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The problem

We are interested in finding efficient solvers for large systems of the form

(A+ γUUT )x = b , (1)

where A ∈ Rn×n, U ∈ Rn×k, γ > 0 and b ∈ Rn. Here 1� k � n.

We target problems with the following characteristics:

A is possibly singular, but A+ γUUT is nonsingular for γ > 0.
A has one or more desirable property (sparsity, structure, etc.) which
is lost if we form A+ γUUT explicitly.
Mat-vecs with A+ γUUT can be computed efficiently.
k may not be “small", but k × k systems can be solved accurately.
Problem (1) must be solved repeatedly within a given application.
Often, either A or U remains constant.
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The problem (cont.)

Problems of the form (1) which such characteristics arise frequently in
scientific computing.

Examples include:

Augmented Lagrangian methods for saddle point problems;
Solution of KKT systems in constrained optimization;
Solution of sparse-dense least squares problems;
Certain types of integro-differential equations;
Solution of PDEs from slightly compressible elasticity;
Numerical solution of PDEs with nonlocal BC’s;
...
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Example 1: Augmented Lagrangian methods

Consider the saddle point problem

Ax =
[
A BT

B 0

] [
u
p

]
=

[
f
g

]
= f .

Such systems arise frequently from the finite element discretization of
systems of PDEs, such as for example the Stokes equations, the Oseen
problem (obtained from the steady Navier-Stokes equations via Picard
linearization), or the coupled Stokes-Darcy system.

A powerful approach to solve such systems is the one based on the
augmented Lagrangian.

This method is widely used for solving constrained optimization problems,
too.

M. B. and M. Olshanskii, An augmented Lagrangian-based approach to the Oseen
problem, SIAM J. Sci. Comput., 28 (2006), pp. 2095–2113.
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Example 1: Augmented Lagrangian methods (cont.)

The idea is to replace the original saddle point problem with an equivalent
one of the form:

Aγ x =
[
A+ γBTW−1B BT

B 0

] [
u
p

]
=

[
f̂
g

]
= f̂ ,

where f̂ = f + γBTW−1g. Here W is usually diagonal and positive
definite. In the finite element setting, W is often the diagonal of the
(pressure) mass matrix.

This new, augmented system is then solved by a Krylov subspace method
like (F)GMRES with preconditioner

Pγ =
[
A+ γBTW−1B BT

0 −γ−1W

]
.

In practice, the preconditioner is applied inexactly.
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Example 1: Augmented Lagrangian methods (cont.)

The convergence of the preconditioned iteration is usually very fast and
independent of parameters like the mesh size and viscosity, especially in
the “large γ" limit.

However, at each iteration of the Krylov subspace method a linear system
with coefficient matrix A+ γBTW−1B must be solved (inexactly).

This linear system is of the form (1) with U = BTW−1/2. Here A is
sparse, often block diagonal, and positive definite (or A+AT is).

Forming A+ γBTW−1B explicitly would lead to loss of sparsity and
structure. This system can be quite ill-conditioned (esp. for large γ) and
its solution is the main challenge associated with the augmented
Lagrangian approach.

It is therefore necessary to develop efficient iterative methods for it.

Ideally, we would like such solvers to be robust with respect to γ > 0.
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Example 2: KKT systems in constrained optimization

The solution of (smooth) constrained minimization problems by interior
point (IP) methods leads to sequences of linear systems of the form

Ax =

 H −CT 0
C 0 −I
0 Z Λ


 δx
δλ
δz

 =

 −r1
−r2
−r3

 = f .

Here H = HT is the Hessian of the objective function at the current point
xk, C is the Jacobian of the constraints at the same point, and Z and Λ
are diagonal, positive definite matrices associated with the current values
of the Lagrange multipliers λk and slack variables zk, respectively.

The variable δz can easily be obtained using the last equation:

δz = −Λ−1(r3 + Zδλ)

and substituted into the second (block) equation.
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Example 2: KKT systems in constrained optimization
(cont.)
This yields the reduced system[

H −CT
C Λ−1Z

] [
δx
δλ

]
=

[
−r1

−r2 − Λ−1r3

]
.

