
ALGORITHM 679
A Set of Level 3 Basic Linear Algebra
Subprograms: Model Implementation and
Test Programs

JACK J. DONGARRA
University of Tennessee and Oak Ridge National Laboratory
JEREMY DU CROZ and SVEN HAMMARLING
Numerical Algorithms Group Ltd.
and
IAIN DUFF
Harwell Laboratory

This paper describes a model implementation and test software for the Level 3 Basic Linear Algebra
Subprograms (Level 3 BLAS). The Level 3 BLAS are targeted at matrix-matrix operations with the
aim of providing more efficient, hut portable, implementations of algorithms on high-performance
computers. The model implementation provides a portable set of Fortran 77 Level 3 BLAS for
machines where specialized implementations do not exist or are not required. The test software aims
to verify that specialized implementations meet the specification of the Level 3 BLAS and that
implementations are correctly installed.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems-computation on matrices; G.l.O [Numerical Analysis]:
General--numerical algorithms; G.1.3 [Numerical Analysis]: Numerical Linear Algebra--linear
systems (direct and iterative methods); G.4 [Mathematics of Computing]: Mathematical Software-
certification and testing; efficiency; portability; reliability and robustness; verification

General Terms: Algorithms, Measurement, Performance, Reliability, Verification

Additional Key Words and Phrases: Extended BLAS, utilities

1. SCOPE OF THE ALGORITHM

In [4] we have defined the specification of a set of Level 3 Basic Linear Algebra
Subprograms for selected matrix-matrix operations. They provide a standard
framework for developing modular, portable, and efficient Fortran 77 code for

The research of J. J. Dongarra was supported in part by the Applied Mathematical Sciences
subprogram of the Office of Energy Research, U.S. Department of Energy, under contract W-31-109-
Eng-38.
Authors’ addresses: J. J. Dongarra, Computer Science Department, University of Tennessee, Knox-
ville, TN 37996-1301; J. Du Croz and S. Hammarling, Numerical Algorithms Group Ltd., Wilkinson
House, Jordan Hill Road, Oxford OX2 8DR, England; I. Duff, Computer Science and Systems
Division, Harwell Laboratory, Oxfordshire OX11 ORA, England.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0098-3500/90/0300-0018 $01.50

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990, Pages 18-28.

Algorithm 679: A Set of Level 3 Basic Linear Algebra Subprograms l 19

block algorithms for many computational problems in linear algebra. We also
anticipate that they will be useful building blocks in other areas of numerical
software. Our hope is that specialized implementations of the Level 3 BLAS will
be developed for high-performance computers, and thus programs that call the
Level 3 BLAS can be efficient across a wide range of machines.

To support and encourage the use of the Level 3 BLAS, this paper describes
two software components:

(1) A model implementation of the subprograms in Fortran 77. This enables the
Level 3 BLAS to be used on any machine, regardless of whether a specialized
implementation exists. It is described in Section 2.

(2) Test programs designed to ensure that implementations conform to the
specification and have been correctly installed (see Section 4).

Section 3 contains some advice on developing specialized implementations of the
subprograms.

2. THE MODEL IMPLEMENTATION

2.1 Programming Considerations

There are many mathematically equivalent ways to implement the Level 3 BLAS
even in standard Fortran 77 as discussed in Section 3. The choice of method for
the model implementation has been guided by the following considerations:

(1) The elements of the array A are accessed sequentially, column by column,
whenever possible. On vector-processing machines this allows the columns
of the array to be recognized as contiguous vectors (by the Fortran compiler).
On virtual-memory machines it keeps page swaps to a minimum.

(2) Provision is made to skip the innermost loop if relevant elements of the
matrices are zero. This can yield a considerable gain in efficiency if there are
zero entries in the input matrices, for example:

IF(B(L,J).NE.ZERO)THEN
TEMP = ALPHA*(B(L,J)
DO 50, I = 1, M

C(I,J) = C(I,J) + TEMP*A(I,L)
50 CONTINUE

END IF

2.2 Efficiency

The model implementation has not been designed to be particularly efficient on
any specific machine, although the organization of the code is such that it should
perform tolerably well on conventional scalar machines with a good optimizing
compiler and possibly on some single-processor vector machines with a good
optimizing compiler. Our main aim is a clear and straightforward implementation
of the algorithms in the same style as the model implementation of the Level 2
BLAS [6]. Section 3 discusses how to implement the Level 3 BLAS efficiently.

