
Ischia, Italy - 9-21 July 2006 1

Refresher
Richard Hopkins

rph@nesc.ac.uk

Ischia, Italy - 9-21 July 2006 2

Context

Aim is to give/re-new

– enough understanding of Java to get through the school

• To write bits of Java yourself

• Understand bits of Java written by us / you colleagues

– a wider appreciation of the capabilities of Java

• Assume you have some experience of programming in some object-
oriented language – Can’t teach you the O-O paradigm

What you get is

• This Lecture + supporting material

Ischia, Italy - 9-21 July 2006 3

Supporting Material

• From us

http://www.gs.unina.it/~refreshers/java
– Presentation.ppt This presentation

– Tutorial.html A tutorial for you to work through

Includes a complete example

Illustrating most of what is covered

with some exercise for you to do on it

• From elsewhere

– “Thinking in Java”, Bruce Eckel - http://www.mindview.net/Books/TIJ/

– Java Tutorials - http://www.cas.mcmaster.ca/~lis3/javatutorial/

http://java.sun.com/docs/books/tutorial/

– Java APIs reference documentation –

http://java.sun.com/j2se/1.5.0/docs/api/index.html

Ischia, Italy - 9-21 July 2006 4

Outline

General

• Introduction to Java

• Classes and Objects

• Inheritance and Interfaces

Detail

• Expressions and Control Structures

• Exception Handling

• Re-usable Components

Practical

Reference Material

Ischia, Italy - 9-21 July 2006 5

Welcome to the Java World (1)

Goal - Interoperability – the same code runs on any machine/O-S

• The Java compiler produces “bytecode” binary –

– “Machine code” for the Java Virtual Machine (JVM)

– Executed by an interpreter on a physical machine

• The same compiled code can be executed on any hardware and software
architecture for which there is a JVM interpreter (run-time environment)

• Java is freely downloadable from Sun website

– Java Development Kit (JDK)

– Java Runtime Environment (JRE)

• JDK & JRE are not Open Source, but an Open Source implementation is
avalaiable (Kaffe)

Ischia, Italy - 9-21 July 2006 6

Java Pluses

• Object-Oriented
– Everything is an object

– Multiple inheritance in a restricted form

• Architecture independent
– The language itself

– The library (platform) of 1,000+ APIs

• Secure – JVM provides a layer between program and machine – safely
execute un-trusted code

• Robust
– No pointers, only references

– Dynamic array bound checking

– Strongly typed

– Built-in exception-handling mechanism

– Built-in garbage collection

• Power …

…and Simplicity
– Easy to learn (for someone who understands O-O paradigm)

Ischia, Italy - 9-21 July 2006 7

Java Minuses

Those who don’t like Java, don’t like it because of

• Execution Inefficiency
• Interpreted (but Just in time compilation helps)

• Garbage collection

• Dynamic array-bound checking

• Dynamic binding

– Don’t use it when timing/performance is critical

• Error diagnostics
– Full stack trace

• The dreaded CLASSPath

Ischia, Italy - 9-21 July 2006 8

Java@work

• What you need:

– Java Development Kit

– A text editor

• vi or notepad are enough

• jEdit is a dedicated editor (developed in Java)

• Netbeans and Eclipse are powerful, free IDE (Integrated
Development Environment)

• Commercial tools: JBuilder, IBM Visual Age for Java

Ischia, Italy - 9-21 July 2006 9

Basic Syntax – Structure, comments

• Identifiers, examples –

i engine3 the_Current_Time_1 MyClass myString

Rules and conventions at end

• Java is not positional:
carrige return and space sequences are ignored

(except in quoted strings and single line comments)

so lay-out for ease of reading

// A very simple HelloWorld Java code

public class HelloWorld {

/* a simple application

* to display

* “hello world” */

public static void main(String[] args) {

System.out.println("Hello World!") ;

} // end of main

}

• Each non-{ } statement ends with

a semicolon (as in C/C++)

• Code is structured using

curly brackets { ...}

• Single line comment,

from // to end of line

• Multi line comment,

from /* to */

Ischia, Italy - 9-21 July 2006 10

Basic Syntax – Primitive Types

• Default values – 0 (= false)

boolean

Type

char

byte

int

short

long

float

double

1

Size
(bits)

16

8

32

16

64

32

65

Example literals

true false

'A' '\'‘’ '\r''\\‘’ '\n' '\t''\u05F0'

\n - newline

\t - tab

\u -Unicode – 4 hex digits

-64 123integer

floating
point

-1.45E+13

073

initial 0 - octal

0x4A2F

9223372036854775808L

initial 0x or 0X - hexadecimal

Final L – long

73.4511.3E-4

\r - return

Ischia, Italy - 9-21 July 2006 11

Basic Bureaucracy

A java “program” consists of

• A public class (HelloWorld)

– with a “main” method

– with an array of strings

as parameter

• For the command line arguments

• Other classes

The program is in one or more files

Each file has at most one public class –
same name – HelloWorld.java

// A complex HelloWorld Java code

public class HelloWorld {

public static void main(String[] args)

{
<code for printing out a greeting>

}
class greeting { <method defintions> }

<other class defintions>

}

HelloWorld.java

Steps

• Create/edit the program text file, e.g.