Eliminating δλ leads to the fully reduced (Schur complement) system

(H + CTZ−1ΛC)δx = −r1 − CTZ−1(r3 + Λr2) =: b.

After solving for δx, the other unknowns δλ and δz are readily obtained.

This system is of the form (1) with A = H, U = CT (Z−1Λ)1/2 and γ = 1.

The Hessian is usually positive semidefinite, sparse and possibly structured.
Again, forming H + CTZ−1ΛC explicitly is generally undesirable. Instead,
we propose to solve the fully reduced system with PCG using a suitable
(algebraic) preconditioner.
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Example 3: sparse-dense LS problems

Consider a large LS problem of the form

‖Bx− c‖2 = min,

where B ∈ Rm×n and c ∈ Rm. Assume that B has the following structure:

B =
[
B1
B2

]
, B1 ∈ R(m−k)×n, B2 ∈ Rk×n,

where B1 is sparse and B2 is dense. Then the LS problem is equivalent to
the n× n system of normal equations:

(BT
1 B1 +BT

2 B2)x = BT c ,

which is of the form (1) with A = BT
1 B1, U = BT

2 , γ = 1 and b = BT c.

Once again, we would like to solve this system by an iterative method.
The main challenge is again constructing an effective preconditioner.
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Example 4: integro-differential equations
Consider an integro-differential equation of the form

L[u] + γ

∫
Ω
K(x, y)u(y)dy = f(x), x ∈ Ω ⊂ Rd ,

where L is a differential operator, K(x, y) = K(y, x) is a symmetric
kernel, and f is a given function. Boundary conditions are also prescribed.

Under suitable assumptions, the kernel of the integral operator can be well
approximated by a degenerate kernel:

K(x, y) ≈
k∑
i=1

φi(x)φi(y) ,

where {φi(x)} is a set of linear independent functions on Ω. The number
of terms in this (approximate) expansion depends on how quickly the
eigenvalues of the (compact) integral operator decay to 0, which in turn
depends on the regularity of the kernel K.
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Example 4: integro-differential equations (cont.)

Upon discretization, the problem takes the form

(A+ γUUT )x = b

where A ∈ Rn×n is a sparse matrix while U ∈ Rn×k is generally a dense
matrix. Each column of U corresponds to one of the φi.

Again, such problem calls for an iterative solution method. Mat-vecs can
be performed efficiently without forming A+ γUUT explicitly (which
would destroy the sparsity in A), and the main challenge is to find an
effective preconditioner.

We are particularly interested in the case where the number of terms k in
the expansion of the kernel, which is the rank of U , is not very small. In
other words, the assumed regularity of the kernel is not necessarily high.

Note that here k is independent of n.
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The preconditioner
Consider again the linear system (1): (A+ γUUT )x = b.

As we have seen, in applications the matrix A (or A+AT ) is usually at
least positive semidefinite, and we will make this assumption.

Also, although this is not strictly necessary, we will assume that

Ker (A) ∩ Ker (UT ) = {0} ,

so that A+ γUUT is nonsingular (and positive definite) for all γ > 0.

When A is nonsingular, we could use the Sherman-Morrison-Woodbury
(SMW) formula to solve (1), but this is only applicable to problems of
moderate size. Recall that SMW states that

(A+ γUUT )−1 = A−1 − γA−1U(Ik + γUTA−1U)−1UTA−1.

Another possibility would be to build preconditioners based on the SMW
formula, where the action of A−1 is replaced by some approximation, but
our attempts were unsuccessful. Also, in some problems A is singular.
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The preconditioner (cont.)
When k is small (say, k = 10 or less) then any good preconditioner for A
(or A+ αIn, α > 0, if A is singular) tends to give good results. In fact,
using CG preconditioned with A−1 yields convergence in at most k + 1
steps. However, if k is in the hundreds (or larger), this approach is not
appealing.

Hence, we need to take into account both A and γUUT when building the
preconditioner. We do this by forming a suitable product preconditioner,
as follows.

