
An Extended Set of FORTRAN Basic Linear
Algebra Subprograms

JACK J. DONGARRA
Argonne National Laboratory
JEREMY DU CROZ and SVEN HAMMARLING
Numerical Algorithms Group, Ltd.
and
RICHARD J. HANSON
Sandia National Laboratory

This paper describes an extension to the set of Basic Linear Algebra Subprograms. The extensions
are targeted at matrix-vector operations that should provide for efficient and portable implementa-
tions of algorithms for high-performance computers.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems-computation on matrices; G.l.O [Numerical Analysis]:
General--numerical algorithms; G.1.3 [Numerical Analysis]: Numerical Linear Algebra--linear
systems (direct and iterative methods); G.4 [Mathematics of Computing]: Mathematical Software-
certification and testing; efficiency; portability; reliability and robustness; verification

General Terms: Algorithms

Additional Key Words and Phrases: Extended BLAS, utilities

1. INTRODUCTION
In 1973, Hanson, Krogh, and Lawson [9] described the advantages of adopting a
set of basic routines for problems in linear algebra. The original basic linear
algebra subprograms, now commonly referred to as the BLAS and fully described
by Lawson, Hanson, Kincaid, and Krogh [ll, 121, have been very successful and
used in a wide range of software including LINPACK [5] and many of the
algorithms published in ACM Transactions on Mathematical Software. In partic-
ular, they are an aid to clarity, portability, modularity, and maintenance of

Dongarra’s research was supported in part by the Applied Mathematical Sciences subprogram of the
Office of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. Hanson’s
research was supported by the U.S. Department of Energy.
Authors’ addresses: J. J. Dongarra, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, IL 60439; J. Du Croz and S. Hammarling, Numerical Algorithms Group, Ltd.,
NAG Central Office, Mayfield House; 256 Banbury Road, Oxford OX2 7DE, England; and R. J.
Hanson, Applied Dynamics International Corp., 3800 Stone School Road, Ann Arbor, MI 48108.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1988 ACM 0098-3500/88/0300-0001$01.50

ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988, Pages 1-17.

2 l J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson

software, and have become a de facto standard for the elementary vector opera-
tions. An excellent discussion of the raison d’etre of the BLAS is given by Dodson
and Lewis [11.

Special versions of the BLAS, in some cases machine code versions, have been
implemented on a number of computers, thus improving the efficiency of the
BLAS. Nevertheless, with some modern machine architectures, the use of the
BLAS is not the best way to improve the efficiency of higher level codes. On
vector machines, for example, one needs to optimize at least at the level of
matrix-vector operations in order to approach the potential efficiency of the
machine (see [2] and [3]); the use of BLAS inhibits this optimization because
they hide the matrix-vector nature of the operations from the compiler.

We believe the time is right to specify an additional set of BLAS designed for
matrix-vector operations. It has been our experience that a small set of matrix-
vector operations occurs frequently in the implementation of many of the most
common algorithms in linear algebra. We define here the basic operations for
that set, together with the naming conventions and calling sequences. Routines
at this level should provide a reasonable compromise between the sometimes
conflicting aims of efficiency and modularity, and it is our hope that efficient
implementations will become available on a wide range of computer architectures.

During the Gatlinburg meeting of June 1984 (Waterloo, Ontario), discussions
among the participants encouraged us to prepare a proposed set of Level 2 BLAS.
At about the same time, IFIP Working Group 2.5 started a project on the same
subject at their annual meeting in Pasadena, California.

An initial proposal was drafted and presented at the “Parvec IV Workshop”
held at Purdue University, Lafayette, Indiana, October 29-30, 1984. A series of
meetings was planned so that the project would reflect the best thinking of the
mathematical software community. Four meetings soliciting input were held.
These occurred at SIAM conferences: the “Spring Meeting of the Society”
(Seattle, Washington, July 16-20, 1984), the “Conference on Applied Linear
Algebra” (Raleigh, North Carolina, April 29-May 2, 1985), the “Fall Meeting of
the Society” (Tempe, Arizona, October 28-30, 1985), and the “Conference on
Parallel Processing for Scientific Computing” (Norfolk, Virginia, November 18-
21,1985). In addition, we had discussions with the ACM-SIGNUM Board at the
board meeting in Seattle, Washington, in July 1984.

Earlier, a modified proposal was printed in SIGNUM Newsletter [6]. In that
document we invited readers to send us their views and suggestions for changes
to the design of the extended BLAS. Thus, we have appealed to a wide audience
within the mathematical software community. Our hope is that the proposed set
of routines that constitute the extended BLAS will find wide application in
future software for numerical linear algebra and provide a useful tool for imple-
mentors and users.