$ vi HelloWorld.java

• Compile using the command

$ javac HelloWorld.java 2>HW.err

• Run using the command

$ java HelloWorld

(this runs the java virtual machine)

For now

• public = externally accessible

• Otherwise only accessible from
within same class definition

Ischia, Italy - 9-21 July 2006 12

CLASSES and OBJECTS

General

• Introduction to Java

• Classes and Objects

• Inheritance and Interfaces

Detail

• Expressions and Control Structures

• Exception Handling

• Re-usable Components

• Practical

• Reference Material

Ischia, Italy - 9-21 July 2006 13

Classes and Objects

• A class represents an abstract data type

• An object is an instance of a class

• A class has constructor methods whereby an instance of the
class can be created

• A class has attributes – instance variables

• Each instance of a class has its own value for each attribute

• A class has methods

• Every instance of a class can have each method applied to it

Ischia, Italy - 9-21 July 2006 14

Accumulator Example - Definition

• Accumulator
– Keeps a running total

• Which can be incremented

– Tracks how many times it has been used

public class Accumulator {

//attributes

double total = 0.0;

int uses = 0;

// methods

public double incr (double i) {

// doing it

uses = uses+1;

total = total + i;

return total; }

}

Method –
[Visibility]
type
name
Parameter * (repeated)

type
name

Body – statement *

Attributes –
[Visibility] (optional)
type
name
[Initial value]

Assignment

Exit with result

Ischia, Italy - 9-21 July 2006 15

Accumulator myAcc =

new Accumulator();

...

myAcc.incr(10);

...

Accumulator otherAcc =

myAcc;

...

....

....

myAcc =

new Accumulator();

....

....

....

otherAcc.incr(myAcc.incr(20))

Assign value –
Result of
constructor call

Declare variable
Value is another
Ref to same object

Accumulator Example - Usage

myAcc Acc1: total=0

myAcc

myAcc

otherAcc

Acc1: total=10

Acc1: total=10

myAcc

otherAcc Acc1: total=10

Acc2: total=0

myAcc

otherAcc Acc1: total=30

Acc2: total=20

Invoke method
On referenced object

Declare variable
Value is
Ref to object

Initial value –
Result of
constructor call

Invoke method -
Parameter =
Result of method

Ischia, Italy - 9-21 July 2006 16

Values and their Usage

• For – A variable

A parameter

• Its type is either

– Primitive – holds a primitive value.

• Can be used in expressions

• Can be produced by expressions

– Reference - holds a reference to an object

• Can be copied to a variable / parameter

• Can be produced by constructor call

• Assignment To = From

– To gets a copy of value of From

for objects - another reference to same object

– Same for parameter passing

All simple and intuitive

Unless you are used to a language

with more sophisticated pointers/references !

Ischia, Italy - 9-21 July 2006 17

Special Cases

• null – a reference value that doesn’t reference anything

– Default for references

• this – references the object itself – an implicit parameter to
every method, referencing the object on which the method
was called

• void – The “nothing” type

Ischia, Italy - 9-21 July 2006 18

Constructors

• The new <class-name> is a method call on a class constructor method

• We can define constructors for doing object initialisation – constructor is a
method whose name is the class name

Constructor -
gives
Initialisation value
Implicitly returns
object reference

public class Accumulator {

double total;

public Accumulator (double i) {

total = i;}

}

myAcc =

new Accumulator(10);

• If no constructor declared – get a default one with no parameters which does
nothing (except initialise values of class variables)

usage

Ischia, Italy - 9-21 July 2006 19

Constructors (2) & Method Overloading

Constructor -
gives
Initialisation value

Constructor -
Omits
Initialisation value
Uses default

public class Accumulator {

double total;

public Accumulator (double i) {

total = i;}

public Accumulator () {

total = 0.0;}

}

Accumulator myAcc;

myAcc.incr(10);

myAcc =

new Accumulator(10);

....

myAcc =

new Accumulator();

• Two methods with same name – Method Overloading
• Must have different “signature” – number and types of parameters

• So which one to use is determined by what parameters are supplied

• General feature, not just constructors

• Two constructors – one with specified initial value; other with default

usage

Ischia, Italy - 9-21 July 2006 20

External attribute access

• As a general rule the state of an object should be accessed and modified using
methods provided by the class - Encapsulation

– You can then change the state representation without breaking the user code

– User thinks in terms of your object’s functionality, not in terms of its
implementation

• However, if you insist, you can make attributes more accessible – e.g. public

public class Accumulator {

public double total = 0.0;

int uses = 0;

// methods

public double incr (double i) {

// increment the total

uses = uses+1;

total = total + i;

return total ;}

}

Accumulator myAcc =

new Accumulator();

...

myAcc.total = 10;

....

myAcc.total =

myAcc.total + 6;

Better to use
myAcc.incr(6)

(Accidentally) by-passes
uses update

Better to have new
method –
myAcc.reset(10)

usage

Ischia, Italy - 9-21 July 2006 21

Static Variables and Methods

• Normally, have to have an instance

– An attribute declared for a class belongs to an instance of that class

• An instance variable

– A class method can only be invoked on an instance of that class

• Can declare an attribute / method as static

– Something that relates to the class as a whole, not any particular instance

– Static variable

• Shared between all class instances

• Accessible via any instance

• Accessible via the class

– Static method

• Can be invoked independent of any instance – using class name

• Cannot use instance variables

• “main” method must be static

• Think of there being one special class instance holding the static variables and
referenced by the class name