Let α > 0 and consider the two splittings

A+ γUUT = (A+ αIn)− (αIn − γUUT )

and
A+ γUUT = (αIn + γUUT )− (αIn −A).

Note that both A+ αIn and αIn + γUUT are invertible.
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The preconditioner (cont.)

Let x(0) ∈ Rn and consider the alternating iteration

(A+ αIn)x(k+1/2) = (αIn − γUUT )x(k) + b ,

(αIn + γUUT )x(k+1) = (αIn −A)x(k+1/2) + b ,

with k = 0, 1, . . . This alternating scheme is analogous to that of other
well-known iterative methods like ADI, HSS, MHSS, RDF, RPF, etc.

Theorem 1: Assume A+AT is positive definite. Then the sequence
{x(k)} converges, as k →∞, to the unique solution of equation (1), for
any choice of x(0) and for all α > 0.

To turn this into a practical method, we will use it as a preconditioner for
a Krylov-type method rather than as a stationary iterative scheme. This
will also allow inexact solves.
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The preconditioner (cont.)

To derive the preconditioner we eliminate x(k+1/2) and write the iterative
scheme as the fixed-point iteration

x(k+1) = Tαx
(k) + c = (In − P−1

α Aγ)x(k) + P−1
α b ,

where we have set Aγ = A+ γUUT . An easy calculation reveals that the
preconditioner Pα is given, in factored form, by

Pα = 1
2α(A+ αIn)(αIn + γUUT ).

The scalar factor 1
2α is immaterial for preconditioning, and can be ignored.

Applying this preconditioner requires two solves involving A+ αIn and
αIn + γUUT at each Krylov iteration.

Generally speaking, each of these should be considerably simpler than
solving systems involving the matrix Aγ = A+ γUUT .
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The preconditioner (cont.)

Consider first solves involving A+ αIn. If A is sparse, and/or structured
(e.g., block diagonal, Toeplitz, etc.) then so is A+ αIn.

Exact solves with A+ αIn can be replaced, if necessary, with inexact
solves using either a good preconditioner for A+ αIn or a few steps of
an inner iteration (PCG, AMG, or other).

Note the usual trade-off: larger values of α make solves with A+ αIn
easier, but may degrade the performance of the preconditioner Pα.

Numerical experiments suggest that the solution of linear systems
involving αIn + γUUT is more critical. Note that this matrix is SPD
for all α > 0, but ill-conditioned for small α (or very large γ).
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The preconditioner (cont.)

The Sherman-Morrison-Woodbury formula yields

(αIn + γUUT )−1 = α−1In − α−1γU(αIk + γUTU)−1UT .

The main cost is the solution at each step of a k × k linear system with
matrix αIk + γUTU , which can be performed by Cholesky factorization
(computed once and for all at the outset) or possibly by a suitable inner
PCG iteration or maybe an (algebraic) MG method.

Note that for incompressible flow problems, αIk + γUTU is essentially
a (shifted) discrete pressure Laplacian.

In the numerical solution of the Navier–Stokes equations using (say) Picard
iteration, this matrix remains constant, whereas the matrix A changes.

Hence, the cost of a Cholesky factorization can be amortized over many
nonlinear (or time) steps.
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Possible variants
Building on the main idea, different variants of the preconditioner can be
envisioned.

If A happens to be nonsingular and linear systems with A are not too
difficult to solve (e.g., well-conditioned), then it may not be necessary to
shift A, leading to a preconditioner of the form

Pα,0 = A(αIn + γUUT ).

Note that Theorem 1, however, is no longer applicable.

When A is symmetric positive semidefinite, we’d like the preconditioner to
be SPD so that it can be used with the CG method. In this case we can
consider a symmetrized version of the preconditioner, for example

Pα,s = L(αI + γUUT )LT

where L is the Cholesky (or incomplete Cholesky) factor of A+ αI (or of
A itself if A is SPD and not very ill-conditioned).
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Possible variants (cont.)
In some cases (but not always) the performance of the method improves if
Aγ is diagonally scaled so that it has unit diagonal prior to forming the
preconditioner.

