
Annex BLegay BLASB.1 IntrodutionThis hapter addresses additional language bindings for the original Level 1, 2, and 3 BLAS. TheLevel 1, 2, and 3 BLAS will hereafter be referred to as the Legay BLAS.B.2 C interfae to the Legay BLASThis setion gives a detailed disussion of the proposed C interfae to the legay BLAS. Everymention of \BLAS" in this hapter should be taken to mean the legay BLAS. Eah interfaedeision is disussed in its own setion. Eah setion also ontains a Considered methods subsetion,where other solutions to that partiular problem are disussed, along with the reasons why thoseoptions were not hosen. These Considered methods subsetions are indented and italiized in orderto distinguish them from the rest of the text.It is largely agreed among the group (and unanimous among the vendors) that user demandfor a C interfae to the BLAS is insuÆient to motivate vendors to support a ompletely separatestandard. This proposal therefore on�nes itself to an interfae whih an be readily supported ontop of the already existing Fortran 77 allable BLAS (i.e., the legay BLAS).The interfae is expressed in terms of ANSI/ISO C. Very few platforms fail to provide ANSI/ISOC ompilers at this time, and for those platforms, free ANSI/ISO C ompilers are almost alwaysavailable (eg., g).B.2.1 Naming shemeThe naming sheme onsists of taking the Fortran 77 routine name, making it lower ase, andadding the pre�x blas . Therefore, the routine DGEMM beomes blas dgemm.Considered methodsVarious other naming shemes have been proposed, suh as adding C or to thename. Most of these shemes aomplish the requirement of separating the Fortran 77and C name spaes. It was argued, however, that the addition of the blas pre�x uni�esthe naming sheme in a logial and useful way (making it easy to searh for BLAS usein a ode, for instane), while not plaing too great a burden on the typist. The letter is used to distinguish this language interfae from possible future interfaes.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 181B.2.2 Indies and I AMAXThe Fortran 77 BLAS return indies in the range 1 � I � N (where N is the number of entriesin the dimension in question, and I is the index), in aordane with Fortran 77 array indexingonventions. This allows funtions returning indies to be diretly used to index standard arrays.The C interfae therefore returns indies in the range 0 � I < N for the same reason.The only BLAS routine whih returns an index is the funtion I AMAX. This funtion is delaredto be of type CBLAS INDEX, whih is guaranteed to be an integer type (i.e., no ast is required whenassigning to any integer type). CBLAS INDEX will usually orrespond to size t to ensure any arrayan be indexed, but implementors might hoose the integer type whih mathes their Fortran 77INTEGER, for instane. It is de�ned that zero is returned as the index for a zero length vetor (eg.,For N = 0, I AMAX will always return zero).B.2.3 Charater argumentsAll arguments whih were haraters in the Fortran 77 interfae are handled by enumerated typesin the C interfae. This allows for tighter error heking, and provides less opportunity for usererror. The harater arguments present in the Fortran 77 interfae are: SIDE, UPLO, TRANSPOSE,and DIAG. This interfae adds another suh argument to all routines involving two dimensionalarrays, ORDER. The standard ditates the following enumerated types:enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};enum CBLAS_UPLO {CblasUpper=121, CblasLower=122};enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132};enum CBLAS_SIDE {CblasLeft=141, CblasRight=142};Considered methodsThe other two most ommonly suggested methods were aepting these arguments aseither har * or har. It was noted that both of these options require twie as manyomparisons as normally required to branh (so that the harater may be either upperor lower ase). Both methods also su�ered from ambiguity (what does it mean to haveDIAG='H', for instane). If har was hosen, the words ould not be written out as theyan for the Fortran 77 interfae (you ouldn't write "NoTranspose"). If har * wereused, some ompilers might fail to optimize string onstant use, ausing unneessarymemory usage.The main advantage of enumerated data types, however, is that muh of the errorheking an be done at ompile time, rather than at runtime (i.e., if the user fails topass one of the valid options, the ompiler an issue the error).There was muh disussion as to whether the integer values should be spei�ed, orwhether only the enumerated names should be so spei�ed. The group ould �nd nosubstansive way in whih speifying the integer values would restrit an implementor,and speifying the integer values was seen as an aid to inter-language alls.B.2.4 Handling of omplex data typesAll omplex arguments are aepted as void *. A omplex element onsists of two onseutivememory loations of the underlying data type (i.e., float or double), where the �rst loationontains the real omponent, and the seond ontains the imaginary part of the number.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