In this paper we refer to the existing BLAS of Lawson et al. as Level 1 BLAS,
and the new extended set as Level 2 BLAS. Level 2 BLAS involve O(mn) scalar
operations, where m and n are the dimensions of the matrix involved. These
could be programmed by a series of calls to Level 1 BLAS, though we do not
recommend that they be implemented in that way. Hence, in a natural sense,
Level 2 BLAS are performing basic operations at one level higher than Level 1
BLAS.
ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

FORTRAN Basic Linear Algebra Subprograms 3

In [7] we present a model implementation of the Level 2 BLAS in
FORTRAN 77 (extended to include a COMPLEX* 16 data type), and also a set
of rigorous test programs.

2. SCOPE OF THE LEVEL 2 BLAS

The following three types of basic operation are performed by the Level 2 BLAS:

(1) matrix-vector products of the form

Y + akx + BY, y t aATx + By, and y t cdTx + py,

where (Y and fi are scalars, x and y are vectors, and A is a matrix; and

XhTX, x t TTx, and x c TTx,

where x is a vector and T is an upper or lower triangular matrix.

(2) rank-one and rank-two updates of the form

A c axyT + A, A t axyT + A, H t axZT + H, and

H t axjjT + CUyZT + H,

where H is a Hermitian matrix.

(3) solution of triangular equations of the form

x c T-lx, x t T-Tx, and x + T-TX,

where T is a nonsingular upper or lower triangular matrix.

Where appropriate, the operations are applied to general, general band, Her-
mitian, Hermitian band, triangular, and triangular band matrices in both real
and complex arithmetic, and in single and double precision.

In Appendix B we propose corresponding sets of routines in which the internal
computation is performed in extended precision, and the vectors x and/or y are
stored in extended precision, so that the extra internal precision is not all
discarded on return from the routine. This proposal is aimed at environments
that support extended-precision arithmetic, for example, machines performing
IEEE arithmetic [lo]. We propose these routines as an optional extension to the
Level 2 BLAS because it is not possible to specify a complete set within the
confines of ANSI FORTRAN 77. The only case that can be realized within the
standard is where the matrix is real single precision and the extended-precision
vectors are real double precision. Code for these routines is not included in [7].

3. NAMING CONVENTIONS

The name of a Level 2 BLAS is in the LINPACK style and consists of five
characters, the last of which may be blank. The first character in the name
denotes the FORTRAN data type of the matrix, as follows:

S REAL,
D DOUBLE PRECISION,
C COMPLEX, and
2 COMPLEX*16 or DOUBLE COMPLEX (if available).

ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

4 l J. J. Dongarra, J. Du Croz, S. Hammarling, and FL J. Hanson

Table I. Names of the Level 2 BLAS

COMPLEX REAL MV R R2 SV

CGE SGE * *
CGB SGB *
CHE SSY * * *
CHP SSP * * *
CHB SSB *
CTR STR * *

CTP STP * *

CTB STB * *

Characters two and three in the name denote the kind of matrix involved, as
follows:

GE
GB
HE
SY
HP
SP
HB
SB
TR
TP
TB

general matrix,
general band matrix,
Hermitian matrix,
symmetric matrix,
Hermitian matrix stored in packed form,
symmetric matrix stored in packed form,
Hermitian band matrix,
symmetric band matrix,
triangular matrix,
triangular matrix stored in packed form, and
triangular band matrix.

The fourth and fifth characters in the name denote the type of operation, as
follows:

MV matrix-vector product,
R rank-one update,
R2 rank-two update, and
sv solving a system of linear equations.

The available combinations are indicated in Table I. In the first column, under
“COMPLEX,” the initial C may be replaced by Z. In the second column, under
“REAL,” the initial S may be replaced by D. See Appendix C for the full
subroutine calling sequences.

The collection of routines can be thought of as being divided into four separate
parts: REAL, DOUBLE PRECISION, COMPLEX, and COMPLEX*16. The
routines can be written in ANSI standard FORTRAN 77, with the exception of
the routines that use COMPLEX*16 variables. These routines are included for
completeness and for their usefulness on those systems that support this data
type, but because they do not conform to the FORTRAN standard, they may not
be available on all machines.

For the general rank-l update (GER), we specify two complex routines: CGERC
for A t (yxyT + A and CGERU for A t axyT + A. This is the only exception to
the one-to-one correspondence between REAL and COMPLEX routines. See
Section 7 for further discussion.
ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

FORTRAN Basic Linear Algebra Subprograms l 5

We do not specify routines for rank-l and rank-2 updates applied to band
matrices, because these can be obtained by calls to the rank-l and rank-2 full
matrix routines. This is illustrated in Appendix A.