Note that the matrix

Dγ = diag(A+ γUUT )

can be easily computed:

(Dγ)ii = aii + γ‖uTi ‖22 ,

where uTi is the ith row of U .

It is easy to see that applying the preconditioner to the diagonally scaled
matrix D−1/2

γ AγD
−1/2
γ is equivalent to using the modified preconditioner

(A+ αDγ)(αDγ + γUUT )

on the original matrix.
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Bounds on the eigenvalues
Let Aγ := A+ γUUT and Pα := 1

2α(A+ αI)(αI + γUUT ).

WLOG we can assume that ‖A‖2 = 1 and ‖U‖2 = 1. We also assume
that Aγ is nonsingular (that is, Ker (A) ∩ Ker (UT ) = {0}).

Theorem 2. Let A+AT be positive semidefinite. If (λ, x) is an eigenpair
of the preconditioned matrix P−1

α Aγ , with ‖x‖2 = 1, then

µ < Re(λ) < 2, |Im(λ)| < 1 (2)

where
µ = αλmin(A+AT )

(1 + α)(α+ γ) .

If (λ, x) is an eigenpair with x ∈ Ker (UT ), then

λ = 2x∗Ax

x∗Ax+ α

(independent of γ).
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Bounds on the eigenvalues (cont.)

Some comments on this result are in order:

We see from (2) that the lower bound is uninformative if A+AT is
singular (µ = 0).
The lower bound (if 6= 0) is maximized for α = √γ.
Choosing α = √γ to maximize the lower bound may not be optimal.
The lower bound approaches 0 if γ →∞, indicating that the case of
large γ may be challenging.
The result assumes the preconditioner is applied exactly (often not
true in practice).
Eigenvalues alone may not be descriptive of GMRES convergence.
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Bounds on the eigenvalues (cont.)

γ α max (Re(λ)) min (Re(λ)) lower bound
0.1 0.1 1.818e+00 1.700e-02 5.709e-04

0.3162 1.519e+00 5.409e-03 7.250e-04
5.0 3.333e-01 3.430e-04 2.052e-04

1.0 0.5 1.333e+00 6.590e-03 2.791e-04
1.0 1.000e+00 3.300e-03 3.140e-04
5.0 4.683e-01 6.609e-04 1.744e-04

50.0 1.0 1.532e+00 3.323e-03 1.231e-05
7.0711 1.658e+00 4.707e-04 1.928e-05
10.0 1.606e+00 3.328e-04 1.903e-05

Table: Stokes problem with 64× 64 mesh and Q2-Q1 discretization. A and U
normalized so that ‖A‖2 = 1 = ‖U‖2. In boldface the value α = √γ.
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Bounds on the eigenvalues (cont.)

γ α max (Re(λ)) min (Re(λ)) lower bound
0.1 0.1 1.818e+00 5.894e-03 4.380e-05

0.3162 1.519e+00 1.868e-03 5.562e-05
5.0 3.333e-01 1.182e-04 1.575e-05

1.0 0.5 1.333e+00 8.587e-04 2.141e-05
1.0 1.000e+00 4.295e-04 2.409e-05
5.0 3.430e-01 8.591e-05 1.338e-05

50.0 1.0 1.898e+00 3.788e-04 9.447e-07
7.0711 1.744e+00 5.358e-05 1.479e-06
10.0 1.662e+00 3.789e-05 1.460e-06

Table: Oseen problem with 64× 64 mesh, ν = 0.01, and Q2-Q1 discretizations.
A and U normalized so that ‖A‖2 = 1 = ‖U‖2. In boldface the value α = √γ.
To compute the lower bound we use λmin(A+AT

2 ) since A 6= AT .
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Bounds on the eigenvalues (cont.)

α max (Re(λ)) min (Re(λ)) lower bound
0.001 1.998e+00 4.247e-03 1.597e-03
0.01 1.980e+00 4.167e-02 1.568e-02
0.1 1.818e+00 3.477e-01 1.322e-01
0.5 1.333e+00 9.087e-01 3.556e-01
1.0 1.000e+00 8.889e-01 4.000e-01
5.0 5.383e-01 2.759e-01 2.222e-01
10.0 3.180e-01 1.481e-01 1.322e-01
20.0 1.738e-01 7.692e-02 7.256e-02
50.0 7.350e-02 3.150e-02 3.076e-02

Table: Problem lp_fit2p from SuiteSparse Matrix Collection (sparse-dense
least-squares problem), γ = 1. A and U normalized so that ‖A‖2 = 1 = ‖U‖2.
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Bounds on the eigenvalues (cont.)