182 ANNEX B. LEGACY BLASIn pratie, programmers' methods of handling omplex types in C vary. Some use various datastrutures (some examples are disussed below). Others aept omplex numbers as arrays of theunderlying type.Complex numbers are aepted as void pointers so that widespread type asting will not berequired to avoid warning or errors during ompilation of omplex ode.An ANSI/ISO ommittee is presently working on an extension to ANSI/ISO C whih de�nesomplex data types. The de�nition of a omplex element is the same as given above, and so thehandling of omplex types by this interfae will not need to be hanged when ANSI/ISO C standardis extended.Considered methodsProbably the most strongly advoated alternative was de�ning omplex numbers viaa struture suh asstrut NON PORTABLE COMPLEX ffloat r; float i;g; The main problem with thissolution is the lak of portability. By the ANSI/ISO C standard, elements in a strutureare not guaranteed to be ontiguous. With the above struture, padding between elementshas been experimentally observed (on the CRAY T3D), so this problem is not purelytheoretial.To get around padding problems within the struture, a struture suh asstrut NON PORTABLE COMPLEX ffloat v[2℄;g; has been suggested. With this stru-ture there will obviously be no padding between the real and imaginary parts. However,there still exists the possibility of padding between elements within an array. More im-portantly, this struture does not lend itself nearly as well as the �rst to ode larity.A �nal proposal is to de�ne a struture whih may be addressed the same as theone above (i.e., ptr->r, ptr->i), but whose atual de�nition is platform dependent.Then, hopefully, various vendors will either use the above struture and ensure viatheir ompilers its ontiguousness, or they will reate a di�erent struture whih an beaessed in the same way.This requires vendors to support something whih is not in the ANSI C standard,and so there is no way to ensure this would take plae. More to the point, use of suh astruture turns out to not o�er muh in the way of real advantage, as disussed in thefollowing setion.All of these approahes require the programmer to either use the spei�ed data typethroughout the ode whih will all the BLAS, or to perform type asting on eah BLASall. When omplex numbers are aepted as void pointers, no type asting or data typeis ditated, with the only restrition being that a omplex number have the de�nitiongiven above.B.2.5 Return values of omplex funtionsBLAS routines whih return omplex values in Fortran 77 are instead reast as subroutines in theC interfae, with the return value being an output parameter added to the end of the argumentlist. This allows the output parameter to be aepted as void pointers, as disussed above.Further, the name is suÆxed by sub. There are two main reasons for this name hange.First, the hange from a funtion to a subroutine is a signi�ant hange, and thus the name shouldreet this. More importantly, the \traditional" name spae is spei�ally reserved for use when theforthoming ANSI/ISO C extension is �nalized. When this is done, this C interfae will be extended

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 183to inlude funtions using the \traditional" names whih utilize the new ANSI/ISO omplex typeto return the values.Considered methodsThis is the area where use of a struture is most desired. Again, the most ommonsuggestion is a struture suh as strut NON_PORTABLE_COMPLEX {float r; float i;};.If one is willing to use this struture throughout one's ode, then this provides anatural and onvenient mehanism. If, however, the programmer has utilized a di�erentstruture for omplex, this ease of use breaks down. Then, something like the followingode fragment is required:NON_PORTABLE_COMPLEX tmp;float dot[2℄;tmp = blas_dot(n, x, 1, y, 1);dot[0℄ = tmp.r;dot[1℄ = tmp.i;whih is ertainly muh less onvenient than: blas_dot_sub(n, x, 1, y, 1, dot).It should also be noted that the primary reason for having a funtion instead of asubroutine is already invalidated by C's lak of a standard omplex type. Funtionsare most useful when the result may be used diretly as part of an in-line omputation.However, sine ANSI/ISO C laks support for omplex arithmeti primitives or operatoroverloading, omplex funtions annot be standardly used in this way. Sine the funtionannot be used as a part of a larger expression, nothing is lost by reasting it as asubroutine; indeed a slight performane win may be obtained.B.2.6 Array argumentsArrays are onstrained to being ontiguous in memory. They are aepted as pointers, not as arraysof pointers.All BLAS routines whih take one or more two dimensional arrays as arguments reeive oneextra parameter as their �rst argument. This argument is of the enumerated typeenum CBLAS ORDER fCblasRowMajor=101, CblasColMajor=102g;.If this parameter is set to CblasRowMajor, it is assumed that elements within a row of the array(s)are ontiguous in memory, while elements within array olumns are separated by a onstant stridegiven in the stride parameter (this parameter orresponds to the leading dimension [e.g. LDA℄ inthe Fortran 77 interfae).If the order is given as CblasColMajor, elements within array olumns are assumed to beontiguous, with elements within array rows separated by stride memory elements.Note that there is only one CBLAS ORDER parameter to a given routine: all array operands arerequired to use the same ordering.Considered methodsThis solution omes after muh disussion. C users appear to split roughly into twoamps. Those people who have a history of mixing C and Fortran 77 (in partiularmaking use of the Fortran 77 BLAS from C), tend to use olumn-major arrays in orderto allow ease of inter-language operations. Beause of the exibility of pointers, this is