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

20 ’ J. J. Dongarra et al.

2.3 Language Standards

The model implementation of the Level 3 BLAS is written entirely in portable
standard Fortran 77 with two exceptions:

(1) For the routines that require a “double precision complex” data type (names
beginning with Z), we have used the following extensions to standard Fortran:

COMPLEX*16 type specification statements;
DCONJG and DCMPLX intrinsic functions whose argument and result
are both of type COMPLEX*16;
DBLE intrinsic function with a COMPLEX”16 argument and DOUBLE
PRECISION result, delivering the real part of the argument; and
COMPLEX*16 constants formed from a pair of double precision con-
stants in parentheses.

(2) For the arguments of type CHARACTER that specify options, we wish to
allow either uppercase or lowercase characters to be supplied. Lowercase
characters are not part of the standard Fortran character set, but their use
is so widespread that it would be unfriendly not to allow them. This can be
an obstacle to portability on some systems (as is discussed in Section 7 [5]),
but we have avoided most of the problems by using the auxiliary LOGICAL
function LSAME described in the Appendix.

2.4 Auxiliary Subprograms

Two auxiliary subprograms are called by the Level 3 BLAS: an error-handling
routine XERBLA and the character-comparison routine LSAME. They are
identical to the subprograms of the same names in the model implementation of
the Level 2 BLAS. Both these subprograms may be selectively modified by
installers of the package as described in the Appendix. No changes need be made
to the rest of the model code.

3. NOTES ON IMPLEMENTATION

Here we offer some advice to anyone planning to develop a specialized, machine-
specific implementation of the Level 3 BLAS. The following broad possibilities
should be considered:

(a) Rewriting the algorithms in Fortran so that the structure of the inner loops
is better adapted to the architecture of the machine.

(b) Using calls to Level 2 BLAS.
(c) Using machine-specific extensions to Fortran, such as array-syntax, compi-

ler-directives, or calls to library routines.
(d) Coding the routines in assembly language.

Approaches (b), (c), and (d) should be considered as extensions of (a), not as
alternatives. Implementers should not consider translating the model implemen-
tation into calls to Level 2 BLAS, extended Fortran, or assembly language
without first considering whether the structure of the model implementation is
well adapted to their machine.
ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

Algorithm 679: A Set of Level 3 Basic Linear Algebra Subprograms l 21

We wish to draw the attention of implementers to the following possible
approaches to restructuring the code:

(1) Permuting the Nesting of Loops. Each matrix-matrix operation per-
formed by the Level 3 BLAS involves triply nested loops. The code may be
reorganized in six different ways by permuting the order of nesting of the loop
indices, as described in [3]. Different organizations are likely to offer advantages
on different machines in terms of maximizing the use of vector registers, and
minimizing the use of cache memory or exploitation of loop-based parallelism,
for example.

(2) Introducing a Block Structure. Additional loops may be added to the code
in order to break the computation into operations on submatrices of suitable
size. As in (l), this may be important either to minimize memory traffic (if the
submatrices being operated on can all be stored in high-speed cache or local
memory) or to exploit parallelism (if operations on separate submatrices can be
performed in parallel).

(3) Using Alternative Segments of Code for Different Shapes and Sizes of
Matrices. It is essential that implementers should not confine their efforts to
achieving high performance only when all the matrices are large and square. In
the intended applications of the Level 3 BLAS (as illustrated in Section 9 of [4],
for example), the matrices are often long and thin, and good performance in this
case is equally important. It is likely that some implementations need to switch
between different segments of code, according to the absolute or relative values
of the matrix dimensions m, n, and k.

(4) Using Work Arrays to Allow Contiguous Storage. On some machines
performance is significantly degraded if vectors are not stored contiguously. In
order to allow contiguous storage it may be necessary to copy a row or rows of a
matrix into a temporary work vector.

As a general guideline, efficient implementations are likely to be achieved by
reducing the ratio of memory traffic to arithmetic operations, making full use of
vector operations (if available), and exploiting parallelism (if available).

However, note that in some environments exploitation of fine-grain parallelism
within the Level 3 BLAS may interfere with possible coarse-grain parallelization
at higher levels in the program.