Ischia, Italy - 9-21 July 2006 22

Statics – Examples (1)

public class Accumulator {

public static double defaultInit;

// default intial value for total

static int count = 0;

// number of instances

double total = defaultInit;

public double incr (double i) {

...}

public Accumulator () {

count = count + 1; }

public static int howMany() {

return count; }

}

defaultInit – static variable, to configure
accumulator with the default initial value
for new ones

count – static variable -to Track number of
accumulators that exist

Constructor – static method, updating
static variable

howMany – static method – accessing
static variable

Ischia, Italy - 9-21 July 2006 23

Statics – Examples (2)

Accumulator.defaultInit = 100;

...

Accumulator myAcc =

new Accumulator();

...

int i = Accumulator.howmany();

...

int j = myAcc.howmany();

....

myAcc.defaultInit=30;

Using
class
name

Using
class
name

Using
instance

Using
instance

usage

public class Accumulator {

public static double defaultInit;

// default intial value for total

static int count = 0;

// number of instances

double total = defaultInit;

public double incr (double i) {

...}

public Accumulator () {

count = count + 1; }

public static int howMany() {

return count; }

}

Ischia, Italy - 9-21 July 2006 24

Constants (Static)

• Can define a constant using final – can’t do anything more with it

public class Accumulator {

public static final double root2 = 1.414;

static int count = 0;

public double incr (double i) {

total = total + i;

return total;}

}

...

myAcc.incr(Accumulator.root2);

• A generally useful constant provided by this class – can use anywhere

– Public – part of the external functionality

– Static – not instance-specific

• Whenever particular values are used in a class interface they should be provided
as constants – coded values, e.g “/” as separator in file name paths

• As a substitute for enumerated types

http://www.javaworld.com/javaworld/jw-07-1997/jw-07-enumerated.html

usage

Ischia, Italy - 9-21 July 2006 25

Constants (Non-static)

public class Accumulator {

public static final double root2 = 1.414;

static int count = 0;

final double defaultIncrement = count;

public double incr (double i) {

total = total + i;

return total;}

public double incr () {

total = total + defaultIncrement;

return total;}

• Method

Overloading

again

Accumulator myAcc =

new Accumulator();

myAcc.incr(10);

...

....

myAcc.incr();

Instance constant
– each object has
its own value,
evaluated at
object creation

Ischia, Italy - 9-21 July 2006 26

Kinds of variable

• Attributes (“fields”)
– Class variables– one for the class, shared between instance

• Static or non-static (i.e, constant or variable)

• Created and intialised when class loaded
– Instance – separate one for each object

• Static or non-static (i.e, constant or variable)

• Created and intialised when class loaded

– Has default initial value of 0 or null

• Local Variables
– At any point can define a new variable

• int temp = 0;

• Does not have default initial value – un-initialised error

• Parameters
– acts like a local variable, initialised by the actual parameter

Ischia, Italy - 9-21 July 2006 27

Life and Death - creation

• An instance object is created by invocation of a constructor –

new Class(…)

This creates and initialises all the instance (non-static) variables and constants

If not explicitly initialized, instance variable have default initial value 0 or null

• What about the Class object

• The home for class (static) variables and constants

• The target for static methods

– This is created in the beginning

– Before any instances are created (except in strange circumstances)

– Typically when the class is loaded into the JVM

• That’s when class variables and constants are created and initialised

• Can put in explicit class initialisation code

Ischia, Italy - 9-21 July 2006 28

Life and Death - Destruction

• Java VM does garbage collection

• An object instance is destroyable when

• Nothing references it

• Therefore it cannot be accessed

– Once an object becomes destroyable, the garbage collector may eventually
destroy it

• That releases the memory resources used by the object

• To enable early release of resources,

destroy references

Accumulator myAcc =

new Accumulator();

...

myAcc.incr(10);

....

myAcc = null;

....

• Can put in additional finalisation code

Ischia, Italy - 9-21 July 2006 29

INHERITANCE and INTERFACES

General

• Introduction to Java

• Classes and Objects

• Inheritance and Interfaces

Detail

• Expressions and Control Structures

• Exception Handling

• Re-usable Components

• Practical

• Reference Material

Ischia, Italy - 9-21 July 2006 30

Class Inheritance – principles

• Extended versions of Accumulator

– AccSub : include method decr(s) – total = total – s

– AccTimes : include method timesIn(m) – total = total * m

Accumulator
total

incr(i)

AccTimes

total

incr(i)

timesIn(m)

AccSub

total

incr(i)

decr(m)

Accumulator
total

incr(i)

AccTimes

timesIn(s)
AccSub

decr(m)

Sub-class extends Super-class

• Sub-class Inherits variables, constants and methods of Super-class

• Sub-class instance can be used any where a super-class instance can

• So inputs to sub-class must include inputs to super-class

outputs from super-class must include outputs from sub-class

Ischia, Italy - 9-21 July 2006 31

Class Inheritance – Simple Extension

public class Accumulator {

double total = 0.0;

public double incr (double i) {

total = total + i;

return total; } }

public class AccSub extends Accumulator {

double total = 0.0;

public double incr (double i) { ... }

public double decr (double s) {

total = total - s;

return total;

