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1. SCOPE OF THE ALGORITHM 

In [7] we have defined the specification of a set of Basic Linear Subprograms for 
selected matrix-vector operations usually referred to as “Level 2 BLAS” or 
“Extended BLAS.” They provide a standard framework to develop modular, 
portable, and efficient FORTRAN 77 code for many computational problems in 
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linear algebra. Our hope is that specialized implementations of Level 2 BLAS 
will be developed for many machines, especially for vector processors and other 
high-performance computers. Thus, programs that call Level 2 BLAS can be 
efficient across a wide range of machines. 

To support and encourage the use of Level 2 BLAS, this algorithm contains 
two components of software: 

(1) A model implementation of the subprograms in FORTRAN 77. This 
enables Level 2 BLAS to be used on any machine, regardless of whether a 
specialized implementation exists. It is described in Section 2. 

(2) Test programs, designed to ensure that implementations conform to the 
specification and have been correctly installed. The programs are described 
in Section 4. 

Section 3 contains some advice on developing specialized implementations of 
the subprograms. Installation notes for the software are given in the Appendix. 

2. THE MODEL IMPLEMENTATION 

2.1 Programming Considerations 

There are many mathematically equivalent ways to implement Level 2 BLAS, 
even in standard FORTRAN 77, as discussed in Section 3. The choice of method 
for the model implementation has been guided by the following considerations: 

(1) The elements of the array A are accessed sequentially, column by column. 
On vector-processing machines, this allows the columns of the array to be 
recognized as contiguous vectors (by the FORTRAN compiler). On virtual- 
memory machines, it keeps page swaps to a minimum. 

(2) Special code is included for the commonly occurring cases when the increment 
parameters (INCX or INCY or both), which are used in the inner loops, are 
equal to 1. This code can use a simpler, and hence more efficient, FORTRAN 
indexing scheme and also allows contiguous vectors to be recognized by the 
FORTRAN compiler; for example, 

DO 50, I = 1, M 
Y(I) = Y(I) + TEMP*A(I, J) 

50 CONTINUE 

instead of the following code: 

IY=KY 
DO 50, I = 1, M 

Y(IY) = Y(IY) + TEMP*A(I, J) 
IY = IY + INCY 

50 CONTINUE 

(3) Provision is made to skip the innermost loop if relevant elements of the 
vectors X or Y are zero. This can yield a considerable gain in efficiency if 
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the vectors are sparse: 

IF (X(JX).NE.ZERO) THEN 
TEMP = ALPHA*X(JX) 
DO50,1=1,M 

Y(I) = Y(I) + TEMP*A(I, J) 
50 CONTINUE 

END IF 

2.2 Efficiency 

The model implementation is likely to achieve considerable efficiency on scalar- 
processing machines with a good optimizing compiler, and even moderate effi- 
ciency on vector-processing machines with a good vectorizing compiler. 

For illustration, Table I gives speeds obtained for some representative opera- 
tions on a CRAY-lS, using automatic vectorization (no compiler directives to 
ignore data dependencies were needed). The speeds are given in megaflops and 
were measured with m = n = 256, INCX = INCY = 1, UPLO = ‘U’, DIAG = 
‘N’, and no zero elements in the data. Speeds with UPLO = ‘L’ were approxi- 
mately the same as those with UPLO = ‘U’, speeds of the SV routines were 
approximately the same as those of the corresponding MV routines, and speeds 
of the routines using packed storage were approximately the same as those of the 
corresponding routines using two-dimensional array storage. Without automatic 
vectorization (i.e., running in scalar mode), the speeds were between 5 and 
7 Mflops for REAL data, and between 10 and 14 Mflops for COMPLEX data. 

Table I does not include measurements on the routines for banded matrices. 
In the model implementation of these routines, the vector lengths are at most 
equal to the bandwidth, and hence, for narrow bandwidths the routines run at 
roughly scalar speeds. However, see Section 3.3 concerning an alternative imple- 
mentation of some of these routines. 

