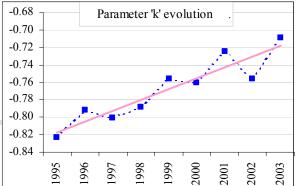

P2P technologies, PlanetLab, and their relevance to Grid work

Matei Ripeanu The University of Chicago

Why don't we build a huge supercomputer?



- Increasingly interesting to aggregate
 capabilities of the machines in the tail of this distribution.
 - A virtual machine that aggregates the last 10 in Top500 would rank 32nd in '95 but 14th in '03
- Grid and P2P computing are, in part, results of this trend:
 - Grids focus: *infrastructure enabling controlled, secure resource sharing (*for a relatively small number of resources)
 - P2P focus: *scale, deployability* using integrated stacks.

Challenge: design services that offer the best of both worlds

 complex, secure services, that deliver controlled QoS, are scalable and can be easily deployed.

Roadmap

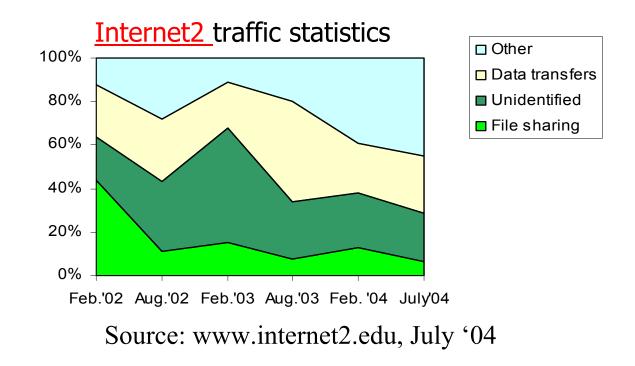
P2P

- Impact
- Applications
- Mechanisms
- PlanetLab
- Why is this interesting for you?
- Compare resource management in PlanetLab and Globus
 Wrap-Up

P2P Definition(s)

- Def 1: "A class of applications that take advantage of resources (e.g., storage, cycles, content) available at the edge of the Internet." ('00)
 - Edges often turned off, without permanent IP addresses, etc.
- Def 2: "A class of decentralized, self-organizing distributed systems, in which all or most communication is symmetric." (IPTPS'02)
- Lots of other definitions that fit in between

P2P impact today (1)


- Widespread adoption
 - KaZaA 360 million downloads (1.3M/week) one of the most popular applications ever!
- leading to (almost) zero-cost content distribution:
 - ... is forcing companies to change their business models
 - ... might impact copyright laws

FastTrack	2,460,120
eDonkey	1,987,097
Overnet	1,261,568
iMesh	803,420
Warez	440,289
Gnutella	389,678
MP2P	267,251

Sources: www.slyck.com, www.kazaa.com, July '04

P2P impact today (2)

- P2P file-sharing generated traffic may be the single largest contributor to Internet traffic today
- Driving adoption of consumer broadband

P2P impact today (3)

- A huge pool of underutilized resources lays around,
- users are willing to donate these resources
 - <u>Seti@Home</u> \$1.5M / year in additional power consumed
- which can be put to work efficiently (at least for some types of applications)

	Total	Last 24 hours
Users	4,236,090	23,365
Results received	764M	1.13M
Total CPU Time	1.3M years	1.3K years
Floating point operations		51.4 TFLOPS

Source: Seti@Home website, Oct. 2003

Roadmap

P2P

- Impact
- Applications
- Mechanisms
- PlanetLab
- Why is this interesting for you?
- Compare resource management in PlanetLab and Globus
 Wrap-Up