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

184 ANNEX B. LEGACY BLASnot appreiably harder than using row-major arrays, even though C \natively" possessesrow-major arrays.The seond amp of C users are not interested in overt C/Fortran 77 interoperability,and wish to have arrays whih are row-major, in aordane with standard C onven-tions. The idea that they must reast their row-oriented algorithms to olumn-majoralgorithms is unaeptable; many in this amp would probably not utilize any BLASwhih enfored a olumn-major onstraint.Beause both amps are fairly widely represented within the target audiene, it isimpossible to hoose one solution to the exlusion of the other.Column-major array storage an obviously be supported diretly on top of the legayFortran 77 BLAS. Reent work, partiularly ode provided by D.P. Manley of DEC, hasshown that row-major array storage may also be supported in this way with little ost.Appendix B.2.12 disusses this issue in detail. To preview it here, we an say the level1 and 3 BLAS require no extra operations or storage to support row-major operationson top of the legay BLAS. Level 2 real routines also require no extra operations orstorage. Some omplex level 2 routines involving the onjugate transpose will requireextra storage and operations in order to form expliit onjugates. However, this willalways involve vetors, not the matrix. In the worst ase, we will need n extra storage,and 3n sign hanges.One proposal was to aept arrays as arrays of pointers, instead of as a single pointer.The problems with this approah are manifold. First, the existing Fortran 77 BLASould not be used, sine they demand ontiguous (though strided) storage. Seond, thisapproah requires users of standard C 2D arrays or 1D arrays to alloate and assign theappropriate pointer array.Beyond this, many of the vetors used in level 1 and level 2 BLAS ome from rowsor olumns of two dimensional arrays. Elements within olumns of row-major arraysare not uniformly strided, whih means that a n-element olumn vetor would need npointers to represent it. This then leads to vetors being aepted as arrays of pointersas well.Now, assuming both our one and two dimensional arrays are aepted as arrays ofpointers, we have a problem when we wish to perform sub-array aess. If we wish topass an m�n subsetion of a this array of pointers, starting at row i and olumn j, wemust alloate m pointers, and assign them in a setion of ode suh as:float **A, **subA;subA = mallo(m*sizeof(float*));for (k=0; k != m; k++) subA[k℄ = A[i+k℄ + j;blas_rout(... subA ...);The same operation must be done if we wish to use a row or olumn as a vetor.This is not only an inonveniene, but an add up to a non-negligible performane lossas well.A �x for these problems is that one and two dimensional arrays be passed as arraysof pointers, and then indies are passed in to indiate the sub-portion to aess. Thusyou have a all that looks like: blas_rout(... A, i, j, ...);. This solution stillrequires some additional tweaks to allow using two dimensional array rows and olumnsas vetors. Users presently using C 2D arrays or 1D arrays would have to mallo the

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 185array of pointers as shown in the preeding example in order to use this kind of interfae.At any rate, a library aepting pointers to pointers annot be supported on top of theFortran 77 BLAS, while one supporting simple pointers an.If the programmer is utilizing the pointer to pointer style of array indexing, it is stillpossible to use this library providing that the user ensures that the operand matrix isontiguous, and that the rows are onstantly strided. If this is the ase, the user maypass the operand matrix to the library in preiely the same way as with a 2D C array:blas_rout(... &A[i℄[j℄ ...);.Example 1: making a library all with a C 2D array:double A[50℄[25℄; /* standard C 2D array */blas_rout(CblasRowMajor, ... &A[i℄[j℄, 25, ...);Example 2: Legal use of pointer to pointer style programming and theCBLASdouble **A, *p;A = mallo(M);p = mallo(M*N*sizeof(double));for (i=0; i < M; i++) A[i℄ = &p[i*N℄;blas_rout(CblasRowMajor, ... &A[i℄[j℄, N, ...);Example 3: Illegal use of pointer to pointer style programming and theCBLASdouble **A, *p;A = mallo(M);p = mallo(M*N*sizeof(double));for (i=0; i < M; i++) A[i℄ = mallo(N*sizeof(double));blas_rout(CblasRowMajor, ... &A[i℄[j℄, N, ...);Note that Example 3 is illegal beause the rows of A have no guaranteed stride.B.2.7 Aliasing of argumentsUnless spei�ed otherwise, only input-only arguments (spei�ed with the onst quali�er), may belegally aliased on a all to the C interfae to the BLAS.Considered methodsThe ANSI C standard allows for the aliasing of output arguments. However, allowing this oftenarries a substantial performane penalty. This, along with the fat that Fortran 77 (whih wehope to all for optimized libraries) does not allow aliasing of output arguments, led us to makethis restrition.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