2.3 Language Standards 

The model implementation of Level 2 BLAS is written entirely in portable 
standard FORTRAN 77 with two exceptions: 

(1) For the routines that require a DOUBLE-PRECISION COMPLEX data 
type (names beginning with Z), we have used the following extensions to 
standard FORTRAN: 

-COMPLEX*16 type specification statements; 
-DCONJG and DCMPLX intrinsic functions whose argument and result 

are both of type COMPLEX*16; 
-a DBLE intrinsic function withy a COMPLEX*16 argument and DOUBLE 

PRECISION result, delivering the real part of the argument; and 
-COMPLEX*16 constants formed from a pair of double-precision constants 

in parentheses. 

(2) For the arguments of type CHARACTER that specify options, we wish to 
allow either upper- or lowercase characters to be supplied. Lowercase char- 
acters are not part of the standard FORTRAN character set, but their use is 
so widespread that it would be unfriendly not to allow them. This can be an 
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Table I. Speed of Level 2 BLAS on CRAY-1S in Mflops 

Routine 

SGEMV 

SSYMV 
STRMV 

SGER 
SSYR 
SSYRZ 

Real 

TRANS 

‘N 
‘T’ 

‘N 
‘T’ 

Speed 

39 
31 
31 
33 
20 
39 
36 
41 

Routine 

CGEMV 

CHEMV 
CTRMV 

CGERU 
CHER 
CHERS 

Complex 

TRANS 

‘N’ 
‘T’ 

‘N’ 
‘T’ 

Speed 

63 
11 
13 
56 
11 
63 
56 
46 

obstacle to portability on some systems (as discussed in Section 7 of [7]), 
but we have avoided most of the problems by use of the auxiliary LOGICAL 
function LSAME described below. 

2.4 Auxiliary Subprograms 

Two auxiliary subprograms are called by Level 2 BLAS: an error-handling routine 
XERBLA, called by all routines, and the character-comparison routine LSAME, 
called by all except the -GER- routines. Both these subprograms may be 
selectively modified by installers of the package as described in the Appendix. 
No changes need be made to the rest of the model code. 

3. NOTES ON IMPLEMENTATION 

Here we offer some advice to anyone planning to develop a specialized, machine- 
specific implementation of Level 2 BLAS. The following broad possibilities should 
be considered: 

(1) rewriting the algorithms in FORTRAN so that the structure of the inner 
loops is better adapted to the architecture of the machine; 

(2) using machine-specific extensions to FORTRAN, such as array syntax, 
compiler directives, or calls to library routines; and 

(3) coding the routines in assembly language. 

Approaches (2) and (3) should be considered as extensions of (l), not as alter- 
natives. Implementors should not consider translating the model implementation 
into extended FORTRAN or assembly language without first considering whether 
the structure of the model implementation is well adapted to their machine. 

Each matrix-vector operation performed by Level 2 BLAS involves doubly 
nested loops. By interchanging the inner and outer loop indexes, we obtain two 
variant ways of organizing the computation: In one variant the matrix is accessed 
by columns; in the other by rows. For the MV and SV routines, the inner loop is 
equivalent, in one variant, to an inner-product vector operation; and in the other 
variant, to a vector operation of the form y t 01x + y, which we shall refer to as 
an AXPY. (For the rank-l and rank-2 update routines, the inner loop is always 
equivalent to an AXPY operation.) The choice of method will be governed 
principally by the relative efficiency of performing inner products or AXPY 
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operations, and by the cost of accessing a two-dimensional array by rows instead 
of by columns. We discuss the options in more detail for individual routines 
below. To be specific, we discuss the REAL SINGLE-PRECISION routines. 

3.1 Routines Using Full Matrix Storage 

We first consider those routines that require the matrix to be stored convention- 
ally in a two-dimensional array: Columns of the matrix are stored in columns of 
the array and constitute contiguous vectors; and rows of the matrix are stored in 
rows of the array and constitute vectors with constant stride whose elements are 
not contiguous. Accessing vectors with noncontiguous elements may require 
expensive gather or scatter operations (e.g., as on the CDC Cyber 2059, or may 
cost no more than accessing contiguous vectors except when memory-bank 
conflicts occur (as on the CRAY-1s). 