4. ARGUMENT CONVENTIONS

We follow a convention for the argument lists similar to that for the Level 1
BLAS, but with extensions where comparable arguments are not present in the
Level 1 BLAS. The order of the arguments is as follows:

(1) arguments specifying options,
(2) arguments defining the size of the matrix,
(3) input scalar,
(4) description of the input matrix,
(5) description of input vector(s),
(6) input scalar (associated with the input/output vector),
(7) description of the input/output vector, and
(8) description of the input/output matrix.

Note that not each category is present in each of the routines.
The arguments that specify options are character arguments with the names

TRANS, UPLO, and DIAG. TRANS is used by the matrix-vector product
routines, as shown in Table II. In the REAL case, the values ‘T’ and ‘C’ have
the same meaning.

UPLO is used by the Hermitian, symmetric, and triangular matrix routines
to specify whether the upper or lower triangle is being referenced, as shown in
Table III.

DIAG is used by the triangular matrix routines to specify whether or not the
matrix is unit triangular, as shown in Table IV. When DIAG is supplied as ‘U’,
the diagonal elements are not referenced.

We recommend that the corresponding lowercase characters be accepted with
the same meaning, although, because they are not included in the standard
FORTRAN character set, their use may not be supported on all systems. See
Section 7 for further discussion.

It is worth noting that actual character arguments in FORTRAN may be
longer than the corresponding dummy arguments. Therefore, for example, the
value ‘T’ for TRANS may be passed as TRANSPOSE.

The size of the matrix is determined by the arguments M and N for an
m-by-n rectangular matrix, and by the argument N for an n-by-n symmetric,
Hermitian, or triangular matrix. Note that it is permissible to call the routines
with M or N = 0, in which case the routines exit immediately without referencing
their vector or matrix arguments. The bandwidth is determined by the arguments
KL and KU for a rectangular matrix with kl subdiagonals and ku superdiagonals,
respectively; and by the argument K for a symmetric, Hermitian, or triangular
matrix with k subdiagonals and/or superdiagonals.

The description of the matrix consists of either the array name (A) followed
by the leading dimension of the array (LDA) as declared in the calling
(sub)program, when the matrix is being stored in a two-dimensional array; or the

ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

6 l J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson

Table II. Meaninn of TRANS

Value Meaning

‘N’ Operate with the matrix
‘T' Operate with the transpose of the matrix
‘C’ Operate with the conjugate transpose of the matrix

Table III. Meaning of UPLO

Value Meaning

‘U
‘L'

Upper triangle
Lower triangle

Table IV. Meaning of DIAG

Value Meaning

‘U
‘N’

Unit triangular
Nonunit triandar

array name (AP) alone when the matrix is being stored in packed form in a one-
dimensional array. In the former case, the actual array must contain at least
((n - l)d + 1) elements, where d is the leading dimension of the array, d L 1,
and 1 = m for the GE routines, 1 = n for the SY, HE, and TR routines,
1 = kZ + ku + 1 for the GB routines, and Z = k + 1 for the SB, HB, or
TB routines. For packed storage the actual array must contain at least
n(n + 1)/2 elements.

The scalars always have the dummy argument names ALPHA and BETA.
As with the existing BLAS, the description of a vector consists of the name of

the array (X or Y) followed by the storage spacing (increment) in the array of
the vector elements (INCX or INCY). The increment is allowed to be positive
or negative, but not 0 (see Section 7). When the vector x consists of k ele-
ments, the corresponding actual array argument X must be of length at least
(1 + (k - 1) 1 IAK’X 1). For those routines that include the argument BETA, when
BETA is supplied as 0, the array Y need not be set on input, so that operations
such as y t OrAx may be performed without initially setting y to 0.

Note that the MV routines must not be called with the dummy arguments X
and Y associated with the same actual argument. (Such association is not sup-
ported by the model implementation and would also contravene the FORTRAN
standard.)

The following values of arguments are invalid.
Any value of the character arguments DIAG, TRANS, or UPLO whose meaning
is not specified is;
M < 0;
N < 0;
KL ~0;
KU <O;
K < 0;
ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

FORTRAN Basic Linear Algebra Subprograms 7

LDA < max(1, M) for the GE routines;
LDA < KL + KU + 1 for the GB routines;
LDA < N for the HE, SY, and TR routines;
LDA < K + 1 for the HB, SB, and TB routines;
INCX = 0; and
INCY = 0.

If a routine is called with an invalid value for any of its arguments, then it must
report the fact and terminate execution of the program. In the model implemen-
tation (see [7]), each routine, on detecting an error, calls a common error-
handling routine XERBLA, passing to it the name of the routine and the number
of the first argument that is in error. Specialized implementations may call
system-specific exception-handling and diagnostic facilities, either via an
auxiliary routine XERBLA or directly from the routines. One advantage
of using XERBLA is that the test program can then test that all errors are
detected (see [7]).

5. STORAGE CONVENTIONS

Unless otherwise stated it is assumed that matrices are stored conventionally in
a two-dimensional array with matrix element cij stored in array element A(I, J).