186 ANNEX B. LEGACY BLASB.2.8 C interfae inlude �leThe C interfae to the BLAS will have a standard inlude �le, alled blas.h, whih minimallyontains the de�nition of the CBLAS types and ANSI/ISO C prototypes for all BLAS routines.It is not an error to inlude this �le multiple times. Refer to setion B.2.11 for an example of aminimal blas.h.ADVICE TO THE IMPLEMENTOR:Note that the vendor is not onstrained to using preisely this inlude �le; only the enumerated typede�nitions are fully spei�ed. The implementor is free to make any other hanges whih are notapparent to the user. For instane, all matrix dimensions might be aepted as size t instead ofint, or the implementor might hoose to make some routines inline.B.2.9 Error hekingThe C interfae to the legay BLAS must supply error heking orresponding to that provided bythe referene Fortran 77 BLAS implementation.B.2.10 Rules for obtaining the C interfae from the Fortran 77� The Fortran 77 routine name is hanged to lower ase, and pre�xed by blas .� All routines whih aept two dimensional arrays (i.e., level 2 and 3), aquire a new parameterof type CBLAS ORDER as their �rst argument, whih determines if the two dimensional arraysare row or olumn major.� Charater arguments are replaed by the appropriate enumerated type, as shown in Se-tion B.2.3.� Input arguments are delared with the onst modi�er.� Non-omplex salar input arguments are passed by value. This allows the user to put inonstants when desired (eg., passing 10 on the ommand line for N).� Complex salar input arguments are passed as void pointers, sine they do not exist as aprede�ned data type in ANSI/ISO C.� Array arguments are passed by address.� Output salar arguments are passed by address.� Complex funtions beome subroutines whih return the result via a void pointer, added asthe last parameter. The name is suÆxed with sub.B.2.11 blas.h inlude �leThe blas.h inlude �le an be found on the BLAS Tehnial Forum webpage:http://www.netlib.org/blas/blast-forum/blas.h

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 187B.2.12 Using Fortran 77 BLAS to support row-major BLAS operationsThis setion is not part of the standard per se. Rather, it exists as an advie to the implementoron how row-major BLAS operations may be implemented using olumn-major BLAS. This allowsvendors to leverage years of Fortran 77 BLAS developement in produing the C BLAS.Before this issue is examined in detail, a few general observations on array storage are helpful.We must distinguish between the matrix and the array whih is used to store the matrix. Thematrix, and its rows and olumns, have mathematial meaning. The array is simply the method ofstoring the matrix, and its rows and olumns are signi�ant only for memory addressing.Thus we see we an store the olumns of a matrix in the rows of an array, for instane. Whenthis ours in the BLAS, the matrix is said to be stored in transposed form.A row-major array stores elements along a row in ontiguous storage, and separates the olumnelements by some onstant stride (often the atual length of a row). Column-major arrays haveontiguous olumns, and strided rows. The importane of this is to note that a row-major arraystoring a matrix in the natural way, is a transposed olumn-major array (i.e., it an be thought ofas a olumn-major array where the rows of the matrix are stored in the olumns of the array).Similarly, an upper triangular row-major array orresponds to a transposed lower triangularolumn-major array (the same is true in reverse [i.e., lower-to-upper℄, obviously). To see this,simply think of what a upper triangular matrix stored in a row-major array looks like. The �rst nentries ontain the �rst matrix row, followed by a non-negative gap, followed by the seond matrixrow.If this same array is viewed as olumn-major, the �rst n entries are a olumn, instead of a row,so that the olumns of the array store the rows of the matrix (i.e., it is transposed). This meansthat if we wish to use the Fortran 77 (olumn-major) BLAS with triangular matries oming fromC (possibly row-major), we will be reversing the setting of UPLO, while simultaneously reversingthe setting of TRANS (this gets slightly more ompliated when the onjugate transpose is involved,as we will see).Finally, note that if a matrix is symmetri or Hermitian, its rows are the same as its olumns,so we may merely swith UPLO, without bothering with TRANS.In the BLAS, there are two separate ases of importane. one dimensional arrays (storage forvetors) have the same meaning in both C and Fortran 77, so if we are solving a linear algebraproblem who's answer is a vetor, we will need to solve the same problem for both languages.However, if the answer is a matrix, in terms of alling routines whih use olumn-major storagefrom one using row-major storage, we will want to solve the transpose of the problem.To get an idea of what this means, onsider a ontrived example. Say we have routines forsimple matrix-matrix and matrix-vetor multiply. The vetor operation is y A � x, and thematrix operation is C A � B. Now say we are implementing these as alls from row-majorarray storage to olumn-major storage. Sine the matrix-vetor multiply's answer is a vetor, theproblem we are solving is remains the same, but we must remember that our C array A is a Fortran77 AT . On the other hand, the matrix-matrix multiply has a matrix for a result, so when thedi�ering array storage is taken into aount, the problem we want to solve is CT BT �AT .This last example demonstrates another general result. Some level 3 BLAS ontain a SIDEparameter, determining whih side a matrix is applied on. In general, if we are solving the transposeof this operation, the side parameter will be reversed.With these general priniples, it is possible to show that all that row-major level 3 BLAS anbe expressed in terms of olumn-major BLAS without any extra array storage or extra operations.In the level 2 BLAS, no extra storage or array aesses are required for the real routines. Complexroutines involving the onjugate transpose, however, may require a n-element temporary, and up