3.1.1 SGEMV. The operations performed by this routine have been discussed 
by Dongarra, Gustavson, and Karp [5], and Daly and Du Croz [2]. The operation 
y t aAx + @y (TRANS = ‘N’) can be performed either by AXPY operations 
with vector length m, accessing A by columns, or by inner products with vector 
length n, accessing A by rows. The operation y t aATx + /3y (TRANS = ‘T’ or 
‘C’) can be performed either by inner products with vector length m, accessing A 
by columns, or by AXPY operations with vector length n, accessing A by rows. 
Here m and n are the numbers of rows and columns of A, respectively. 

In both cases the AXPY form has the property that a sequence of AXPY 
operations are used to update a single left-hand-side vector. On a machine with 
vector registers, this left-hand-side vector (or segments of it) should ideally be 
held in a vector register throughout the iterations of the outer loop in order to 
reduce the number of memory references (see [5]). If the routines are being 
implemented in FORTRAN and the compiler cannot recognize and take advan- 
tage of this property, then the technique to unrolling the outer loops may be 
applied [l, 31. 

Note that the relative advantage of the AXPY or inner-product forms depends 
on the values of m and n, and an optimal implementation may need to switch 
between the two forms accordingly. 

On parallel machines the cleanest way to achieve concurrency is to compute 
segments of the result vector in separate processors; this is discussed further by 
Dongarra and Sorensen [4]. 

3.1.2 SSYMV. As in SGEMV each operation can be performed either by 
AXPY operations or by inner products. However, in each case the matrix must 
be accessed partly by columns and partly by rows (because only half the matrix 
is stored). The model implementation uses a mixed form in which each iteration 
of the outer loop contains one AXPY operation and one inner-product operation, 
both involving the same column of the matrix. On many machines this mixed 
form can halve the number of memory references to elements of A; however, if, 
say, inner products are markedly slower than AXPY operations, then they will 
govern the speed of the mixed form, and a pure AXPY form may be preferable. 
The remarks made about the AXPY forms of SGEMV on vector-register ma- 
chines apply here also, although the details are more complicated because the 
lengths of the left-hand-side vectors are not constant, but increase or decrease 
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by 1 on each iteration of the outer loop. Unrolling the outer loops to a depth of 
2 can be handled neatly as described by Dongarra, Kaufman, and Hammarling 
[6]. In a pure AXPY form or pure inner-product form, it may be preferable to 
make two separate passes through the outer loop, one in which the matrix is 
accessed by rows and one in which it is accessed by columns. 

3.1.3 STRMV and STRSV. Again, as in SGEMV, each operation can be 
performed either by AXPY operations or by inner products, with the matrix 
being accessed by rows or columns depending on the value of TRANS. Those 
forms of the code that are not used in the model implementation can easily be 
derived from those that are. For example, to derive an AXPY form of the code 
for x t LTx, simply take the code for x t U3c, and replace AU, J) by A (J, I). 
The remarks in Section 3.1.1 about implementing the AXPY forms on a machine 
with vector registers apply here also, although as in SSYMV the vector lengths 
are not constant throughout the outer loop. 

The iterations of the outer loop must be performed in a particular order: 
forward from 1 to n for the operations x t Ux, x t LTx, x t L-lx, and 
x t (UT)-ir; and backward from n to 1 for the others. In STRMV this constraint 
is needed simply to allow the result vector to overwrite the input vector. In 
STRSV the recursive nature of the computation is more fundamental: Each 
element of the result vector depends on previously computed elements. 

3.1.4 Rank-l and Rank-2 Update Routines. Each column of the matrix can be 
updated by an AXPY operation or in the case of the R2 routines by a double 
AXPY operation. Moreover, on a parallel machine each column of the matrix 
can be updated concurrently. Interchanging the loop indexes merely results in 
AXPY operations on rows of the matrix. 

