
Two Days of Numerical Linear Algebra and Applications, Naples, 2022

Graph Topological Stability via Matrix Differential
Equations

Anton Savostianov

Gran Sasso Science Institute, L’Aquila (Italy)
anton.savostianov@gssi.it

Understanding the underlying topology of data requires representing
more than dyadic relationships between agents and poses the question of
graph’s generalizations that exploit higher-order interactions, [1]. Among
the direct applications one can find neurology, chemistry, regulatory net-
works, PageRank, etc. One possible approach is the use of simplicial com-
plexes, with simplices related through the boundary operators. Such oper-
ators satisfy the Hodge theory [2], and, thus, comprise higher-order Hodge
Laplacians whose kernels correspond to different topological features in
the graph. For example, 0-order Laplacians describe the connected com-
ponents and 1-order Hodge Laplacians the 1-dimensional holes.

In the current work we discuss the topological stability of the graph
through a spectral matrix nearness problem for the 1-order Hodge Lapla-
cian. Specifically, the objective is to find the “smallest” perturbation of the
graph’s weights such that the number of 1-dimensional holes is increased
at least by 1. Firstly, the work formulates the proper weighted generaliza-
tion of the Hodge Laplacian and, then, suitably extends the constrained
gradient flow method [3]. Method’s performance is illustrated on synthetic
quasi-triangulation datasets and transportation networks.
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