On many high-performance computers, achieving an optimal implementation
of the Level 3 BLAS is likely to be a more difficult task than achieving the same
for the Level 2 BLAS. However, we believe that it will be well worth the effort
since it will enable a wide range of higher level algorithms to be transported onto
those machines without serious loss of efficiency [l].

Timing programs for all the Level 3 BLAS are available from netlib [2] or
from the authors.

As an illustration of what can be achieved we show in Table I the speed of
implementations of particular Level 1, 2, and 3 BLAS routines or routines
of similar functionality, on three different machines. The routines are for
Level 1: BLAS, SDOT/DDOT, and SAXPY/DAXPY; for Level 2: BLAS,
SGEMV/DGEMV (or equivalent for matrix-vector multiply); for Level 3:

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

22 l J. J. Dongarra et al.

Table I. Performance in Mflops of BLAS

Machine

Peak Performance

CRAY-2 IBM 3090/VF Alliant FX/8
Memory
reference Flops 488 108 88

Level 1 SDOT/DDOT 2n 2n 151 32 14
SAXPY/DAXPY 3n 2n 121 26 14

Level 2 SGEMV/DGEMV nz 2n2 350 60 26
Level 3 SGEMM/DGEMM 3n2 2n3 437 80 43

Note: Memory references and flops are for matrices and vectors of order n. The Mflop rates
are the maximum rates for large n.

BLAS, SGEMM/DGEMM (or equivalent for matrix-matrix multiply). The
speeds quoted are the maximum speeds observed for tuned machine-specific
implementations of the routines. We give expressions for the amount of memory
traffic and the number of floating-point operations (flops) for each calculation.

We show the results of timing the routines on three computers: the CRAY-2
(with vector register and local memory), the IBM 3090/VF (with cache and
vector registers), and the Alliant FX/B (with parallel processors, cache, and
vector registers). We also show the manufacturer’s peak performance figures for
each machine. Apart from the Alliant figures (limited by the speed of the memory-
to-cache transfer), the Level 3 routines attain a performance remarkably close
to the peak, and the clear advantage of using higher level BLAS is seen on all
machines. These figures were obtained on lightly loaded machines. Because the
Level 3 BLAS make fewer demands on memory, the comparison is likely to be
even more favorable on more heavily loaded machines.

Specialized implementations should, where possible, use a straightforward
comparison of characters, rather than the routine LSAME used by the model
implementation.

4. THE TEST PROGRAMS

A separate test program exists for each of the four data types (REAL, COMPLEX,
DOUBLE PRECISION, and COMPLEX*16). All test programs conform to the
same pattern with only the minimum necessary changes, so we talk generically
about “the test program” in the singular.

The program has been designed not merely to check whether the model
implementation has been correctly installed, but also to serve as a validation
tool, and even as a modest debugging aid, for any specialized implementation.

The program has the following features:

-The parameters of the test problems and the names of the subprograms to be
tested are specified by means of a data file, which can easily be modified for
debugging.

-The data for the test problem are generated internally, and the results are
checked internally.

-The program checks that no arguments are changed by the routines except the
designated output vector or matrix.

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

Algorithm 679: A Set of Level 3 Basic Linear Algebra Subprograms 23

-All error exits (caused by illegal parameter values) are tested.
-The program generates a concise summary report on the tests and optionally

can generate a “history” or “snapshot” file as an additional debugging aid.

4.1 Parameters of the Test Problems

Each test problem (i.e., each call of a subprogram to be tested) depends on a
choice of values for the following parameters (where relevant to the particular
subprograms): the dimensions m, n, and K; the options SIDE, UPLO, TRANS,
and DIAG; and the scalars (Y and p.

All relevant combinations of the options SIDE, UPLO, TRANS, and DIAG
are tested. The values of the other arguments are defined by a data file.
Specifically, the program reads in a set S, of values for m, n, and k, a set S, of
values for (Y, and a set SB of values for 0.

The test problems are then generated in a nested loop structure:

for m E S,
for n E S,

for k E S,
for all relevant values of SIDE, UPLO, TRANS, and DIAG

for (Y E S,
for p E s,.

(Of course, arguments not relevant to the routine are omitted from the loop
structure.)