Applications: Number crunching

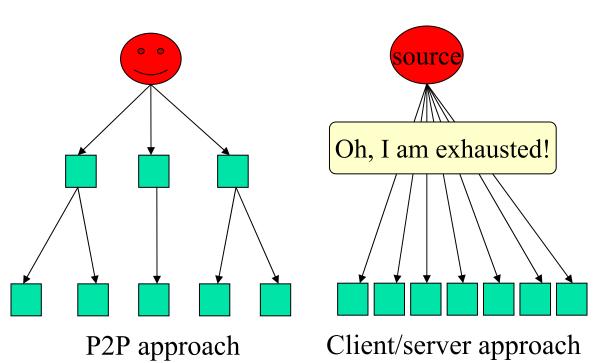
- Examples: Seti@Home, UnitedDevices, DistributedScience many others
- Approach suitable for a particular class of problems.
 - Massive parallelism
 - Low bandwidth/computation ratio
 - Error tolerance, independence from solving a particular task
- Problems:
 - Centralized.
 - How to extend the model to problems that are not massively parallel?
- Relevant to Grid space:
- Ability to operate in an environment with limited trust and dynamic resources

Applications: File sharing

- The 'killer' application to date
- Too many to list them all: Napster, FastTrack (KaZaA, iMesh), Gnutella (LimeWire, BearShare), Overnet

Relevant to Grid space:

- Decentralized control
- Building a (relatively) reliable, data-delivery service using a large, heterogeneous set of unreliable components.
- Chunking, erasure codes


Bytes transferred	0.8 TB/day on average
Number of download sessions	230,000/day
Number of local users	\geq 10,000
Number of unique files	~300,000

FastTrack (Kazaa) load at a small ISP

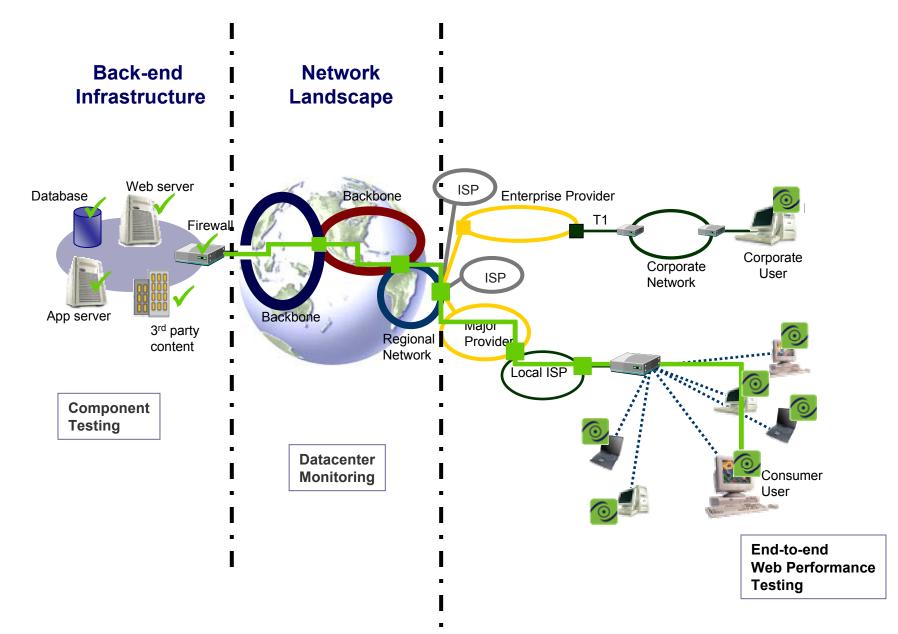
Source: Israeli ISP, data collection 1/15-2/13/2003

Applications: Content Streaming

- Streaming: the user 'plays' the data as as it arrives
- Possible solution:
- The first few users get the stream from the server
- New users get the stream from the server or from users who are already receiving the stream

Relevant to Grid space: offload part of the server load to consumers to improve scalability

Applications: Performance benchmarking


Problem:

- Evaluate the performance of your service (Grid service, HTTP server) form *end-user* perspective
 - Multiple views on your site performance

Relevance to Grid space:

- Grid clients are heterogeneous, geographically dispersed
- Benchmark services for this set of consumers

End-to-end Performance Benchmarking

Slide source: www.porivo.com

Many other P2P applications ...