The routines for real symmetric and complex Hermitian matrices allow for the
matrix either to be stored in the upper (UPLO = ‘U’) or lower (UPLO = ‘L’)
triangle of a two-dimensional array, or to be packed in a one-dimensional array.
In the latter case, the upper triangle may be packed sequentially column by
column (UPLO = ‘U’), or the lower triangle may be packed sequentially column
by column (UPLO = ‘L’). Note that for real symmetric matrices packing the
upper triangle by columns is equivalent to packing the lower triangle by rows,
and packing the lower triangle by columns is equivalent to packing the upper
triangle by rows. (For complex Hermitian matrices, the only difference is that
the off-diagonal elements are conjugated.)

For triangular matrices the argument UPLO serves to define whether the
matrix is upper (UPLO = ‘U’) or lower (UPLO = ‘L’) triangular. In packed
storage the triangle has to be packed by column.

The band matrix routines allow storage in the same style as with LINPACK,
so that thejth column of the matrix is stored in the jth column of the FORTRAN
array. For a general band matrix, the diagonal of the matrix is stored in row
ku + 1 of the array. For a Hermitian or symmetric matrix, either the upper tri-
angle (UPLO = ‘U’) may be stored, in which case the leading diagonal is in row
k + 1 of the array, or the lower triangle (UPLO = ‘L’) may be stored, in which
case the leading diagonal is in the first row of the array. For an upper triangular
band matrix (UPLO = ‘U’), the leading diagonal is in row k + 1 of the array, and
for a lower triangular band matrix (UPLO = ‘L’), the leading diagonal is in the
first row.

For a Hermitian matrix, the imaginary parts of the diagonal elements are of
course 0, and thus the imaginary parts of the corresponding FORTRAN array
elements need not be set, but are assumed to be 0. In the R and R2 routines,

ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

8 l J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson

these imaginary parts will be set to 0 on return, except when CY = 0, in which
case the routines exit immediately.

For packed triangular matrices, the same storage layout is used whether or not
DIAG = ‘u’; that is, space is left for the diagonal elements even if those array
elements are not referenced.

6. SPECIFICATION OF THE LEVEL 2 BLAS

Type and dimension for variables occurring in the subroutine specifications are
as follows:

INTEGER INCX, INCY, K, KL, KU, LDA, M, N
CHARACTER*1 DIAG, TRANS, UPLO

For routines whose first letter is S:

REAL ALPHA, BETA
REAL X(*), Y(*)
REAL A(LDA, *)
REAL AP(*)

For routines whose first letter is D:

DOUBLE PRECISION ALPHA, BETA
DOUBLE PRECISION X(*), Y(*)
DOUBLE PRECISION A(LDA, *)
DOUBLE PRECISION AP (*)

For routines whose first letter is C:

COMPLEX ALPHA
COMPLEX BETA
COMPLEX X(*), Y(*)
COMPLEX A(LDA, *)
COMPLEX AP (*)

Except that for CHER and CHPR the scalar (Y is REAL, so that the first
declaration above is replaced by

REAL ALPHA

For routines whose first letter is 2, one of the alternative (nonstandard) specifi-
cations is:

COMPLEX*16 ALPHA DOUBLE COMPLEX ALPHA
COMPLEX*16 BETA DOUBLE COMPLEX BETA
COMPLEX*16 X(*), Y (*) DOUBLE COMPLEX X(*), Y(*)
COMPLEX*16 A(LDA, *) DOUBLE COMPLEX A(LDA, *)
COMPLEX*16 AP (*) DOUBLE COMPLEX AP(*)

except that for ZHER and ZHPR the first declaration above is replaced by

DOUBLE PRECISION ALPHA

The generic names, argument lists, and specifications for the extended BLAS
now follow. Refer to Table I for the specific subroutine names.
ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

FORTRAN Basic Linear Algebra Subprograms l 9

In the following argument lists, the array name AP is used for the cases where
the matrix A is supplied in packed form; in all other cases, the array name A is
used:

(1) General matrix vector products.

For a general matrix,

-GEMV(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

for a general band matrix,

-GBMV(TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y,
INCY)

Operation:

if TRANS = ‘N’, y t aAx + py;
if TRANS = ‘T’, y t aATx + By;
if TRANS = ‘C’, y t dmTx + ,f3y.

(2) Symmetric or Hermitian matrix vector products.

For a symmetric or Hermitian matrix,

SYMV(UPL0, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
-HEMV(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

for a symmetric or Hermitian matrix in packed storage,

SPMV(UPL0, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
-HPMV(UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

for a symmetric or Hermitian band matrix,

SBMV(UPL0, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
-HBMV(UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

Operation:

y + o!Ax + py.

(3) Triangluar matrix vector products.