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

188 ANNEX B. LEGACY BLASto 3n more operations (vendors may avoid all extra workspae and operations by overloading theTRANS option for the level 2 BLAS: letting it also allow onjugation without doing the transpose).The level 1 BLAS, whih deal exlusively with vetors, are una�eted by this storage issue.With these ideas in mind, we will now show how to support a row-major BLAS on top of aolumn major BLAS. This information will be presented in tabular form. For brevity, row-majorstorage will be referred to as oming from C (even though olumn-major arrays an also ome fromC), while olumn-major storage will be referred to as F77.Eah table will show a BLAS invoation oming from C, the operation that the BLAS shouldperform, the operation required one F77 storage is taken into aount (if this hanges), and the allto the appropriate F77 BLAS. Not every possible ombination of parameters is shown, sine manyare simply reetions of another (i.e., when we are applying the Upper, NoTranspose beomesLower, Transpose rule, we will show it for only the upper ase. In order to make the notationmore onise, let us de�ne x to be onj(x).Level 2 BLASGEMVC all blas gemv(CblasRowMajor, CblasNoTrans, m, n, �, A, lda, x, inx, �, y, iny)op y �Ax+ �yF77 all CGEMV('T', n, m, �, A, lda, x, inx, �, y, iny)C all blas gemv(CblasRowMajor, CblasTrans, m, n, �, A, lda, x, inx, �, y, iny)op y �ATx+ �yF77 all CGEMV('N', n, m, �, A, lda, x, inx, �, y, iny)C all blas gemv(CblasRowMajor, CblasConjTrans, m, n, �, A, lda, x, inx, �, y, iny)op y �AHx+ �y) (y �ATx+ �y)F77 all CGEMV('N', n, m, �, A, lda, x, 1, �, y, iny)Note that we swith the value of transpose to handle the row/olumn major ordering di�erene.In the last ase, we will require n elements of workspae so that we may store the onjugated vetorx. Then, we set y = y, and make the all. This gives us the onjugate of the answer, so we oneagain set y = y. Therefore, we see that to support the onjugate transpose, we will need to alloatean n-element vetor, and perform 2m+ n extra operations.SYMVSYMV requires no extra workspae or operations.C all blas symv(CblasRowMajor, CblasUpper, n, �, A, lda, x, inx, �, y, iny)op y �Ax+ �y) y �ATx+ �yF77 all CSYMV('L', n, �, A, lda, x, inx, �, y, iny)HEMVHEMV routine requires 3n onjugations, and n extra storage.C all blas hemv(CblasRowMajor, CblasUpper, n, �, A, lda, x, inx, �, y, iny)op y �Ax+ �y) y �AHx+ �y) (y �ATx+ �y)F77 all CHEMV('L', n, �, A, lda, x, inx, �, y, iny)

