 105

Extra Slides

.

~/

Remote I/O Socket

> Job can request that the condor_starter
process on the execute machine create a
Remote I/O Socket

> Used for online access of file on submit
machine, without Standard Universe.

* Use in Vanilla, Java, ...
> Libraries provided for Java and for C, eg.:
Java: FileInputStream -> ChirpInputStream
C : open() -> chirp_open()

|
m@nﬂ@lﬁ

S

Local I/0O
(Chirp)

Secure Remote |/
|
| Local System Calls Fork !
- l I

iSS| EX ion H
Submission Host ecution Host