}}

May be in a
different file.
Inherit from
library classes

Inherits

total – type and initialisation

incr – signature and implementation

Only need
what is new

Ischia, Italy - 9-21 July 2006 32

Class Inheritance – Method Overriding

• Inherit the signature, but override the implementation

public class Accumulator {

double total = 0.0;

public double incr (double i) {

total = total + i;

return total; } }

public class AccSub extends Accumulator {

public double decr (double s) {

total = total - s;

return total;}

public double incr (double i) {

return this.decr(-i); }}

Incr is re-implemented
using decr

Ischia, Italy - 9-21 July 2006 33

Multiple Inheritance

• SuperAcc inherits from both

AccSub and AccTimes

• Problem –

– inherits from Accumulator on two distinct paths

– what if AccSub and AccTimes both have implementation of incr()

– Which one does SuperAcc use?

Accumulator
total

incr(i)

AccTimes

total

incr(i)

timesIn(m)

AccSub

total

incr(i)

decr(m)

Accumulator
total

incr(i)

AccTimes

timesIn(m)
AccSub

decr(m)

SuperAcc

SuperAcc

total

incr(i)
timesIn(m)

decr(m)

Ischia, Italy - 9-21 July 2006 34

The Java Solution - Interfaces

• The Interface defines

– Zero or more method signatures

– Zero or more static constants

• A class can implement several interfaces

Accumulator
total

incr(i)

AccTimesIF timesIn(m)AccSub

decr(m)

SuperAcc

Extends –
Single Inheritance
Strict Tree
Inherit implementation

AccTimes

Interface

Implements –
Provides that interface

AccDivIFdivIn(d)

Ischia, Italy - 9-21 July 2006 35

The Object Class

• The root of the class hierarchy is “object” – every object is an Object

Accumulator
total

incr(i)

AccTimes

timesIn(m)
AccSub

decr(m)

Object

boolean equals(Object obj)
Object clone()
String toString()
. . . .

• equals – test two objects for

– Identicality – default implementation test for them being the same object

– Equivalence – maybe overwritten test for something more useful

• Two accumulators are equivalent if they have same total

• Clone – makes a copy of the object – default implementation gives shallow copy

• toString – to give a displayable representation

Ischia, Italy - 9-21 July 2006 36

Wrapper Classes

• To make a primitive data type into an object

Integer IntegerConst = new Integer(17)

boolean Boolean

char Character

byte Byte

int Integer

short Short

long Long

float Float

double Double

primitive wrapped

Provide useful methods, e.g.

Int input= Integer.parseInt(aString)

See class Integer etc. in Java APIs

Ischia, Italy - 9-21 July 2006 37

Reference Type Conversion

• Widening – can always treat an object as instance of a superclass

Object object;

Accumulator accumulator;

SuperAcc superAcc;

superAcc = new SuperAcc();

object = superacc;

accumulator = superacc;

superAcc = object;

object.incr(1);

superAcc= (SuperAcc) object;

((SuperAcc) object).incr(1);

Is a (instance of)

Widening – moving it up the class hierarchy

Narrowing – moving it down the class hierarchy
Compiler can’t know object
references an object of class superAcc

A cast for narrowing –Tells the compiler that
the thing referenced by object is an instance
of SuperAcc
Compiler believes me
If wrong – run-time exception

Ischia, Italy - 9-21 July 2006 38

Primitive type Conversion

• Can automatically widen

a smaller type

to a bigger one

aFloat = aByte

boolean1

char16

byte 8

int 32

short 16

long 64

float 32

double 65

Crossing from
Integer to real -
Possible loss of
least significant
digits

Crossing between signed and un-signed
Re-interpretation of bits

Crossing from
real to integer -
truncation• Cast

a bigger type

to a smaller one

aByte = (byte) aFloat

Ischia, Italy - 9-21 July 2006 39

EXPRESSIONS AND CONTROL STRUCTURES

General

• Introduction to Java

• Classes and Objects

• Inheritance and Interfaces

Detail

• Expressions and Control Structures

• Exception Handling

• Re-usable Components

• Practical

• Reference Material

Ischia, Italy - 9-21 July 2006 40

Basic Operators

• * / % multiply, divide, remainder

• + – plus, minus

• + – unary plus, unary minus

• + string concatenation

• > >= < <= comparison

== !=

• ! || && ^ boolean – not, or, and, exclusive or

(for || and && - conditional evaluation of 2nd argument)

• ++ – – post increment/decrement n++

• ++ – – pre increment/decrement ++n

• + = – = assignment with operation n += 10 (n=n+10)

Ischia, Italy - 9-21 July 2006 41

Expressions

• Precedence and associativity – as expectable

– When you (or your reader) could be in doubt – use brackets

• Return results

Every expression returns a value – including an assignment expression

a = b+= c=20

right to left associativity – a = (b+= (c = 20))

assign 20 to c; add the result into b; and assign that result to a.