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 189TRMV/TRSVC all blas trmv(CblasRowMajor, CblasUpper, CblasNoTrans, diag, n, A, lda, x, inx)op x AxF77 all CTRMV('L', 'T', diag, n, A, lda, x, inx)C all blas trmv(CblasRowMajor, CblasUpper, CblasTrans, diag, n, A, lda, x, inx)op x ATxF77 all CTRMV('L', 'N', diag, n, A, lda, x, inx)C all blas trmv(CblasRowMajor, CblasUpper, CblasConjTrans, diag, n, A, lda, x, inx)op x AHx) (x = ATx)F77 all CTRMV('L', 'N', diag, n, A, lda, x, inx)Again, we see that we will need some extra operations when we are handling the onjugatetranspose. We onjugate x before the all, giving us the onjugate of the answer we seek. We thenonjugate this again to return the orret answer. This routine therefore needs 2n extra operationsfor the omplex onjugate ase.The alls with the C array being Lower are merely the reetion of these alls, and thus arenot shown. The analysis for TRMV is the same, sine it involves the same priniple of what atranspose of a triangular matrix is.GER/GERUThis is our �rst routine that has a matrix as the solution. Realling that this means we solve thetranspose of the original problem, we get:C all blas geru(CblasRowMajor, m, n, �, x, inx, y, iny, A, lda)C op A �xyT +AF77 op AT �yxT +ATF77 all CGERU(n, m, �, y, iny, x, inx, A, lda)No extra storage or operations are required.GERCC all blas ger(CblasRowMajor, m, n, �, x, inx, y, iny, A, lda)C op A �xyH +AF77 op AT �(xyH)T +AT = �yxT +ATF77 all CGERU(n, m, �, y, iny, x, inx, A, lda)Note that we need to alloate n-element workspae to hold the onjugated y, and we all GERU,not GERC.HERC all blas her(CblasRowMajor, CblasUpper, n, �, x, inx, A, lda)C op A �xxH +AF77 op AT �xxT +ATF77 all CHER('L', n, �, x, 1, A, lda)Again, we have an n-element workspae and n extra operations.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

190 ANNEX B. LEGACY BLASHER2C all blas her2(CblasRowMajor, CblasUpper, n, �, x, inx, y, iny, A, lda)C op A �xyH + y(�x)H +AF77 op AT �yxT + �xyT +AT = �y(x)H + x(�y)H +ATF77 all CHER2('L', n, �, y, 1, x, 1, A, lda)So we need 2n extra workspae and operations to form the onjugates of x and y.SYRC all blas ssyr(CblasRowMajor, CblasUpper, n, �, x, inx, A, lda)C op A �xxT +AF77 op AT �xxT +ATF77 all SSYR('L', n, �, x, inx, A, lda)No extra storage or operations required.SYR2C all blas ssyr2(CblasRowMajor, CblasUpper, n, �, x, inx, y, iny, A, lda)C op A �xyT + �yxT +AF77 op AT �yxT + �xyT +ATF77 all SSYR2('L', n, �, y, iny, x, inx, A, lda)No extra storage or operations required.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 191Level 3 BLASGEMMC all blas gemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ld)C op C �AB + �CF77 op CT �BTAT + �CTF77 all CGEMM('N', 'N', n, m, k, �, B, ldb, A, lda, �, C, ld)C all blas gemm(CblasRowMajor, CblasNoTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ld)C op C �ABT + �CF77 op CT �BAT + �CTF77 all CGEMM('T', 'N', n, m, k, �, B, ldb, A, lda, �, C, ld)C all blas gemm(CblasRowMajor, CblasNoTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ld)C op C �ABH + �CF77 op CT �BAT + �CTF77 all CGEMM('C', 'N', n, m, k, �, B, ldb, A, lda, �, C, ld)C all blas gemm(CblasRowMajor, CblasTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ld)C op C �ATB + �CF77 op CT �BTA+ �CTF77 all CGEMM('N', 'T', n, m, k, �, B, ldb, A, lda, �, C, ld)C all blas gemm(CblasRowMajor, CblasTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ld)C op C �ATBT + �CF77 op CT �BA+ �CTF77 all CGEMM('T', 'T', n, m, k, �, B, ldb, A, lda, �, C, ld)C all blas gemm(CblasRowMajor, CblasTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ld)C op C �ATBH + �CF77 op CT �BA+ �CTF77 all CGEMM('C', 'T', n, m, k, �, B, ldb, A, lda, �, C, ld)C all blas gemm(CblasRowMajor, CblasConjTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ld)C op C �AHB + �CF77 op CT �BTA+ �CTF77 all CGEMM('N', 'C', n, m, k, �, B, ldb, A, lda, �, C, ld)C all blas gemm(CblasRowMajor, CblasConjTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ld)C op C �AHBT + �CF77 op CT �BA+ �CTF77 all CGEMM('T', 'C', n, m, k, �, B, ldb, A, lda, �, C, ld)C all blas gemm(CblasRowMajor, CblasConjTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ld)C op C �AHBH + �CF77 op CT �BA+ �CTF77 all CGEMM('C', 'C', n, m, k, �, B, ldb, A, lda, �, C, ld)