- Backup storage (HiveNet, OceanStore)
- Collaborative environments (Groove Networks)
- Web serving communities (uServ)
- Instant messaging (Yahoo, AOL)
- Anonymous email
- Censorship-resistant publishing systems (Ethernity, Freenet)
- Spam filtering

Mechanisms

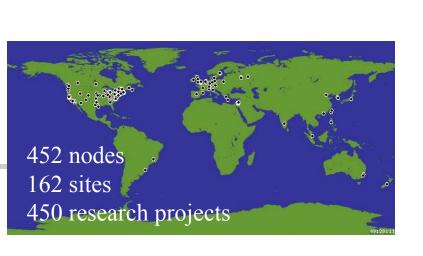
To obtain a resilient system:

- integrate multiple components with uncorrelated failures, and
- use data and service replication.
- To improve delivered QoS:
- move service delivery closer to consumer,
- integrate multiple providers with uncorrelated demand curves (reduces over-provisioning for peak loads)
- To generate meaningful statistics, to detect anomalies:
- provide views from multiple vantage points
- To improve scalability:
- Use decentralized (local) control, unmediated interactions

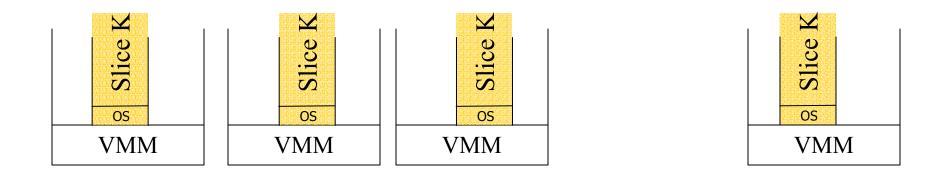
Roadmap

P2P

- Impact
- Applications
- Mechanisms

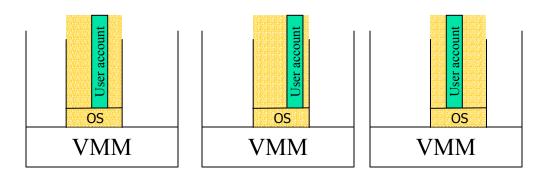

PlanetLab

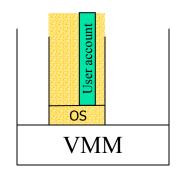
- Why is this interesting for you?
- Compare assumptions and resource management mechanisms in PlanetLab and Globus


Wrap-Up

PlanetLab

- Testbed to experiment with your networked applications.
 - >400 nodes, >150 sites,




- PlanteLab consortium: 80+ universities, Intel, HP
- View presented to users: a distributed set of VMs
 - Allocation unit: a slice = a set of virtual machines (VM), one VM at each node.

PlanetLab usage examples

- Stress-test your Grid services (Globus RLS)
- GSLab: a playground to experiment with gridservices
- Better-than-Internet' services:
 - Resilient Overlays
 - Multipath TCP (mTCP)
 - Multicast Overlays

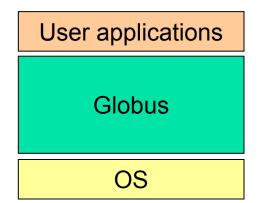
Why should you find PlanetLab interesting?

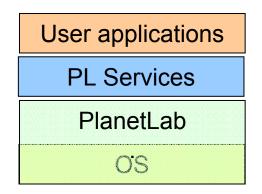
- 1. Open, large-scale testbed for your P2P applications or Grid services
- 2. Solves a similar problem to Grids/Globus: building virtual organizations (or resource federations)

Grids: testbeds (deployments of hardware and software) to solve computational problems.

PlanetLab: testbed to play with CS applications

Main problem for both: enable resource sharing across multiple administrative domains


Roadmap


- Summarize starting assumptions on: user communities, applications, resources and attempt to explain differences
- Look at mechanisms to build VO.