Ischia, Italy - 9-21 July 2006 42

Conditions

• Conditional expressions

(x>y ? x : y) = 4 + (j > 0 ? k+n : m+o) * 2

If J>0 use k+n, else use m+oIf x > y assign to x, otherwise assign to y

• Conditional statements if (x>y && j >0)

{ x = 4 + (k+n)*2; }

else if (x>y)

{ x = 4 + (m+o)*2; }

else if (j>0)

{ y = 4 + (k+n)*2; }

else

{ y = 4 + (m+o)*2; }

If condition gives trueThen do this

Can omit else

• Conditional expressions can
reduce repetition

• Reducing repetition usually
makes things

– Clearer

– More robust

Ischia, Italy - 9-21 July 2006 43

Switch statements

• Expression based choice over alternatives

Evaluate switch expression
= ‘S’

Choose case where constant
Matches switch value

Fall through

public class Accumulator {

double total = 0.0;

static char doAdd = `a`;

static char doSub = `s`;

static char doMult = `m`;

public double doAction (byte action, double value) {

switch (action) {

case `A` :

case `a` : total = total + value; break;

case `S` :

case `s` : total = total – value; break;

case `M` :

case `m` : total = total * value; break;

default : ... }

return total ; }

So, “break” to exit whole switch

If no match

myAcc.doAction(`S`, 20)

Ischia, Italy - 9-21 July 2006 44

While and Do Statements

while

<condition>

<statement>

May do it zero times

public double powerIn(int p) {

// if p<2, do nothing

double base=total;

while (p>1)
{ total = total * base;

p=p-1; }

return total ; }

public double powerIn(int p) {

// assumes p>=2

double base=total;

do
{ total=total * base;

p= p-1; }

while (p>1);

return total ; }

do

<statement>

while

<condition>

Does it at least once

Ischia, Italy - 9-21 July 2006 45

For Statements, break and continue

public double powerIn(int p) {

// if p<2, do nothing

double base=total;

for (int i =2; i <= p; i++)
total = total * base;

return total ; }

for

(<intialise> // assignment

<test> ; // boolean

<update>) // assignment

<statement>

May do it zero times

while (true)

{

if (...) { ;

break;}

if (...) { ;

continue;}

.....

}

break – jumps to just after the whole
thing – terminate it

continue – jumps to just after the
current iteration –

start next iteration if test succeeds

do <update> in for loop

Ischia, Italy - 9-21 July 2006 46

Arrays – declaring and creating

• An array is an object with specialised syntax

Accumulator [] myArrayOfAcc;

Accumulator [] [] my2DArrayOfAcc;

myArrayOfAcc = new Accumulator [4] ;

my2DArrayofAcc = new Accumulator [3] [2] ;

Gives a variable for
a reference to
an array of
accumulators –
No value yet

Gives a variable for
a reference to
an array of
references to
arrays of
accumulators

Gives 4-element Array of
Appropriate default values –
Null or 0
Indexed: 0 – 3

Gives 3-element Array of
references to new 2-element arrays

null

null

null

null

0:

1:

2:

3:

nullnull

nullnull

nullnull

0:

2:

1:

Ischia, Italy - 9-21 July 2006 47

Arrays - Initialising

Accumulator [] myArrayOfAcc =

{ new Accumulator(1),

new Accumulator(4) };

Accumulator [] [] my2DArrayOfAcc =

{
{ new Accumulator(3),

new Accumulator(4) } ,
{ new Accumulator(5),

new Accumulator(6) }

} ;

Acc0; total=1

Acc1; total=4

Acc00; total=3

Acc01; total=4

Acc10; total=5

Acc11; total=6

0:

1:

0:

1:

0:

1: 0:

1:

Ischia, Italy - 9-21 July 2006 48

Arrays - accessing

• someArray [i] gives the i-th element

• someArrayOfArray [i] [j] means

(someArrayOfArray [i]) [j] gives the j-th element of the i-th element

• someArray.length the array length

• someArray[i].length the length of the i-th componenet array

Accumulator [] [] my2DArrayOfAcc =

{

{ new Accumulator(3),

new Accumulator(4) } ,

{ new Accumulator(5),

new Accumulator(6) }

} ;

…

(my2DArrayOfAcc [0] [1]) . incr(2)

Acc00; total=3

Acc01; total=4

Acc10; total=5

Acc11; total=6

0:

1:

0:

1: 0:

1:

Ischia, Italy - 9-21 July 2006 49

EXCEPTION HANDLING

General

• Introduction to Java

• Classes and Objects

• Inheritance and Interfaces

Detail

• Expressions and Control Structures

• Exception Handling

• Re-usable Components

• Practical

• Reference Material

Ischia, Italy - 9-21 July 2006 50

Important exception handling concepts (1)

• “exception” means exceptional event – something that disrupts the
normal instruction flow

• Use try-catch construct

• Cause the event by throw ing an exception, inside a “try” block

• Detect the event by catch ing the exception, inside a “catch” block

• What is thrown and caught is an exception object

– Represents the causing event

– Has a type – the kind of event that happened

– Has fields – further information about what happened

• There is a class hierarchy of more specialised exception types

– The top (least specialised) is type Throwable

– You can declare your own exception type –

• must extend from (a sub-class of)Throwable

Ischia, Italy - 9-21 July 2006 51

Important exception handling concepts (2)