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

192 ANNEX B. LEGACY BLASSYMM/HEMMC all blas hemm(CblasRowMajor, CblasLeft, CblasUpper, m, n, �, A, lda, B, ldb, �, C, ld)C op C �AB + �CF77 op CT �BTAT + �CTF77 all CHEMM('R', 'L', n, m, �, A, lda, B, ldb, �, C, ld)C all blas hemm(CblasRowMajor, CblasRight, CblasUpper, m, n, �, A, lda, B, ldb, �, C, ld)C op C �BA + �CF77 op CT �ATBT + �CTF77 all CHEMM('L', 'L', n, m, �, A, lda, B, ldb, �, C, ld)SYRKC all blas syrk(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, �, C, ld)C op C �AAT + �CF77 op CT �AAT + �CTF77 all CSYRK('L', 'T', n, k, �, A, lda, B, ldb, �, C, ld)C all blas syrk(CblasRowMajor, CblasUpper, CblasTrans, n, k, �, A, lda, �, C, ld)C op C �ATA+ �CF77 op CT �ATA+ �CTF77 all CSYRK('L', 'N', n, k, �, A, lda, B, ldb, �, C, ld)In reading the above desriptions, it is important to remember a few things. First, the symmetrimatrix is C, and thus we hange UPLO to aommodate the di�ering storage of C. TRANSPOSE isthen varied to handle the storage e�ets on A.HERKC all blas herk(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, �, C, ld)C op C �AAH + �CF77 op CT �AAT + �CTF77 all CHERK('L', 'C', n, k, �, A, lda, B, ldb, �, C, ld)C all blas herk(CblasRowMajor, CblasUpper, CblasConjTrans, n, k, �, A, lda, �, C, ld)C op C �AHA+ �CF77 op CT �ATA+ �CTF77 all CHERK('L', 'N', n, k, �, A, lda, B, ldb, �, C, ld)SYR2KC all blas syr2k(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, B, ldb, �, C, ld)C op C �ABT + �BAT + �CF77 op CT �BAT + �ABT + �CT = �ABT + �BAT + �CTF77 all CSYR2K('L', 'T', n, k, �, A, lda, B, ldb, �, C, ld)C all blas syr2k(CblasRowMajor, CblasUpper, CblasTrans, n, k, �, A, lda, B, ldb, �, C, ld)C op C �ATB + �BTA+ �CF77 op CT �BTA+ �ATB + �CT = �ATB + �BTA+ �CTF77 all CSYR2K('L', 'N', n, k, �, A, lda, B, ldb, �, C, ld)

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 193Note that we one again wind up with an operation that looks the same from C and Fortran77, saving that the C operations wishes to form CT , instead of C. So one again we ip the settingof UPLO to handle the di�erene in the storage of C. We then ip the setting of TRANS to handlethe storage e�ets for A and B.HER2KC all blas her2k(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, B, ldb, �, C, ld)C op C �ABH + �BAH + �CF77 op CT �BAT + �ABT + �CT = �ABT + �BAT + �CTF77 all CHER2K('L', 'C', n, k, �, A, lda, B, ldb, �, C, ld)C all blas her2k(CblasRowMajor, CblasUpper, CblasConjTrans, n, k, �, A, lda, B, ldb, �, C, ld)C op C �AHB + �BHA+ �CF77 op CT �BTA+ �ATB + �CT = �ATB + �BTA+ �CTF77 all CHER2K('L', 'N', n, k, �, A, lda, B, ldb, �, C, ld)TRMM/TRSMBeause of their idential use of the SIDE, UPLO, and TRANSA parameters, TRMM and TRSM sharethe same general analysis. Remember that A is a triangular matrix, and thus when we handle itsstorage by ipping UPLO, we impliitly hange its TRANS setting as well. With this in mind, wehave:C all blas trmm(CblasRowMajor, CblasLeft, CblasUpper, CblasNoTrans, diag, m, n, �, A, lda, B, ldb)C op B �ABF77 op BT �BTATF77 all CTRMM('R', 'L', 'N', diag, n, m, �, A, lda, B, ldb)C all blas trmm(CblasRowMajor, CblasLeft, CblasUpper, CblasTrans, diag, m, n, �, A, lda, B, ldb)C op B �ATBF77 op BT �BTAF77 all CTRMM('R', 'L', 'T', diag, n, m, �, A, lda, B, ldb)C all blas trmm(CblasRowMajor, CblasLeft, CblasUpper, CblasConjTrans, diag, m, n, �, A, lda, B, ldb)C op B �AHBF77 op BT �BTAF77 all CTRMM('R', 'L', 'C', diag, n, m, �, A, lda, B, ldb)Banded routinesThe above tehniques an be used for the banded routines only if a C (row-major) banded arrayhas some sort of meaning when expanded as a Fortran banded array. It turns out that when thisis done, you get the transpose of the C array, just as in the dense ase.In Fortran 77, the banded array is an array whose rows orrespond to the diagonals of thematrix, and whose olumns ontain the seleted portion of the matrix olumn. To rephrase this,the diagonals of the matrix are stored in strided storage, and the relevant piees of the olumns ofthe matrix are stored in ontiguous memory. This makes sense: in a olumn-based algorithm, youwill want your olumns to be ontiguous for eÆieny reasons.In order to ensure our olumns are ontiguous, we will struture the banded array as shownbelow. Notie that the �rst KU rows of the array store the superdiagonals, appropriately spaed