For a triangular matrix,

-TRMV(UPLO, TRANS, DIAG, N, A, LDA, X, INCX)

for a triangular matrix in packed storage,

-TPMV(UPLO, TRANS, DIAG, N, AP, X, INCX)

for a triangular band matrix,

-TBMV(UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)

Operation:

if TRANS = ‘N’, x t Ax;
if TRANS = ‘T’, x t ATx;
if TRANS = ‘C’, x t xTx.

ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

10 - J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson

(4) Triangular equation solvers.

For a triangular matrix,

-TRSV(UPLO, TRANS, DIAG, N, A, LDA, X, INCX)

for a triangular matrix in packed storage,

-TPSV(UPLO, TRANS, DIAG, N, AP, X, INCX)

for a triangular band matrix

-TBSV(UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)

Operation:

if TRANS = ‘N’, x t A-Ix;
if TRANS = ‘T’, x t AeTx;
if TRANS = ‘C’, x t xeTx.

(5) General rank-l updates.

For a general matrix,

-GER-(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)

for real matrices,

SGER or DGER performs the operation A t axyT + A;

for complex matrices,

CGERC or ZGERC performs the operation A t axyT + A, and
CGERU or ZGERU performs the operation A t axyT + A.

(6) Symmetric or Hermitian rank-l updates.

For a symmetric or Hermitian matrix,

-SYR(UPLO, N, ALPHA, X, INCX, A, LDA)
-HER(UPLO, N, ALPHA, X, INCX, A, LDA)

for a symmetric or Hermitian matrix in packed storage,

-SPR(UPLO, N, ALPHA. X, INCX, AP)
-HPR(UPLO, N, ALPHA, X, INCX, AP)

Operation:

A t axET + A;

for real symmetric matrices, this is simply

A + cxxxT + A.
ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

FORTRAN Basic Linear Algebra Subprograms 11

(7) Symmetric or Hermitian rank-2 updates.

For a symmetric or Hermitian matrix,

SYR:!(UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)
-HERB(UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)

for a symmetric or Hermitian matrix in packed storage,

SPRB(UPL0, N, ALPHA, X, INCX, Y, INCY, AP)
-HPRB(UPLO, N, ALPHA, X, INCX, Y, INCY, AP)

Operation:

A t axTT + Gy3CT + A;

for real symmetric matrices, this is simply

A t axyT + ayxT + A.

7. RATIONALE

The three basic matrix-vector operations chosen (Section 2) were obvious can-
didates because they occur in a wide range of linear algebra applications and
occur at the innermost level of many algorithms. The hard decision was to restrict
the scope only to these operations, since there are many other potential candi-
dates such as matrix scaling and sequences of plane rotations. Similarly, we could
have extended the scope by applying the operations to other types of matrices
such as complex symmetric or augmented band matrices. We have aimed at a
reasonable compromise between a much larger number of routines each perform-
ing one type of operation (e.g., 3c t LeTx), and a smaller number of routines with
a more complicated set of options. There are in fact, in each precision, 16 real
routines performing altogether 43 different operations, and 17 complex routines
performing 58 different operations.

We feel that to extend the scope further would significantly reduce the chances
of having the routines implemented efficiently over a wide range of machines,
because it would place too heavy a burden on implementors. On the other hand,
to restrict the scope further would place too narrow a limit on the potential
applications of the Level 2 BLAS.

We have adhered to the conventions of the Level 1 BLAS in allowing an
increment argument to be associated with each vector, so that a vector could, for
example, be a row of a matrix. This increment may be negative, in which case
the elements of the vectors are taken in reverse order. This affects the definition
of the operation. For example, if m = n = 3 and INCX and INCY are both
negative, the -GEMV routines with TRANS = ‘N’ perform the operation

(zz) * +; 1 2)@ + (cl).

In contrast to the Level 1 BLAS, however, we do not allow INCX or
INCY to be 0. This feature would have little usefulness, it would complicate

ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

12 l J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson

implementation of the routines on many vector machines, and when the associ-
ated vector is an output vector, its meaning is ambiguous.

As noted earlier, corresponding to the real routine SGER we specify two
complex routines: CGERC (for A t axyT + A) and CGERU (for A t axyT + A).
Both are frequently required. An alternative would be to provide a single
complex routine CGER with an option argument; however, this argument would
become redundant in the real routine SGER. Rather than have redundant
arguments, or different argument lists for the real and complex routines, we have
chosen two distinct complex routines; they are analogous to the Level 1 BLAS
CDOTC (c t ZTy) and CDOTU (c t xTy).

Note that no check has been included for singularity, or near singularity, in
the triangular equation-solving routines. The requirements for such a test depend
on the application, and so we felt that this should not be included, but should
instead be performed before calling the triangular solver.