α max (Re(λ)) min (Re(λ)) lower bound
0.001 1.998e+00 6.508e-03 7.343e-04
0.01 1.980e+00 6.321e-02 7.213e-03
0.1 1.818e+00 4.834e-01 6.081e-02
0.5 1.333e+00 8.484e-01 1.635e-01
1.0 1.000e+00 5.384e-01 1.839e-01
5.0 4.335e-01 1.372e-01 1.022e-01
10.0 2.457e-01 7.106e-02 6.081e-02
20.0 1.313e-01 3.617e-02 3.337e-02
50.0 5.470e-02 1.463e-02 1.414e-02

Table: Problem mosarqp1 from Maros and Mészáros collection (KKT systems in
constrained optimization), γ = 1. A and U normalized so that ‖A‖2 = 1 = ‖U‖2.
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Numerical experiments with matrices from Stokes and
Oseen problems (leaky-lid driven cavity)
We tested inexact variants of the proposed preconditioner

Pα = 1
2α(A+ αI)(αI + γUUT )

on a number of linear systems of the form

(A+ γBTW−1B)x = b

associated with 2D steady Stokes and Oseen problems, varying γ, α, the
mesh size h, the viscosity ν and the type of discretization used. Note that
U = BTW−1/2 and that W is diagonal. Also, A is block diagonal.

For efficiency, we replace the factor (A+ αI) with its no-fill Cholesky or
ILU factorization, denoted by Mα. The factor (αI + γBTW−1B) is
inverted exactly via the SMW formula and the Cholesky factorization of
the k × k matrix αIk + γW−1/2BBTW−1/2.

We also describe a simple but effective heuristic for the choice of α.
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Numerical experiments with steady 2D Oseen problem

Figure: Number of PGMRES iterations versus α for the 2D Oseen problem with
ν = 0.01, γ = 100, Q2-Q1 finite element discretization and different mesh sizes.
GMRES restart m = 20, convergence residual tolerance = 1e-06. Diagonal
scaling is applied.
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A simple heuristic for the choice of α

mesh α∗ iterations optimal α iterations
with α∗ with optimal α

64× 64 0.0256 47 0.0236 47
128× 128 0.0181 30 0.0136 29
256× 256 0.0128 25 0.0111 25

Table: PGMRES iteration counts for 2D Oseen problem with ν = 0.01, γ = 100,
Q2-Q1 finite element discretization. For 32× 32 mesh we find α∗ = 0.0362, then
for the 25+k × 25+k mesh we set α∗ = 0.0362

2k/2 . That is, we divide α∗ by
√

2 each
time h is halved.
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Numerical experiments for steady 2D Oseen problem

Figure: Number of iterations versus α for the 2D Oseen problem with ν = 0.01,
Q2-Q1 finite element discretization on 64× 64 mesh (LEFT) and on 128× 128
mesh (RIGHT) for different values of γ.
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Numerical experiments for steady 2D Stokes problem

Figure: Number of iterations versus α for the 2D Stokes problem with Q2-Q1
finite element discretization on 64× 64 mesh (LEFT) and on 128× 128 mesh
(RIGHT) for different values of γ.
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Numerical experiments on sparse-dense LS problems, I
Problem lp_fit2p (SuiteSparse Collection). Here B1 is 13500× 3000, B2
is 25× 3000 (hence n = 3000, k = 25), κ(BT

1 B1 +BT
2 B2) = 2.52× 109.

Note: the norm of BT
2 B2 is 7 orders of magnitude larger than that of

BT
1 B1.