3.2 Routines Using Packed Storage 

With the specified storage scheme for packed matrices, columns of the matrix 
are stored as contiguous vectors within the packed array. Rows of the matrix do 
not constitute vectors with constant stride. Hence, those forms in which the 
matrix is accessed by columns are likely to be the only forms worth considering. 

3.3 Routines for Banded Matrices 

The same choice between inner-product and AXPY forms is available as for 
operations on full matrices. With the specified storage scheme for banded 
matrices, columns of a matrix are stored in columns of the array and constitute 
contiguous vectors; and rows of the matrix are stored in reverse diagonals of the 
array and constitute vectors with constant stride. Whether the matrix is accessed 
by rows or by columns, the vector length is at most kl + ku + 1 for SGBMV, and 
at most k + 1 for the other banded routines; hence, with typical bandwidths, 
speeds on vector processors may be slow. 

For SGBMV and SSBMV, however, a third alternative can be used in which 
the matrix is accessed by diagonals, and hence, the array is accessed by rows. For 
SGBMV the essential features of the code (when INCX = INCY = 1) are shown 
in Figure 1. In this form the inner loop is equivalent to a vector operation of the 
form V t V + cx*V*V (V a vector, (Y a scalar). The vector lengths are close to n, 
and for large n good speeds can be obtained that are more or less independent of 
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IF( LSAME( TRANS. ‘N’ ) )THEN 

C 

C Form y := alpha*A*x + y. 

C 

DO 60, I = 1, KL+ KU+ 1 

L=Ku+l-I 

Doso, J=MAx( 1, 1 + L ), MIN( N, M+ L ) 

Y( J - L ) = Y( J - L ) + ALPHA*X( J )*A( I, J ) 

50 C0NTINUE 

60 CONTINUE 

ELSE 

C 

C Form y := alpha*A’*x + y. 

C 

Do 100, I = 1, KL+ Ku + 1 

L= Ku+ 1 - I 

Do90. J=MAx( 1, 1 + L ). MIN( N, M+ L ) 

Y( J ) = Y( J ) + ALPHA*X( J - L )*A( I, J ) 

90 CONTINUE 

100 CONTINUE 

END IF 

Fig. 1. Essential features of the code (ZZVCX = ZNCY = 1) for SGBMV. 

the bandwidth, for example, 30 Mflops for REAL data and 40 Mflops for 
COMPLEX data on a CRAY-1s. The same organization can be used for STBMV 
provided that a temporary work vector can be created to hold the result, but 
cannot be used for STBSV because of the recursive nature of the computations. 

3.4 Other Remarks 

The model implementation includes separate segments of code for cases when 
INCX and/or INCY = 1: On many machines this is unnecessary. 

Specialized implementations should, where possible, use straightforward com- 
parison of characters, rather than the routine LSAME used by the model 
implementation. 

4. THE TEST PROGRAMS 

A separate test program exists for each of the four data types (REAL, COMPLEX, 
DOUBLE PRECISION, and COMPLEX*16). All test programs conform to the 
same pattern with only the minimum necessary changes, so we shall talk 
generically about “the test program” in the singular. 
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The program has been designed not merely to check whether the model 
implementation has been correctly installed, but also to serve as a validation 
tool, and even as a modest debugging aid, for any specialized implementation. 

The program has the following features: 

-The parameters of the test problems and the names of the subprogram to be 
tested are specified by means of a data file, which can easily be modified for 
debugging. 

-The data for the test problem are generated internally, and the results are 
checked internally. 

-The program checks that no arguments are changed by the routines except the 
designated output vector or matrix. 

-All error exits (caused by illegal parameter values) are tested. 
-The program generates a concise summary report on the tests and optionally 

can generate a “history” or “snapshot” file as an additional debugging aid. 