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

194 ANNEX B. LEGACY BLASto line up orretly in the olumn diretion with the main diagonal. The last KL rows ontain thesubdiagonals.------ Super diagonal KU----------- Super diagonal 2------------ Super diagonal 1------------- main diagonal (D)------------ Sub diagonal 1----------- Sub diagonal 2------ Sub diagonal KLIf we have a row-major storage, and thus a row-oriented algorithm, we will similarly want ourrows to be ontiguous in order to ensure eÆieny. The storage sheme that is thus ditated isshown below. Notie that the �rst KL olumns store the subdiagonals, appropriately padded toline up with the main diagonal along rows.KL D KU| | | || | | | || | | | | || | | | | || | | | || | | |Now, let us ontrast these two storage shemes. Both store the diagonals of the matrix alongthe non-ontiguous dimension of the matrix. The olumn-major banded array stores the matrixolumns along the ontiguous dimension, whereas the row-major banded array stores the matrixrows along the ontiguous storage.This gives us our �rst hint as to what to do: rows stored where olumns should be, indiated,in the dense routines, that we needed to set a transpose parameter. We will see that we an dothis for the banded routines as well.We an further note that in the olumn-major banded array, the �rst part of the non-ontiguousdimension (i.e. the �rst rows) store superdiagonals, whereas the �rst part of the non-ontiguousdimension of row-major arrays (i.e., the �rst olumns) store the subdiagonals.We now note that when you transpose a matrix, the superdiagonals of the matrix beome thesubdiagonals of the matrix transpose (and vie versa).Along the ontiguous dimension, we note that we skip KU elements before oming to our �rstentry in a olumn-major banded array. The same happens in our row-major banded array, exeptthat the skipping fator is KL.All this leads to the idea that when we have a row-major banded array, we an onsider it asa transpose of the Fortran 77 olumn-major banded array, where we will swap not only m and n,but also KU and KL. An example should help demonstrate this priniple. Let us say we have thematrix A = " 1 3 5 72 4 6 8 #If we express this entire array in banded form (a fairly dumb thing to do, but good forexample purposes), we get KU = 3, KL = 1. In row-major banded storage this beomes:Cb = " X 1 3 5 72 4 6 8 X #

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 195So, we believe this should be the transpose if interpreted as a Fortran 77 banded array. Thematrix transpose, and its Fortran 77 banded storage is shown below:AT = 26664 1 23 45 67 8 37775) Fb = 2666664 X 21 43 65 87 X
3777775Now we simply note that sine Cb is row major, and Fb is olumn-major, they are atually thesame array in memory.With the idea that row-major banded matries produe the transpose of the matrix wheninterpreted as olumn-major banded matries, we an use the same analysis for the banded BLASas we used for the dense BLAS, noting that we must also always swap KU and KL.Paked routinesPaked routines are muh simpler than banded. Here we have a triangular, symmetri or Hermitianmatrix whih is paked so that only the relevant triangle is stored. Thus if we have an upper tri-angular matrix stored in olumn-major paked storage, the �rst element holds the relevant portionof the �rst olumn of the matrix, the next two elements hold the relevant portion of the seondolumn, et.With an upper triangular matrix stored in row-major paked storage, the �rst N elements holdthe �rst row of the matrix, the next N � 1 elements hold the next row, et.Thus we see in the Hermitian and symmetri ases, to get a row-major paked array orretlyinterpreted by Fortran 77, we will simply swith the setting of UPLO. This will mean that the rowsof the matrix will be read in as the olumns, but this is not a problem, as we have seen before.In the symmetri ase, sine A = AT the olumn and rows are the same, so there is obviously noproblem. In the Hermitian ase, we must be sure that the imaginary omponent of the diagonal isnot used, and it assumed to be zero. However, the diagonal element in a row when our matrix isupper will orrespond to the diagonal element in a olumn when our matrix is alled lower, so thisis handled as well.In the triangular ases, we will need to hange both UPLO and TRANS, just as in the denseroutines.With these ideas in mind, the analysis for the dense routines may be used unhanged for paked.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