For some types of exceptions

• The exceptions that can be caused within a method,

and are not caught by the method itself,

must be declared as part of the method signature

• An exception is a possible output – inheritance rules apply

– A sub-class must not introduce more exceptions than its super-class

– I should be able to safely use the sub-class anywhere I can use the
super-class

Ischia, Italy - 9-21 July 2006 52

Exception-throwing example

public class AccBadParam

extends Throwable {...};
public class Accumulator {

...

public double powerIn(int p)

throws AccBadParam
{

//previously - if p<2, do nothing – now exception

if (p<2)

throw new AccBadparam

(“powerIn(p) requires p>=2”);
double base=total;

while (p>1)
{ total = total * base;

p=p-1; }

return total ; }

}

Constructs and throws
an exception object
Inherits constructor
with message parameter (string)

Declares a new kind
Of exception

Control jumps out to
the innermost active try block
which catches

AccBadParam
or a super-class of it

Declares that this method
throws that exception

Ischia, Italy - 9-21 July 2006 53

Exception-catching example

…

Try {

….

myAcc1.powerIn(n);

….}

catch (AccBadParam e1)

throw new

otherExceptionType(“...”+e1.getMessage());

catch (Xexception e1)

{ // exception recovery

}

Convert exception
To something
understandable

At outer level

Catch it, declares a variable
to hold the exception object

Catch clauses
Are checked
In this order

If none match
then check
containing
try/catch
constructs
In this method
or in
calling method
Etc

Something
In here
(or called in here)
throws
exception

Catch some other possible exception

Ischia, Italy - 9-21 July 2006 54

Re-usable Components

General

• Introduction to Java

• Classes and Objects

• Inheritance and Interfaces

Detail

• Expressions and Control Structures

• Exception Handling

• Re-usable Components

• Practical

• Reference Material

Ischia, Italy - 9-21 July 2006 55

Packages and Naming (1)

• A major point of OO is to have lots of classes that can be re-used

• Just the Java Platform has over 1,000 classes

• Each class can have many associated named entities

– Methods

– Class/Instance Variables

– Constants

• This leads to a naming problem

– How to ensure that names are unambiguous

• Solved by having a hierarchy of named packages

– Each package has a number of classes in it

– Provides a local namespace for those classes

– Can have sub-packages

– Use your domain name (reversed) to prefix your package names

Ischia, Italy - 9-21 July 2006 56

Packages and Naming (2)

Java.X

AClass

Java.X.Y.Z

BClass

CClass

Java.X.U.V

BClass

DClass

uk.ac.nesc.rph.mypackages

uk.ac.nesc.rph.mypackages.acc

Accumulator

AccBadParam

uk.ac.nesc.robert.mypackages

uk.ac.nesc.robert.mypackages.acc

Accumulator

AccBadParam

Fully qualified class name
uk.ac.nesc.rph.mypackages.acc.Accumulator

Fully qualified class name
uk.ac.nesc.robert.mypackages.acc.Accumulator

Simple
Class
name
Accumulator

package

Ischia, Italy - 9-21 July 2006 57

Naming Rules

uk.ac.nesc.robert.mypackages

… .acc

Accumulator

uk.ac.nesc.rph.mypackages

… .acc

Accumulator

XClass

new Accumulator
new uk…robert…Accumulator
new uk…robert…YClass
new uk… rph … ZClass

YClass

ZClass

Can use simple name for class in same package

Otherwise must use fullly qualified nameOtherwise must use fullly qualified nameOtherwise must use fullly qualified name

Except that classes in the java.lang package can always be referred to by simple name
e.g. String vs java.lang.String

… .anotherpackage

Ischia, Italy - 9-21 July 2006 58

Imports (1)

• Using fully qualified names for classes from external packages could get
to be inconvenient

• Can import a class form a package once

– Then can refer to it by simple name,

• Provided there is not another imported class with the same simple
name

new Accumulator

new uk.ac.robert.mypackages.acc.Accumulator

new uk.ac.robert.mypackages.acc.YClass

new uk.ac.rph.mypackages.anotherpackage.ZClass

Ischia, Italy - 9-21 July 2006 59

Imports (2)

• In a file
– First is package name (if any)

– Next are imports

– Then one or more classes

– There may be one public class X for file X.java

Declare what package
the class(es)
in this file
belong to

Import specific class
from that package

Import all classes
from that package

package uk.ac.nesc.rph.mypackages.acc;

import uk.ac.nesc.robert.mypackages.acc.YClass;

import uk.ac.nesc.rph.mypackages.anotherpackage.*;

………….

Class …

Class …

Ischia, Italy - 9-21 July 2006 60

Visibility

ClassA

InstanceVariable
ClassVariable

Method1
Method2

ClassBClassSubA1

ClassSubA2

ClassC

private

package

protected

public
package –

default
only

Ischia, Italy - 9-21 July 2006 61

Documentation

• If the components in a package are to be re-used they need

documentation – information provided to the programmers who are going
to re-use them

information about the methods etc which are externally accessible.