4.1 Parameters of the Test Problems 

Each test problem (i.e., each call of a subprogram to be tested) depends on a 
choice of values for the following parameters (where relevant to the particular 
subprograms): 

-the dimensions m and n; 
-the bandwidth arguments k, kl, and ku; 
-the options UPLO, TRANS, and DIAG; 
-the increments INCX and INCY; and 
-the scalars a! and /3. 

All relevant combinations of the options UPLO, TRANS, and DIAG are tested. 
The values of the other arguments are defined by a data file. Specifically, the 
program reads in a set S, of values of n, a set Sk of values of k, a set S’i, of values 
for INCX and INCY, a set S, of values for LY, and a set SB of values for /3. 

For subprograms that require a second dimension m, two values of m are 
generated for each value of n, namely, m = max(n - [n/2] - 1, 0) and m = 
min(n + [n/2] + 1, nmax), where nmal is the maximum value permitted by 
the array dimensions in the program. If two bandwidth arguments kl and ku 
are required, they are generated from k by kl = max(k - 1,O) and ku and k. 

The test problems are then generated in a nested loop structure: 

for n E S, 
for k E Sk 

for all relevant values of UPLO, TRANS, and DIAG 
for INCX E Sim 

for INCY E Si, 
for a E S, 

for p E Sp 

(Of course, arguments not relevant to the routine are omitted from the loop 
structure.) If m = 0 or n = 0 (a null problem), only one test with these values of 
m and n is generated. 
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Obviously, the sets S,, Sk, etc., should be as small as possible; otherwise, a 
very large number of problems will be generated, and the test program will take 
a forbiddingly long time to run. On the other hand, for a comprehensive test it 
is essential to exercise all segments of the code and all special or extreme cases 
such as n = 0, n = 1, k = 0, k = n - 1, INCX = 1, INCY = 1, (Y = 0, a! = 1, 
,8 = 0, and P = 1. Note that we cannot be sure what cases will be regarded as 
special or extreme in any specialized implementation. 

A data file that specifies sets of parameters suitable for many machines is 
supplied with the test program, but installers and implementors must be alert to 
the possible need to extend or modify them (see the Appendix). 

4.2 Data for the Test Problems 

Data for the elements of the matrix A and the vectors x and y are generated 
using a simple portable congruential number generator. Values for the elements 
of A are uniformly distributed over (-0.5, 0.5), and for the elements of x and y 
over (0, 1). Care is taken to ensure that the data have full working accuracy. 
Some of the vectors have selected elements set to 0 so that special code for this 
case (see Section 2) can be tested. When DIAG = ‘N’, 1.0 is added to the diagonal 
elements of triangular matrices to ensure they are reasonably well conditioned. 

Data for each test problem are first stored in a conventional two-dimensional 
array for the matrix A and in contiguous one-dimensional arrays for the vectors 
x and y. The matrix is stored as a full square or rectangular matrix, with all zero 
elements and unit diagonal elements stored explicitly. This form is used to 
compute the correct result, using the same simple code in each case. 

The data are then copied into the arrays that will be passed to the subprogram 
being tested, taking into account the storage scheme required for the matrix, and 
of the values of INCX and INCY. The argument LDA is chosen to be 1 more 
than its minimum permitted value; that is, LDA = m + 1 for the GE routines; 
n + 1 for the SY, HE, and TR routines; kl + ku + 2 for the GB routines; and 
k + 2 for the SB, HB, and TB routines. (If this value exceeds nmax, LDA is set 
equal to nmax.) 

Elements in these arrays that are not to be referenced by the subprogram (e.g., 
the subdiagonal elements of A when UPLO = ‘u’, or intervening elements of X 
when INCX > 1) are set to a “rogue” value (-10”) to increase the likelihood 
that a reference to them will be detected. If a fatal error is reported and an 
element of the computed result is of order lOlo, then the routine has almost 
certainly referenced the wrong element of an array. 