α Mα Pα no prec.
0.001 109 10 174
0.01 109 10
0.1 109 10
0.5 110 10
1.0 110 8
10.0 139 7
20.0 149 9

Table: Total number of (P)GMRES iterations for lp_fit2p. Mα is replaced by
its no-fill incomplete Cholesky approximation. No diagonal scaling is used.

We remark that the cost for Pα is only slightly larger than for Mα.
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Numerical experiments on sparse-dense LS problems, II
Problem scfxm1-2r (SuiteSparse Collection): B1 is 65886× 37980, B2 is
57× 37980 (so n = 37980, k = 27), κ(BT

1 B1 +BT
2 B2) = 9.32× 106.

Note: A = BT
1 B1 is singular.

α Mα Pα no prec.
0.001 1572 555 240
0.01 693 91
0.1 183 36
0.5 154 39
1.0 155 50
10.0 213 141

α PSα no prec. CG
0.001 1331 184
0.01 415
0.1 105
0.5 58
1.0 65
10.0 109

Table: Total number of iterations for scfxm1-2r problem. Diagonal scaling is
applied. (LEFT) PGMRES. Mα is replaced by its no-fill incomplete Cholesky
approximation. (RIGHT) PCG. We consider the symmetrized version of the
preconditioner: PSα = L(αIn + γUUT )LT , where L is the no-fill incomplete
Cholesky factor of Mα = (BT1 B1 + αIn).
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Numerical experiments on reduced KKT systems, I

Problem primal4 (Maros ans Mészáros collection), n = 1489, k = 75.
The reduced system matrix H + CT (Z−1Λ)C has condition number
3.41× 105. Note: H is singular.

α Mα Pα no prec.
0.001 2000* 13 2000*
0.01 1458 13
0.1 1379 11
0.5 1358 9
1.0 2000* 2
10.0 2000* 15
20.0 2000* 18

Table: Total number of iterations for primal4. No diagonal scaling is applied.
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Numerical experiments on reduced KKT systems, II
Problem mosarqp1 problem (Maros ans Mészáros collection), n = 2500,
k = 700. The reduced system matrix H + CT (Z−1Λ)C has condition
number 3.35× 104.

α Mα Pα no prec.
0.001 2000* 309 2000*
0.01 2000* 66
0.1 2000* 20
0.5 2000* 9
1.0 2000* 6
10.0 2000* 11
20.0 2000* 13

α PSα no prec. CG
0.001 293 246
0.01 125
0.1 45
0.5 20
1.0 14
10.0 15
20.0 17

Table: Total number of iterations for mosarqp1. No diagonal scaling is applied.
(LEFT) PGMRES. (RIGHT) PCG. We consider a symmetrized version of the
preconditioner: PSα = L(αIn + γUUT )LT , where L is the no-fill incomplete
Cholesky factor of H + αIn.
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Numerical experiments on integro-differential problem

γ α Mα Pα no prec.
0.1 0.01 2000* 176 1711

0.1 2000* 73
1.0 2000* 106

1.0 0.01 2000* 175 782
0.1 2000* 68
1.0 1709 59

5.0 0.01 1049 175 173
0.1 847 56
1.0 574 39

Table: A is the finite difference 2D Laplacian with n = 10, 404, U = [u1, ..., uk],
where uk = [sin(kx1), . . . , sin(kxn)]T , [x1, . . . , xn] is a uniform partition of
[0, 2π], k = 100. A is reordered with RCM. We approximate A+ αI with ichol
with zero-fill. No diagonal scaling is applied.
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Conclusions

Introduced a new solver for a wide class of tough linear systems
The proposed preconditioner seems to work well in practice
Solves with A+ αIn can be (very) inexact...
... but exact solves with αI + γUUT seem to be necessary
SMW formula ⇒ only a k × k solve needed
Often, much of this work can be reused
For some PDE problems we found a simple heuristic for choosing α
Some theory available for ideal case
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Future work

Further investigate the spectrum of P−1
α Aγ . Clustering?

Try to find eigenvalue bounds for singular A
More work to be done on the choice of α
Investigate other approaches to solving systems with αI + γUUT

(iterative?)
Are there better ways to symmetrize the preconditioner for use with
CG?
Write the paper!
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