Obviously, the sets S,, S,, and Sp should be as small as possible; otherwise, a
very large number of problems are generated, and the test program takes a
forbiddingly long time to run. On the other hand, for a comprehensive test it is
essential to exercise all segments of the code and all special or extreme cases
such as m, n, k = 0 or 1, CY = 0, CY = 1, p = 0, /3 = 1. Note that we cannot be sure
what cases are regarded as special or extreme in any specialized implementation.

A data file, which specifies sets of parameters suitable for many machines, is
supplied with the test program, but installers and implementers must be alert to
the possible need to extend or modify them (see the Appendix).

4.2 Data for the Test Problems

Data for the elements of the matrices A, B, and C are generated using a simple,
portable congruential number generator. Values for the matrix elements
are uniformly distributed over (-0.5, 0.5). Care is taken to ensure that the data
have full working accuracy. Some of the matrix elements are set to zero so that
special code (see Section 2) can be tested. When DIAG = ‘N’, 1.0 is added to the
diagonal elements of triangular matrices to ensure that they are reasonably
well conditioned. For each call of a routine the argument LDA is set to
min(LDAMIN + 1, nmax), where LDAMIN is the minimum permitted value of
LDA for that call, and nmax is the maximum value permitted by the array
dimensions in the program; LDB and LDC are set in the same way.

Elements in the arrays that are not to be referenced by the subprogram (e.g.,
the subdiagonal elements when UPLO = ‘U’) are set to a “rogue” value (-10”)
to increase the likelihood that a reference to them is detected. If a fatal error is
reported and an element of the computed result is of order lOlo, then the routine
has almost certainly referenced the wrong element of an array.

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

24 l J. J. Dongarra et al.

4.3 Checking the Results

After each call of a subprogram being tested, its operation is checked in two
ways.

First, each of its arguments, including all elements of the array arguments, is
checked to see whether it has been changed by the subprogram. If any argument,
other than the specified elements of the result matrix, has been changed, a fatal
error is reported. (This check includes the supposedly unreferenced elements of
the arrays, which were initialized with a rogue value.)

Second, the result matrix computed by the subprogram is compared with the
result computed by simple Fortran code. We do not expect exact agreement
because the two results are not necessarily computed by the same sequences of
floating-point operations. We do, however, expect the differences to be insignif-
icant to working precision in the following sense.

In the matrix multiply routines, each element of the result vector is defined by
an expression of the form

Cij + O! C Uilblj + pCij*
I=1

The absolute error in the computed inner product and subsequent arithmetic
is bounded by

where

tij = I P I I Cij I + I ff I 5 I ail I I b, I
1=1

For each element cij of the result, the program computes the test ratio:

1 c^ij - Cij 1
t tij *

Theoretically, this test ratio could be as large as n, but in practice we have
never observed such growth, and so the ratio is compared with a constant
threshold value, which is defined in the data file. Test ratios greater than the
threshold are flagged as “suspect.” On the basis of experience a threshold value
of 16 is recommended (the largest value observed on a variety of machines has
been 9.7). The precise value is not critical. Errors in the routines are most likely
to be errors in array indexing, which almost certainly lead to a totally wrong
result. A more subtle potential error is the use of a single precision variable in a
double precision computation. This is likely to lead to a loss of half the machine
precision. The test program regards a test ratio greater than e-‘12 as a fatal error.

Similar tests are performed for the other Level 3 BLAS routines, in each case
separating suspect results from obviously inaccurate ones.

Note that the test programs make no attempt to generate data that would
reveal potential numerical instability in an implementation of the Level 3 BLAS.
(This would be a vain task without detailed knowledge of the algorithm.) Passing
the tests should not be taken to mean that the requirement for numerical stability
(see Section 7 of [4]) has been satisfied.

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

Algorithm 679: A Set of Level 3 Basic Linear Algebra Subprograms l 25

APPENDIX: INSTALLATION NOTES

Al. Installing the Model Implementation

The subprograms fall into four sets according to the data type of the matrices
and vectors: REAL, COMPLEX, DOUBLE PRECISION, and COMPLEX*16
(subprogram names beginning with S, C, D, and Z, respectively). Choose which
set or sets are to be installed.

Examine the auxiliary subprograms XERBLA and LSAME (which are inde-
pendent of the data type), and consider whether they need to be modified.