4.3 Checking the Results 

After each call of a subprogram being tested, its operation is checked in two 
ways: First, each of its arguments, including all elements of the array arguments, 
is checked to see if it has been changed by the subprogram. If any argument, 
other than the specified elements of the result vector or matrix, has been changed, 
a fatal error is reported. (This check includes the supposedly unreferenced 
elements of the arrays, which were initialized with a rogue value.) 

Second, the result vector or matrix computed by the subprogram is compared 
with the result computed by simple FORTRAN code. We do not expect exact 
agreement, because the two results are not necessarily computed by the same 
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sequences of floating-point operations. We do, however, expect the differences to 
be insignificant to working precision in the following precise sense: In the MV 
routines, each element of the result vector is defined by an expression of the 
form 

where uf denotes the ith row of A. (For the triangular matrix routines -TRMV, 
-TBP”V, and -TPMV, we have (Y = 1 and p = 0.) This expression may be 
regarded as a simple inner product yi t uTu by writing uT = (auf, yi), 
uT = (xT, p). The absolute error in the computed inner product yi is bounded by 

where c is the relative machine precision, and ] u 1 T denotes the vector ( ] u1 ], 
lu21, ***, ] u, ] )T (see [B, p. 361). In our tests we have also allowed for errors 
introduced in the multiplication by (Y. On the other hand, the above bound is 
usually a substantial overestimate. We use the following semiempirical approach: 
For each element y of the result, the program computes the test ratio 

I 3i - Yi I 
&IUITIUI’ 

with u and u defined as above. This is compared with a constant threshold value, 
which is defined in the data file. Test ratios greater than the threshold are flagged 
as “suspect.” On the basis of experience, a threshold value of 16 is recommended 
(the largest value observed on a variety of machines has been 11.5). The precise 
value is not critical. Errors in the routines are most likely to be errors in array 
indexing, which will almost certainly lead to a totally wrong result. A more subtle 
potential error is the use of a single-precision variable in a double-precision 
computation. This is likely to lead to a loss of half the machine precision. The 
test program regards a test ratio greater than c-li2 as a fatal error. 

The R and R2 routines are checked in a similar way. Each element of the 
result is regarded as an inner product of length 2 or 3: 

C&j + (Uij, CUXi)T 
1 

0 Yj 

or 

1 
Uij C- (Uij, (YZi, (yyi)T yj * 0 % 

The SV routines are checked as follows: If y = T-lx is the exact result and j, is 
the computed result, then the test program computes i = Tjl and compares it 
with x, as above. Thus, the test ratio is 

1 ii - Xi 1 
C 1 ti* 1 T 1 Xi 1 ’ 

where ti* denotes the ith row of T. Theoretically, the test ratio should involve the 
condition number of T with respect to inversion, but the test program generates 
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well-conditioned triangular matrices, and in practice the test ratios observed for 
these routines are no larger than for the others. 

. 

APPENDIX: Installation Notes 

Al. Installing the Model Implementation 

The subprograms fall into four sets according to the data type of the matrices 
and vectors: REAL, COMPLEX, DOUBLE PRECISION, and COMPLEX*16 
(subprogram names beginning with S, C, D, and Z, respectively). Choose which 
set or sets are to be installed. 

Examine the auxiliary subprograms XERBLA and LSAME (which are inde- 
pendent of the data type), and consider whether they need to be modified. 

The subprogram XERBLA is called when one of the Level 2 BLAS detects an 
illegal value of one of its arguments. The version supplied with the model 
implementation writes a message to the standard output channel, for example, 

** On entry to STRSV parameter number 3 had an illegal value. 

and then executes a STOP statement. Installers may wish to redirect the error 
message to a different output channel, or to replace the STOP statement by a 
call to system-specific exception-handling or trace-back mechanisms. 

The logical function LSAME is used to perform all character comparisons in 
Level 2 BLAS in a case-insensitive manner. For example, the expression 

LSAME( UPLO,‘U') 

is equivalent to 

(UPLO .EQ. ‘U').OR.(UPLO .EQ. ‘~2). 