• Documentation – about what they do and how to use them

Different from

• Commentary - about how they work – for maintenance

• There is a javadoc tool which automatically generates HTML pages of
documentation using special comments in the program

• Embedding the documentation in the code means it is more likely to be
updated when the code changes

Ischia, Italy - 9-21 July 2006 62

Javadoc comments

• Documentation comments have the form /** <comment> */

• The comment can include @ tags, e.g. @author Richard Hopkins

• These are treated specially in the generated documentation

• The comment immediately precedes the thing it is describing –

/** Maintains a value of type double which

* can be manipulated by the user

* @author R. Hopkins

*/

public class Accumulator {

double total = 0.0;

/** To increment the accumulator’s value

* @param i the increment

*/

public double incr (double i) {

total = total + i;

return total; } }

– Class

– Attribute

– Constructor

– Method

Ischia, Italy - 9-21 July 2006 63

Java API s

• Java API – Packages which are part of the Java platform

http://java.sun.com/j2se/1.4.2/docs/api/

• Most useful

– java.lang

– java.io

– java.util.*

Ischia, Italy - 9-21 July 2006 64

Java.lang

• Java.lang
– Object – clone() , equals() , toString() , hashCode() , …

– Integer – MAX_VALUE , compareTo() , parseInt() , valueOf() ….

– Double , Byte , Short , Long , Float – similar

– Number

– Boolean – valueOf(), …

– Character – valueOf(), ….

– Enum

– Math – E, PI, abs(), sin(), sqrt(), cbrt(), tan(), log(), max(), pow(), random() …

– Process, ProcessBuilder

– String – string , getChars , compareToIgnoreCase, …

– System – err, in, out, arrayCopy(), currentTimeMillis(), getProperty() , …

• getProperties() documents what they are

– Thread – sleep(), …

– Throwable, Exception, Error

Ischia, Italy - 9-21 July 2006 65

Project Tools

Java Archives - JAR Files

• Bundle mutiple files into a single (compressed) archive file

• As ZIP files – uses same format

• Can have an executable JAR file

Another Neat Tool - Ant …

• is a tool for building projects

– performs similar functions to make as a software project build

tool.

• uses a file of instructions, called build.xml, to determine how to
build a particular project

– Structurally similar to a Makefile

– Uses XML representation

• is written in Java and is therefore entirely platform independent

– Can be extended using Java classes

Ischia, Italy - 9-21 July 2006 66

Build File (1)

A Build file defines one (or more) projects

• Each project defines

– a number of targets

• Each target is an action which achieves the building of
something

– Comprises one or more tasks

– Dependencies between targets

to achieve target X we must first achieve targets Y, Z, …

– Properties – name value pairs,

<property name="src" location=“MyCalc"/>

• so tasks can be parameterised - refer to property name

• property value can be set from within the build fle,

or externally as a build parameter

Ischia, Italy - 9-21 July 2006 67

Project Structure

• Build files gives a DAG (Directed Acyclic Graph) of target dependencies

• E.g PreN – preparation – e.g copy in some files

CompN – compile some program

TestN – runs some standard test

DistN – prepare an archive file for distribution (JAR for Java Archive)

Pre1 Pre2 Pre3

Comp4 Comp5

Dist0

Test6 Test7 Test8

• Everything defined just once

• Do minimum necessary work

e.g. for target test8

ant test8

does Pre2 and Pre3

but not Pre1

won’t do Pre2 if its output files
are more recent than its input
files

e.g. ant Dist0

Pre2 is only run once

Ischia, Italy - 9-21 July 2006 68

Task Definition

• A task is a piece of code that can be executed.
– A task can have multiple arguments.

The value of an attribute might contain references to a property.

These references will be resolved before the task is executed.

– Tasks have a common structure:

<name attribute1="value1" attribute2="value2" ... />

name is the name of the task,

attributeN is the attribute name

valueN is the value for this attribute.

– There is a set of built-in tasks, along with a number of “optional” tasks

– it is also very easy to define your own.

Ischia, Italy - 9-21 July 2006 69

Example Build File

<project name=“Assignment" basedir=".">
<property name="src" location=“Assignment/src"/>
<property name="build" location=“Assignment/build"/>

<target name="init">

<mkdir dir="${build}"/>
</target>

<target name="compile" depends="init" >

<javac srcdir="${src}" destdir="${build}“ />
</target>

<target name="dist" depends="compile" >

<jar jarfile="lib/Assignment.jar" basedir="${build}"/>
</target>

<target name="clean" description="clean up">

<delete dir="${build}"/>
</target>

</project>

Documentation - http://ant.apache.org/manual/index.html

Ischia, Italy - 9-21 July 2006 70

ClassPath (The dreaded)

• The Java compiler and JVM loader need to know what directories to search
for the .jav or .class files that it needs

• This is provided by a class path -

a : separated list of directory names, e.g

~/MyProj/MyCalc:/GT4/SRB/src: …..