On certain machines that do not use the ASCII sequence on all of their
FORTRAN systems, lowercase characters may not exist, so that the innocent
looking argument ‘t’, passed through the argument TRANS for designating a
transposed matrix, is not in the FORTRAN character set. Some UNIVAC
systems do not have a lowercase representation using the “field data” character
set. On the CDC NOS-2 system, a mechanism is provided for a full 128 ASCII
character set by using pairs of 6-bit host characters for certain 7-bit ASCII
characters. This means that there is a two-for-one physical extension of the
logical records that contain lowercase letters. This fact can hamper portability
of codes written on ASCII machines that are later moved to CDC systems. The
only safe way to proceed is to convert the transported text entirely into the
FORTRAN character set. On the other hand, we believe that users on ASCII
character set systems may wish to treat upper- and lowercase letters as equivalent
in meaning. If this is done, it means that text that will be transported to machines
of unknown types must have the ASCII set mapped into the FORTRAN character
set before the text is moved.

The band storage scheme used by the GB, HB, SB, and Tk routines has
columns of the matrix stored in columns of the array, and diagonals of the matrix
stored in rows of the array. This is the storage scheme used by LINPACK. An
alternative scheme (used in some EISPACK routines [8, 131) has rows of the
matrix stored in rows of the array, and diagonals of the matrix stored in columns
of the array. The latter scheme has the advantage that a band matrix-vector
product of the form y t CYAX + py can be computed using long vectors (the
diagonals of the matrix) stored in contiguous elements, and hence is much more
efficient on some machines (e.g., CDC Cyber 205) than the first scheme. Other
computations involving band matrices, however, such as x t TX, x t T-lx, and
LU, and UTU factorization, cannot be organized “by diagonals”; instead, the
computation sweeps along the band, and the LINPACK storage scheme has the
advantage of reducing the number of page swaps and allowing contiguous vectors
(the columns of the matrix) to be used.

We considered the possibility of generalizing the rank-l and rank-2 updates to
rank-k updates. Rank-K updates with k > 1 (but Iz < n) can achieve significantly
better performance on some machines than rank-l [4]. But to take advantage of
ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

FORTRAN Basic Linear Algebra Subprograms l 13

-GW(DUNS. M. N. ALPHA, A. IDA. X. INCX. BETA. Y. INCY)

Pm(‘IRANS. M. N. ILL. Ku. ALPHA, A. IDA. X. INa. BBTA. Y, INCY)

~~(UPW. N* ALPHA, A. IDA. X, INCX. BETA. Y. INCY)

-HIM/(UPW. N. K. ALPHA. A. IDA. X. INCX. BETA. Y, INCY)

-HPMv(UPW. N. ALPHA, AP. X. INCX. BETA, Y. INCY)

-SYMv(UPW. N. ALPHA, A. IDA. X. INa. BETA, Y. INCY)

-SFwv(UPW. N. K. ALPHA, A. IDA, X. INa. BETA. Y, INCY)

~SPhlv(UPW. N. ALPHA, M. X. INa. BETA. Y. INCY)

-TRMV(UPW, TRANS. DIM?. N. A. IDA. X. INCX)

-TFMV(UPW. ‘IRANS. DIffi. N. X. A. WA. X. INa)

-TPMV(UPW. TRANS. DIAG. N. Ap. x. INa)

-TRSV(UPW. MS. DIAG. N.

-TBSV(UPLO. IRANS. DIAG. N. X.

-TPSV(UPW. lRAN.9. DIAG. N.

A. WA. X. IXX)

A. IDA. X. INa)

M. X. INCX)

-‘=k(

BJ= (

APR (

-HER2 (

-HPRZ(

-sm (

-SPR (

-=R2(
JPR2 (

opt ions dim

hi, N. ALPHA, X. IN% Y. INCY. A, LDA)

N. ALPHA, X. INCX. A. LDA)

N. ALPHA, X. INa. WP)

N, ALPHA, X. INQ[. Y. INCY. A. LDA)

N. ALPHA. X. INQ(. Y. INCY. AP)

N. ALPHA, X, INCX. A. LDA 1

N. ALPHA, X. INCX. M)

N. ALPHA, X. INCX. Y. INCY. A. LDA 1

N. ALPHA, X. INCX, Y. INCY. AP)

Fig. 1. Rank-l update of a band matrix.

this usually requires complicating the calling algorithm; and moreover, rank-k
updates with k = n would allow an even higher level operation such as matrix
multiplication “in by the back door.” We prefer to keep to a clean concept of
genuine matrix-vector operations.

APPENDIX A

In this appendix we illustrate how to use the full matrix update routines to obtain
rank-l and rank-2 updates to band matrices. We assume the vectors x and y are
such that no fill-in occurs outside the band, in which case the update affects
only a full rectangle within the band matrix A. This is illustrated in Figure 1
for the case where m = n = 9, kl = 2, ku = 3, and the update commences in
row (and column) 1 = 3. We see that the update affects only that part of A
indicated by the dotted lines, that is, the (kl -t 1)-by-(ku + 1) part of A starting
at alI.

ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

14 - J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson

The routines that we could have included are -GBR, SBR, and -SBRB (in
the complex case, -HBR and -HBRB). Their argument lists could have been

-GBR(M, N, KL, KU, L, ALPHA, X, INCX, Y, INCY, A, LDA)
SBR(UPL0, N, K, L, ALPHA, X, INCX, A, LDA)
SBRB(UPL0, N, K, L, ALPHA, X, INCX, Y, INCY, A, LDA)

where the argument L denotes the starting row and column for the update, and
the elements x1 and yI, of the vectors x and y, are in elements X(1) and Y(1) of
the arrays X and Y.

Calls to SGBR can be achieved by

KM = MIN(KL + 1, M - L + 1)
KN = MIN(KU + 1, N - L + 1)

CALL SGER(KM, KN, ALPHA, X, INCX, Y, INCY, A(KU + 1, L),
MAX(KM, LDA - 1))

Calls to SSBR can be achieved by

KN = MIN(K + 1, N - L + 1)
IF (UPLO .EQ. ‘U’) THEN

CALL SSYR(‘U’, KN, ALPHA, X, INCX, A(K + 1, L), MAX(1, LDA - 1))
ELSE

CALL SSYR(‘L’, KN, ALPHA, X, INCX, A(l, L), MAX(l, LDA - 1))
END IF;

and similarly for calls to SSBRB.

APPENDIX B

In this appendix we propose an additional set of real and complex Level 2 routines
that allow extended-precision matrix-vector operations to be performed. The
names of these routines are obtained by preceding the character representing the
FORTRAN data type (S or C) by the character E. The matrix is always stored
in working precision (which is single precision for the ES- and EC- set of
routines, and double precision for the ED- and EZ- set). The computation must
be performed in extended precision (which is more accurate than the working
precision).

Such routines are useful, for example, in the accurate computation of residuals
in iterative refinement. Many machines have extended-precision registers in
which extended-precision computation is performed at little or no extra cost. In
order to allow the additional precision to be carried through a series of calls to
these routines, however, at least one, in some cases both, of the vectors x and y
must be stored in extended precision.

These routines are to perform the operations described in Section 2 as follows:

For the matrix-vector operations,

Y + CYAx + BY, Y + @ATx + PY, y t cYLTTx + py,

(Y, @, A, and x are working precision, y is extended precision, and the computation
of y is to be performed in extended precision.
ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

FORTRAN Basic Linear Algebra Subprograms 15

For the triangular operations,

x t TX, x t TTx, x t TTx,
x t T-lx, x t T-Tx, x t T-TX,

T is working precision, x is extended precision, and the computation of x is to be
performed in extended precision.

For the rank-l and rank-2 updates,

A t axyT + A, A t axjjT + A,
H t axZT + H, H t axjjT + tiyZT + H,

(Y, A, and H are working precision, x and y are extended precision, and the
computation is to be performed in extended precision.

The precise nature of the extended-precision data type cannot be specified
here. The amount of extra precision available will depend on the architecture of
the machine and the compiler; whether this is sufficient will depend on the
application. For the rest of this appendix, we assume double precision is used to
implement extended precision in the ES and EC routines, and quadruple precision
in the ED and EZ routines (note, however, that quadruple precision is not
specified in IEEE arithmetic). Then the ES- set of routines can be called and
implemented in standard FORTRAN 77. The EC- set requires the addition of a
COMPLEX*16 data type, as does the basic Z- set, but can be used across a wide
range of machines. The ED-set requires the addition of a REAL*16 (quadruple-
precision REAL) data type, while the EC- set requires a COMPLEX*32 (quad-
ruple-precision COMPLEX) data type; these data types are provided on some
systems. We strongly recommend that, if implementors provide extended-preci-
sion routines using these data types, they adhere to the specifications described
here, so that at least a limited degree of portability may be achieved.

To test thoroughly that extended precision is used as specified in the internal
computations requires an extra degree of sophistication from the test program.
For all these reasons, neither a model implementation of the extended-precision
routines nor a test program for them has been included in [7]; code for the ES-
and EC- sets of routines may be obtained from the authors.