The supplied version works correctly on all systems that use the ASCII code 
for internal representation of characters. For systems that use the EBCDIC code, 
one constant must be changed. For CDC systems with 6-12-bit representation, 
alternative code is provided in comments. Any of the versions work correctly on 
all systems if only uppercase characters are passed as arguments. 

Compile the chosen sets of subprograms, together with LSAME and XERBLA, 
and create an object library. 

A2. Testing the Model Implementation 

Select the test program or programs corresponding to the data types handled by 
the subprograms that have been installed. 

An annotated example of a data file for the program can be obtained by editing 
the comments at the start of the main program. This defines the names and unit 
numbers of the output files, various parameters of the tests, and the names of 
those subprograms that are to be tested. The data file for the REAL routines is 
illustrated in Figure 2. The first 18 records are read using list-directed input; the 
last 16 are read using the format (A6, L2). 

Change the first record of the data file, if necessary, to ensure that the file 
name is legal on your system. No other changes to the data file should be 
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Record no. Record contents 

1 ‘SBLATP.SUIvM NAME OF SUIvMARY OUTPUT FILE 

2 6 UNIT NUMBER OF SLBMARY FILE 

3 ’ SE&AT2 . SNAP ’ NAME OF SNAPSHOT OUTPUT FILE 

4 -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) 

5 F LOGICAL, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. 

6 F LOGICAL, T TO STOP ON FAILURES. 

1 T LOGICAL, T TO TEST ERROR EXITS. 

8 16.0 THRESHOLD VALUE OF TEST RATIO 

9 6 NUMBER OF VALUES OF N 

10 012359 VALUES OF N 

11 4 NUMBER OF VALUES OF K 

12 0 1 2 4 VALUES OF K 

13 4 NUMBER OF VALUES OF INCX AND INCY 

14 1 2 -1 -2 VALUES OF INCX AND INCY 

I5 3 NUMBER OF VALUES OF ALPHA 

16 0.0 1.0 0.7 VALUES OF ALPHA 

17 3 NUMBER OF VALUES OF BETA 

18 0.0 1.0 0.9 VALUES OF BETA 

19 SGEMV T PUT F FOR NO TEST. SAME COLWS. 

20 SGBMV T PUT F FOR NO TEST. SAME COLUMNS. 

21 SSYMV T PUT F FOR NO TEST. SAME COLUMNS. 

22 SSEMV T PUT F FOR NO TEST. SAME COLUMNS. 

23 SSPMV T PUT F FOR NO TEST. SAME COLUMNS. 

24 STRMV T PUT F FOR NO TEST. SAME COLUMNS. 

25 STIMV T PUT F FOR NO TEST. SAME COLUMNS. 

26 STIMV T PUT F FOR NO TEST. SAME COLWS. 

27 STRSV T PUT F FOR NO TEST. SAME COLUMNS. 

28 STBSV T PUT F FOR NO TEST. SAME COLUMNS. 

29 STPSV T PUT F FOR NO TEST. SAME COLUMNS. 

30 SGER T PUT F FOR NO TEST. SAME COLWS. 

31 SSYR T PUT F FOR NO TEST. SAME COLIM’IS. 

32 SSPR T PUT F FOR NO TEST. SAME COLUMNS. 

33 SSYR? T PUT F FOR NO TEST. SAME COLLhWS . 

34 SSPRZ T PUT F FOR NO TEST. SAME COLWS. 

Fig. 2. Data tile for REAL routines. 
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Table II. Test Program Timing (in minutes) 

S C D Z 

CRAY-1s 0.2 0.2 0.5 - 

DEC VAX-11/750 3.0 4.5 4.0 8.0 
NSC 32032 PC” 8.0 10.0 17.0 20.0 
Compaq Deskpro 28sb 12.0 44.0 24.0 50.0 

’ DSI-32 coprocessor 10 MHz; Green Hills FORTRAN; compiler options -01 -02 - 
X71; RAM disk for I/O. 
b Lahey F77L V.2.10; 80281,5 MHz; 80286,8 MHz. 

necessary before an initial run of the test program, but some changes may be 
needed to ensure that the tests are sufficiently thorough (see below). 