The subprogram XERBLA is called when one of the Level 3 BLAS detects an
illegal value of one of its arguments. The version supplied with the model
implementation writes a message to the standard output channel, for example,

** On entry to STRSM parameter number 3 had an illegal value.

and then executes a STOP statement. Installers may wish to redirect the error
message to a different output channel or to replace the STOP statement by a
call to system-specific exception handling or traceback mechanisms.

The logical function LSAME is used to perform all character comparison in
the Level 3 BLAS in a case-insensitive manner. For example, the expression

LSAME(UPL0, ‘U’)

is equivalent to

(UPLO.EQ. ‘U’).OR.(UPLO.EQ. ‘u’).

The supplied version works correctly on all systems that use the ASCII code
for internal representation of characters. For systems that use the EBCDIC code,
one constant must be changed. For CDC systems with 6-12 bit representation,
alternative code is provided in comments. Any of the versions work correctly on
all systems if only uppercase characters are passed as arguments.

Compile the chosen sets of subprograms, together with LSAME and XERBLA,
and create an object library.

A2. Testing the Model Implementation

Select the test program or programs corresponding to the data types handled by
the subprograms that have been installed.

An annotated example of a data file for the program can be obtained by editing
the comments at the start of the main program. This defines the names and unit
numbers of the output files, various parameters of the tests, and the names of
those subprograms that are to be tested. The data file for the REAL routines is
illustrated in Figure 1. The first 14 records are read using list-directed output,
and the last 6 records are read using the format (A6, L2).

Change the first and third records of the data file, if necessary, to ensure that
the file name is legal on your system. No other changes to the data files should
be necessary before an initial run of the test program, but some changes may be
needed to ensure that the tests are sufficiently thorough (see A3, A4, and A5).

The data file is read from unit NIN, which is set to 5 in a PARAMETER
statement in the main program; change this if necessary.

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

26 - J. J. Dongarra et al.

Record no. Record contents

1 ’ SBLAT3. SLkM’ NAME OF SUWlARY OUTPUT FILE

2 6 UNIT NUMBER OF SUk%WRY FILE

3 ’ SBLAT3 . SNAP ’ NAME OF SNAPSHOT OUTPUT FILE

4 -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)

5 F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.

6 F LOGICAL FLAG, T TO STOP ON FAILURES.

I T LOGICAL FLAG, T TO TEST ERROR EXITS.

8 16.0 THRESHOLD VALUE OF TEST RATIO

9 6 NUMBER OF VALUES OF N

10 012359 VALUES OF N

11 3 NUMBER OF VALUES OF ALPHA

12 0.0 1.0 0.7 VALUES OF ALPHA

13 3 NUMBER OF VALUES OF BETA

14 0.0 1.0 1.3 VALUES OF BETA

15 SGEhrM T PUT F FOR NO TEST. SAME COLUMNS.

16 SSYWl T PUT F FOR NO TEST. SAME COLUMNS.

17 STRMkl T PUT F FOR NO TEST. SAME COLWS.

18 STRSM T PUT F FOR NO TEST. SAME COLUMNS.

19 SSYRK T PUT F FOR NO TEST. SAME COLUMNS.

20 SSYRZK T PUT F FOR NO TEST. SAME COLUMNS.

Figure 1

Compile the test program, -link in the required subprograms, and run the
program.

Note: the test program includes a special version of the auxiliary subprogram
XERBLA. This is for use with the test program only. It is needed to check that
XERBLA is called by the Level 3 BLAS if and only if an error exit is intended.
When the Level 3 BLAS are linked into the test program, they must be linked
to this special version of XERBLA. If the model implementation of XERBLA is
used for testing, the test program stops prematurely after writing an error message
from XERBLA.

Table II gives the approximate times taken to run the test programs using the
supplied data file and the model implementation of the subprograms on various
machines.