Assumptions: User communities

- PlanetLab: users are CS scientists that experiment with and deploy infrastructure services.
- Globus: users from a more *diverse pool of scientists* that are interested to run efficiently their (*end-user*) applications.

Implication: functionality offered

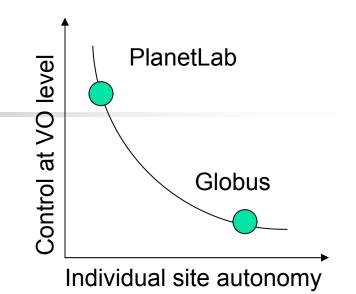
Assumptions: Application characteristics

Different view on geographical resource distribution:

- PlanetLab services: «distribution is a goal»
 - leverage multiple vantage points for network measurements, or to exploit uncorrelated failures in large sets of components
- Grid applications: «distribution is a fact of life»
 - resource distribution: a result of how the VO was assembled (due to administrative constraints).

Implication: mechanism design for resource allocation

Assumptions: Resources


- PlanetLab mission as testbed for a *new* class of networked services allows for little HW/SW heterogeneity.
- Globus supports a large set architectures; sites with multiple security requirements
- Implications: complexity, development speed

Assumptions: Resource ownership

Goal: individual sites

retain control over their resources

 PlanetLab limits the autonomy of individual sites in a number of ways:

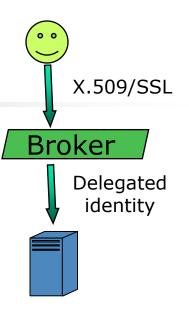
- VO admins: Root access, Remote power button
- Sites: Limited choice of OS, security infrastructure
- Globus imposes fewer limits on site autonomy
 - Requires fewer privileges (also can run in user space,)
- PlanetLab emphasizes global coordination over local autonomy to a greater degree than Globus

Implications: ease to manage and evolve the testbed

Building Virtual Organizations

- Individual node/site functionality
- Mechanisms at the aggregate level
 - Security infrastructure
 - Delegation mechanisms
 - Resource allocation and scheduling
 - Resource discovery, monitoring, and selection.

Delegation mechanisms: Identity delegation


Broker/scheduler usage scenario:

 User A sends a job to a broker service which, in turn, submits it to a resource. The resource manager makes authorization decisions based on the identity that originated the job (A).

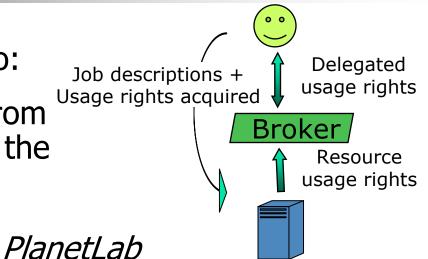
Globus

Implementation based on delegated X.509 proxies

PlanetLab None

Delegation mechanisms: Delegating rights to use resources

Broker/scheduler usage scenario:


 User A acquires capabilities from various brokers then submits the job.