The data file is read from unit NIN, which is set to 5 in a PARAMETER 
statement in the main program: Change this if necessary. 

Compile the test program, link in the required subprograms, and run the 
program. 

Note that the test programs include an alternative version of the auxiliary 
subprogram XERBLA that is needed to test the error exits from Level 2 BLAS. 
On some systems special action must be taken to ensure this version is linked 
into the test program. If the model implementation of XERBLA is used, the test 
program will stop after writing an error message from XERBLA. 

Table II gives the approximate times taken to run the test programs, using the 
supplied data file and the model implementation of the subprograms, on various 
machines. 

If the tests using the supplied data file are completed successfully, consider 
whether the tests have been sufficiently thorough. For example, on a machine 
with vector registers, at least one value of N greater than the length of a vector 
register should be used, otherwise, important parts of the compiled code may not 
be exercised by the tests. 

The tests may fail, with either “suspect results” or “fatal errors.” Suspect 
results, with a test ratio slightly greater than the threshold, are probably caused 
by anomalies in floating-point arithmetic on the machine; if this explanation is 
considered to be sufficient, increase the value of the threshold specified in the 
data file. Fatal errors most probably indicate a compilation error or corruption 
of the source text. An error detected by the system, for example, an array 
subscript out of bounds or use of an unassigned variable, is almost certainly 
due to the same causes. If the system does not provide adequate post- 
mortem information about the error, the snapshot file can give a little help 
(see Section A5). 

A3. Testing a Specialized Implementation 

Proceed initially as described in Section A2. If the implementation does not use 
an error-handling subprogram XERBLA, compatible with the model implemen- 
tation, then the data file must be modified to suppress the testing of error exits. 

Consider very carefully what changes need to be made to the data file, to 
ensure the implementation has been thoroughly tested. For example, if the 
technique of loop unrolling is applied, make sure sufficient values of N are used 
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Table III. Symbolic Constants in the Test Program 

Name 

NIDMAX 
NKB- 
MAX 
NINMAX 
NALMAX 
NBEMAX 
NMAX 
INCMAX 

Meaning Value 

Maximum number of values of N 9 
Maximum number of values of K 7 

Maximum number of values of INCX, INCY 7 
Maximum number of values of ALPHA 7 
Maximum number of values of BETA 7 
Maximum value of N 65 
Maximum value of ABS(ZNCX), ABS(ZNCY) 2 

to test all the cleanup code; if ALPHA .EQ. -1.0 is treated as a special case, add 
-1.0 to the values of ALPHA. 

A4. Changing the Parameters of the Tests 

The values supplied in the data file must satisfy certain restrictions, defined by 
the symbolic constants in the test program shown in Table III. If necessary, 
modify the PARAMETER statements that define these symbolic constants. 

A5 The History or Snapshot File 

The main output file from the test program contains a concise report on the 
success or failure of the tests of each routine and the reasons for failure if it 
occurs. Optionally, the program writes to a separate file a one-line record giving 
details of the arguments in each call of a Level 2 BLAS subprogram; for example, 

25: STRSV(‘U’, ‘T’, ‘u’, 3, A, 4, X, -1). 

(The number 25 indicates that this is the 25th call of STRSV.) The record is 
written immediately before the routine is called. 

As a cumulative “history” file, this enables the user to monitor which tests are 
passed successfuly before a failure occurs. Moreover, if an exception occurs in 
the Level 2 BLAS routine (e.g., an array bound error or division by zero), the 
last record written to the file should give details of the call that caused the 
exception. On some systems, however, the output buffers are not emptied when 
a program is terminated abnormally. Therefore, the program has an option to 
rewind the file after each record is written in order to force emptying of the 
buffer: In this mode the file presents a one-line “snapshot” of the current or most 
recent call to a Level 2 BLAS routine. 
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