If the tests using the supplied data file are completed successfully, consider
whether the tests have been sufficiently thorough. For example, on a machine
with vector registers, at least one value of N greater than the length of a vector
register should be used; otherwise important parts of the compiled code may not
be exercised by the tests.
ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

Algorithm 679: A Set of Level 3 Basic Linear Algebra Subprograms 27

Table II. Execution Time in Seconds of Test Programs
on Different Machines

S C D Z

SUN 3/260 264 500 728 1,423
VAX 8800 VMS 34 60 40 102
IBM 3090/VF 8 15 8 15
CRAY-2 9 14 121 -

The tests may fail with either “suspect results” or “fatal errors.” Suspect
results, with a test ratio slightly greater than the threshold, are probably caused
by anomalies in floating-point arithmetic on the machine; if this explanation is
considered to be sufficient, increase the value of the threshold specified in the
data file. Fatal errors most probably indicate a compilation error or corruption
of the source text. An error detected by the system, for example, an array
subscript out of bounds or use of an unassigned variable, is almost certainly due
to the same causes. If the system does not provide adequate postmortem infor-
mation about the error, the snapshot file can give a little help (see Section A5).

A3. Testing a Specialized Implementation

Proceed initially as described in Section A2.
If the implementation does not use an error-handling subprogram XERBLA

compatible with the model implementation, then the data file must be modified
to suppress the testing of error exits.

Consider very carefully what changes need to be made to the data file to ensure
that the implementation has been thoroughly tested. For example, if the tech-
nique of loop unrolling is applied, make sure that sufficient values of N are used
to test all the clean-up code; if ALPHA .EQ. -1.0 is treated as a special case, add
-1.0 to the values of ALPHA.

A4. Changing the Parameters of the Tests

The values supplied in the data file must satisfy certain restrictions, defined by
the following symbolic constants in the test program:

Name Meaning Value

NIDMAX Maximum number of values of M, N, and K 9
NALMAX Maximum number of values of ALPHA I
NBEMAX Maximum number of values of BETA I
NMAX Maximum value of M, N, K 65

If necessary, modify the PARAMETER statements that define these symbolic
constants.

A5. The History or Snapshot File

The main output file from the test program contains a concise report on the
success or failure of the tests of each routine and the reasons for failure if it
occurs. Optionally, the program also writes to a separate file a one-line record

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

28 l J. J. Dongarra et al.

giving details of the arguments in each call of a Level 3 BLAS subprogram, for
example

25: STRSM (‘L,’ ‘U,’ ‘T,’ ‘U,’ 10, 5, -1.0, A, 11, B, 5)

(The number 25 indicates that this is the 25th call of STRSM.) The record is
written immediately before the routine is called.

As a cumulative “history” file, this record enables the user to monitor which
tests are passed successfully before a failure occurs. Moreover, if an exception
occurs in the Level 3 BLAS routine (e.g., array bound error or division by zero),
the last record written to the file should give details of the call that caused the
exception. However, on some systems the output buffers are not emptied when a
program is terminated abnormally. If the logical flag in line 5 of the data file is
set to T, then the program rewinds the file after each record is written in order
to force emptying of the buffer; in this mode the file presents a one-line
“snapshot” of the current or most recent call to a Level 3 BLAS routine.

REFERENCES

1. DEMMEL, J. W., DONGARRA, J. J., Du CROZ, J., GREENBAUM, A., HAMMARLING, S., AND
SORENSEN, D. Prospectus for the development of a linear algebra library for high-performance
computers. Argonne National Laboratory Report, ANL-MCS-TM-97, Argonne, Ill., Sept. 1987.

2. DONGARRA, J. J., AND GROSSE, E. Distribution of mathematical software via eleckonic mail.
Commun. ACM 30, 5 (May 1987), 403-407.

3. DONGARRA, J. J., GUSTAVSON, F., AND KARP, A. Implementing linear algebra algorithms for
dense matrices on a vector pipeline machine. SIAM Reu. 26, 1 (Jan. 1984), 91-112.

4. DONGARRA, J. J., Du CROZ, J., DUFF, I., AND HAMMARLING, S. A set of level 3 basic linear
algebra subprograms. This issue, pp. l-17.

5. DONGARRA, J. J., Du CROZ, J., HAMMARLING, S., AND HANSON, R. An extended set of fortran
basic linear algebra subprograms. ACM Trans. Math Softw. 24, 1 (Mar. 1988), 1-17.

6. DONGARRA, J. J., Du CROZ, J., HAMMARLING, S., AND HANSON, R. Algorithm 656: An extended
set of basic linear algebra subprograms: Model implementation and test programs. ACM Trans.
Math. Softw. 14, 1 (Mar. 1988), 18-32.

Received October 1988; revised February 1989; accepted March 1989

ACM Transactions on Mathematical Software, Vol. 16, NO. 1, March 1990.