The specifications of the arguments remain exactly as in Section 6 except for
the following:

for ESGEMV, ESGBMV, ESSYMV, ESSBMV, ESSPMV, ESGER, ESSYRS,
and ESSPR2,

DOUBLE PRECISION Y (*)

for the corresponding EC routines,

COMPLEX*16 Y (*) (or equivalent)

for the corresponding ED routines,

REAL*16 Y (*) (or equivalent)

for the corresponding EZ routines,

COMPLEX*32 Y (*) (or equivalent)
ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

16 l J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson

for ESTRMV, ESTBMV, ESTPMV, ESTRSV, ESTBSV, ESTPSV, ESGER,
ESSYR, ESSPR, ESSYRB, and ESSPRB,

DOUBLE PRECISION X (*)

for the corresponding EC routines,

COMPLEX*16 X(*) (or equivalent)

for the corresponding ED routines,

REAL*16 X(*) (or equivalent)

for the corresponding EZ routines,

COMPLEX*32 X (*) (or equivalent)

APPENDIX C

This appendix contains the calling sequences for the Level 2 BLAS.

(* * l *
) (O)(O 0 * * + + 0 0 0)

(* * l --*--*-- 1 (0)
(l

I I* * * l , 1 (*I
(*I* + * *,* 1 (*I
(I* * * *,* * -- -- -_ I+ (‘1
(* + * + * * 1 (0)
(* + * * * 1 (0)
(* + l

*) (0)

(* * *)
(0)

A+xy*

ACKNOWLEDGMENTS

A draft proposal that led to this specification was discussed at the “Parvec IV
Workshop” organized by John Rice at Purdue University on October 29-30,
1984, and at various SIAM conferences. We wish to thank all the participants at
the workshop and meetings for their comments, discussions, and encouragement,
as well as the many people who have sent us comments separately. We particu-
larly thank Ingrid Bucher and Tom Jordan who proposed the use of the p
parameter, and Velvel Kahan for insisting that we think about the extended-
precision issue.

The editing of this paper was supervised by John Reid, Associate Editor,
TOMS.

REFERENCES

1. DODSON, D. S., AND LEWIS, J. G. Issues relating to extension of the basic linear algebra
subprograms. SIGNUM Newsl. (ACM) 20, 1 (1985), 19-22.

2. DONGARRA, J. J. Increasing the performance of mathematical software through high-level
modularity. In Proceedings of the 6th International Symposium on Computing Methods in

ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

FORTRAN Basic Linear Algebra Subprograms 17

Engineering and Applied Sciences (Versailles, France), North-Holland, Amsterdam, 1984, pp.
239-248.

3. DONGARRA, J. J., AND EISENSTAT, S. C. Squeezing the most out of an algorithm in CRAY
FORTRAN. ACM Trans. Math. Softw. IO, 3 (Sept. 1984), 219-230.

4. DONGARRA, J. J., KAUFMAN, L., AND HAMMARLING, S. Squeezing the most out of eigenvalue
solvers on high-performance computers. Linear Algebra Appl. 77 (1986), 113-136.

5. DONGARRA, J. J., BUNCH, J. R., MOLER, C. B., AND STEWART, G. W. LINPACK Users’Guide.
SIAM, Philadelphia, Pa., 1979.

6. DONGARRA, J. J., Du CROZ, J. J., HAMMARLING, S., AND HANSON, R. J. A proposal for an
extended set of Fortran basic linear algebra subprograms. ACM SIGNUM Newsl. 20, 1 (1985).

7. DONGARRA, J. J., Du CROZ, J. J., HAMMARLING, S., AND HANSON, R. J. Algorithm 656: An
extended set of basic linear algebra subprograms: Model implementation and test programs. This
issue pp. 18-32.

8. GARBOW, B. S., BOYLE, J. M., DONGARRA, J. J., AND MOLER, C. B. Matrix Eigensystem
Routines-EISPACK Guide Extension. Lecture Notes in Computer Science, vol. 51. Springer-
Verlag, New York, 1977.

9. HANSON, R., KROGH, F., AND LAWSON, C. A proposal for standard linear algebra subprograms,
ACM SIGNUM Newsl. 8 (1973), 16.

10. IEEE. IEEE standard for binary floating-point arithmetic. ANSI/IEEE Stand. 754-1985, IEEE,
New York, 1985.

11. LAWSON, C. L., HANSON, R. J., KINCAID, D. R., AND KROGH, F. T. Algorithm 539: Basic linear
algebra subprograms for FORTRAN usage [Fl]. ACM Trcms. Math. Softw. 5, 3 (Sept. 1979),
324-325.

12. LAWSON, C. L., HANSON, R. J., KINCAID, D. R., AND KROGH, F. T. Basic linear algebra
subprograms for Fortran usage. ACM Trans. Math. Softw. 5,3 (Sept. 1979), 308-323.

13. SMITH, B. T., BOYLE, J. M., DONGARRA, J. J., GARBOW, B. S., IKEBE, Y., KLEMA, V. C., AND
MOLER, C. B. Matrix Eigensystem Routines-EISPACK Guide. Lecture Notes in Computer
Science, vol. 6. 2nd ed., Springer-Verlag, New York, 1976.

Received January 1987; accepted October 1987

ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988.