This is dreaded because

• In a complex system the class path can be very long

– Both in number of entries

– And name for each entry, e.g. /uk/ac/nesc/rph/myProject

• Any jar files used must be explicitly included (you cannot just include a
directory containing all relevant jar files)

• If it is wrong – a required file cannot be found – it is very hard to track down
the problem

and Grid middleware is comlex

And Grid Middleware
Is complex

Ischia, Italy - 9-21 July 2006 71

Setting the Class Path

• Directly on the java / javac command line
java –classpath ~/myJava/utilities:~hisJava/oddsAndEnds MyClass 22

Class path To run Arg[0]

• By (re-) setting the $CLASSPATH environment variable

$export CLASSPATH=$CLASSPATH:~/me/extraClasses

• As part of the build file

<javac srcdir="${src}" destdir="${build}">

<classpath>

<pathelement path="${basedir}/lib/Jar1.jar"/>

<pathelement path="${basedir}/lib/Jar2.jar"/>

<pathelement path="${basedir}/lib/Jar2.jar"/>

</classpath>

</javac>

• If none is specified a default class path is used that includes the current working
directory.

Ischia, Italy - 9-21 July 2006 72

The practical

General

• Introduction to Java

• Classes and Objects

• Inheritance and Interfaces

Detail

• Expressions and Control Structures

• Exception Handling

• Re-usable Components

• Practical

• Reference Material

Ischia, Italy - 9-21 July 2006 73

Practical - Directory Structure and commands

• Package name uk.ac.nesc.rph.myCalcN

• Matches directory structure - /uk/ac/nesc/rph/calc

rph //home – that’s me – rph@nesc.ac.uk

JavaTutorial // run everything here

JavaDoc // .html files

Data // input and output files

uk

ac

nesc

rph

myCalcN //package name

MyCalculatorN.java // Step N - source

MyCalculatorN.class // Step N - compiled

$mkdirhier uk/ac/nesc/rph/myCalc

$javac uk/ac/nesc/rph/myCalc/MyCalclulatorN.java 2>MC.err

$javadoc –d JavaDoc uk/ac/nesc/rph/myCalc/MyCalculator*.java

$java uk/ac/nesc/rph/myCalc/MyCalculatorN arg0 arg1

Ischia, Italy - 9-21 July 2006 74

Practical

• Material is here

http://www.gs.unina.it/~refreshers/java

• Help session – here Monday 12.30 -14.30

Ischia, Italy - 9-21 July 2006 75

Reference

• General

• Introduction to Java

• Classes and Objects

• Inheritance and Interfaces

• Detail

• Expressions and Control Structures

• Exception Handling

• Re-usable Components

• Practical

• Reference Material

Ischia, Italy - 9-21 July 2006 76

Basic Syntax - Identifiers

• Identifiers, examples –

i

engine3

the_Current_Time_1

• Identifiers, rules

– Start with <letter> _ $ £ <.. A currency symbol >

– Continue with those + <digit>

– Excluding reserved words

– No length limitation

• Identifiers, conventions

– $ etc – for special purposes – do not use

– HelloWorld – class name,

• start with u/c, capitalise start of words

– mainMethod – everything else

• Start with lower case, capitalise start of words

Ischia, Italy - 9-21 July 2006 77

Basic Syntax – Primitive Types

• Default values – 0 (= false)

boolean

Type

char

byte

int

short

long

float

double

1

Size
(bits)

16

8

32

16

64

32

65

Example literals

true false

'A' '\'‘’ '\r''\\‘’ '\n' '\t''\u05F0'

\n - newline

\t - tab

\u -Unicode – 4 hex digits

-64 123integer

floating
point

-1.45E+13

073

initial 0 - octal

0x4A2F

9223372036854775808L

initial 0x or 0X - hexadecimal

Final L – long

73.4511.3E-4

\r - return

Ischia, Italy - 9-21 July 2006 78

Basic Operators

• * / % multiply, divide, remainder

• + – plus, minus

• + – unary plus, unary minus

• + string concatenation

• > >= < <= comparison

== !=

• ! || && ^ boolean – not, or, and, exclusive or

(for || and && - conditional evaluation of 2nd argument)

• ++ – – post increment/decrement n++

• ++ – – pre increment/decrement ++n

• + = – = assignment with operation n += 10 (n=n+10)

• ^= b ^= true (b=!b)????

Ischia, Italy - 9-21 July 2006 79

Additional Operators

• ~ integer – bitwise complement

• << integer – left shift

• >> integer – right shift with zero extension

• >>> integer – right shift with sign extension

• & integer – bitwise and

• | integer – bitwise or

• | boolean – unconditionally evaluated Or

• ^ integer – bitwise exclusive or

• *= /= %= <<= >>= >>>= &= ^= |=

assignment with operation

Ischia, Italy - 9-21 July 2006 80

Visibility – Access Specifiers

• Public – Accessible wherever its containing class is
– least restrictive.

• Protected ---Only accessible to sub-classes and the
other classes in the same package.

• Package access ---Members declared without using
any modifier have package access. Classes in the
same package can access each other's package-
access members.

• Private – only accessible from within the containing
class itself – most restrictive

M
o
re

 re
s
tric

tiv
e

Ischia, Italy - 9-21 July 2006 81

Thanking our sponsors…

Ischia, Italy - 9-21 July 2006 82

Thanking our sponsors…

The Grid World moves
Fast as magic

To Know what’s happening
STAY ALERT

Ischia, Italy - 9-21 July 2006 83

Thanking our sponsors…

Ischia, Italy - 9-21 July 2006 84