GGF/Globus

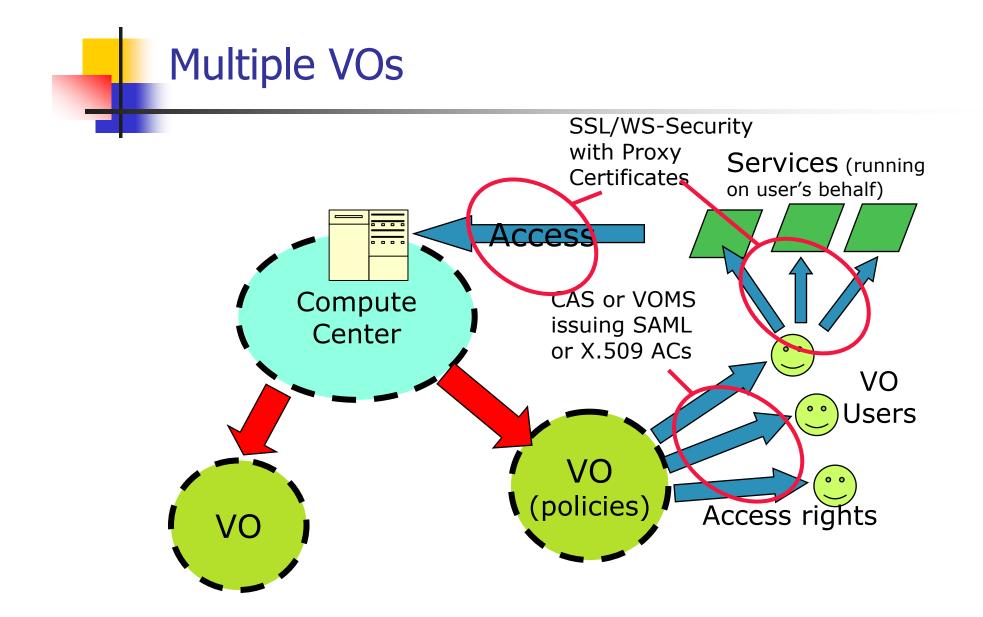
WS-Agreements protocols:

- To represent 'contracts' between providers and consumers.
- Local enforcement mechanism is not specified

The two efforts are complementary!

- Individual nodes managers hand out *capabilities:* akin to timelimited reservations
- Capabilities can be traded
- Extra layer to: provide secure transfer, prevent double spending, offer external representation

Global resource allocation and scheduling


Globus XXXXXX Users Application Managers Brokers / Agents Node Managers Nodes (Resources)

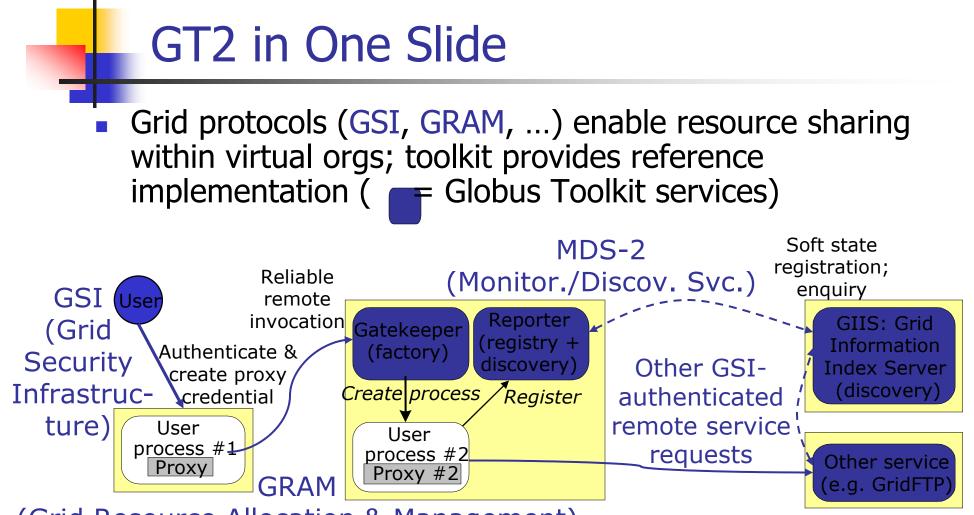
- Identity delegation
- Sends job descriptions

PlanetLab

- Resource usage delegation
- Sends capabilities (leases)

Convergence: Wrap-up Large, Dynamic, Self-Configuring Grids Large scale Intermittent resource participation Functionality & Local control, Self-organization infrastructure Weaker trust assumptions Infrastructures to support diverse Grids applications Diversity in shared resources

P2P


Scale & volatility

Links to papers, tech-reports, slides: Distributed Systems Group @ UChicago

<u>http://dsl.cs.uchicago.edu</u>

Thank you.

- (Grid Resource Allocation & Management)
 - Protocols (and APIs) enable other tools and services for membership, discovery, data mgmt, workflow, ...