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Problem

We consider

Ȧ(t) = F (t,A(t)), A(t0) = A0 ∈ Cn1×···×nd

arising from, e.g.
– discrete Schrödinger equation (d = 3Nparticles).
– discrete kinetic equations (d = 6).

Direct computational treatment is infeasible for large d and/or ni .

We start from the real case d = 2.



Dynamical low-rank approximation
Given a matrix differential equation

Ȧ(t) = F (t,A(t)), A(t0) = A0 ∈ Rm×n

we aim to approximate A(t) ≈ Y (t) ∈Mr (rank r) by requiring

Ẏ (t) ∈ TY (t)Mr such that ‖Ẏ (t)− F (t,Y (t))‖ = min!

Koch, Lubich 2007



Tangent space projection

Recalling

Ẏ (t) ∈ TY (t)Mr such that ‖Ẏ (t)− F (t,Y (t))‖ = min!

it is equivalent to
Ẏ = P(Y )F (t,Y ),

where P(Y ) is the orthogonal projection onto the tangent space at
Y = USV> given by

P(Y )Z = ZVV T − UUT ZVV T + UUT Z .



Matrix projector-splitting integrator

Idea: Split P(Y ) into its three parts, solve separately.

Efficiently implementable integrator such that
+ Reproduces rank-r matrices exactly.
+ Robust error bound (independent of small singular values).
– Backward substep (problematic for dissipative problems).

Lubich, Oseledets 2014
Kieri, Lubich, Walach 2016



From matrices to tree tensor networks

Low-rank matricesy
Tucker tensorsy

Tree tensor networks



Low-rank matrices

Let Y ∈ Rn1×n2 be a matrix of
multilinear rank (r1, r2)

Y = U1 SU>2 ∈ Rn1×n2

where

Ui ∈ Rni×ri ∀i = 1, 2,
S ∈ Rr1×r2 .

S

U1 U2



Tucker tensors

Let Y ∈ Rn1×···×nd be a tensor of
multilinear rank (r1, . . . , rd )

Y = C
d
X

i=1
Ui ∈ Rn1×···×nd

where

Ui ∈ Rni×ri ∀i = 1, . . . , d ,
C ∈ Rr1×···×rd .

C

U1 U2 ...... Ud



Tucker Integrators

Starting from Y 0 = C0 Xd
i=1 U0

i :

Set C0
0 = C0.

For i = 1, . . . , d , update U0
i → U1

i and modify C0
i−1 → C0

i .
Update C0

d → C1.

After one time step, this yields Y 1 = C1 Xd
i=1 U1

i .

Lubich 2015
Lubich, Vandereycken, Walach 2018



Curse of the dimensionality of the rank

Let C ∈ Rr1×···×rd and r := max(r1, r2, . . . , rd ),

size (C) = rd .

The size of the core tensor grows exponentially with d .



Tree tensor network - Preparation:
Graphical representation
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Figure: Graphical representation of a tree τ̄ with three subtrees and set of
leaves L = {1, 2, 3, 4, 5, 6}.



Tree tensor network - Preparation:
Graphical representation
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Figure: Graphical representation of a tree tensor network with the set of
leaves L = {1, 2, 3, 4, 5, 6}.



Tree tensor network - Definition:
Graphical representation
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Tree tensor network - Definition

Definition (Tree tensor network)
For a given tree τ̄ ∈ T and basis matrices U` and connection
tensors Cτ as described above, we recursively define a tensor Xτ̄
with a tree tensor network representation as follows:
(i) For each leaf τ = ` ∈ L, we set

X` := U>` ∈ Rr`×n` .

(ii) If, for some m ≥ 2, the tree τ = (τ1, . . . , τm) is a subtree of τ̄ ,
then we set nτ =

∏m
i=1 nτi and Iτ the identity matrix of

dimension rτ , and

Xτ := Cτ ×0 Iτ Xm
i=1 Uτi ∈ Rrτ×nτ1×···×nτm ,

Uτ := Mat0(Xτ )> ∈ Rnτ×rτ .



Tree tensor network integrator - Tucker integrator first
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Tree tensor network integrator - Recursion process
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Figure: We apply the Tucker integrator on the
smaller tree tensor network.



Definition of Fτi and Y 0
τi

Let τ = (τ1, . . . , τm) and i = 1, . . . ,m. We recursively define

Fτi := π†τ,i ◦ Fτ ◦ πτ,i ,

Y 0
τi := π†τ,i (Y

0
τ ).

Cτ̄

Cτ1

U1 U2 U3

Cτ2

U4 U5

U6



Definition of Fτi and Y 0
τi
- Prolongation

Let τ = (τ1, . . . , τm) and i = 1, . . . ,m. We recursively define

Fτi := π†τ,i ◦ Fτ ◦ πτ,i ,

Y 0
τi := π†τ,i (Y

0
τ ).
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Definition of Fτi and Y 0
τi
- Restriction

Let τ = (τ1, . . . , τm) and i = 1, . . . ,m. We recursively define

Fτi := π†τ,i ◦ Fτ ◦ πτ,i ,

Y 0
τi := π†τ,i (Y

0
τ ).
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Prolongation and restriction - Definition

Consider a tree τ = (τ1, . . . , τm). We define

Vτ := Rrτ×nτ1×···×nτm .

We introduce the prolongation

πτ,i (Yτi ) := Teni
(
(V0

τi Mat0(Yτi ))>
)
∈ Vτ for Yτi ∈ Vτi ,

and the restriction

π†τ,i (Zτ ) := Ten0
(
(Mati (Zτ )V0

τi )
>) ∈ Vτi for Zτ ∈ Vτ .



Prolongation and restriction - Properties

Lemma
Let τ = (τ1, . . . , τm) and i = 1, . . . ,m. The restriction
π†τ,i : Vτ → Vτi is both a left inverse and the adjoint (with respect
to the tensor Euclidean inner product) of the prolongation
πτ,i : Vτi → Vτ , that is,

π†τ,i (πτ,i (Yτi )) = Yτi for all Yτi ∈ Vτi

〈πτ,i (Yτi ),Zτ 〉Vτ = 〈Yτi , π
†
τ,i (Zτ )〉Vτi

for all Yτi ∈ Vτi , Zτ ∈ Vτ .

Moreover, ‖πτ,i (Yτi )‖Vτ = ‖Yτi‖Vτi
and ‖π†τ,i (Zτ )‖Vτi

≤ ‖Zτ‖Vτ ,
where the norms are the tensor Euclidean norms.



Recursive tree tensor network integrator

The recursive tree tensor network integrator is derived as a
recursive application of the Tucker integrator.

Due to its recursive derivation, it preserves the exactness property
and it remains robust with respect to the presence of small
singular values in the matricizations of the connection tensors, as
the matrix and the Tucker projector splitting integrator.

C., Lubich, Walach 2021



Thanks for your attention!





Matrix projector-splitting integrator
1. K-step : Update U0 → U1, S0 → Ŝ1

Integrate to t = t1 the m× r differential equation

K̇ (t) = F (t,K (t)V T
0 )V0, K (t0) = U0S0

and perform a QR factorization K (t1) = U1Ŝ1.
2. S-step : Update Ŝ1 → S̃0

Integrate to t = t1 the r× r differential equation

Ṡ(t) = -UT
1 F (t,U1S(t)V T

0 )V0, S(t0) = Ŝ1 (!)
3. L-step : Update V0 → V1, S̃0 → S1

Integrate to t = t1 the r× n differential equation

L̇T (t) = UT
1 F (t,U1L(t)T ), LT (t0) = S̃0V T

0

and perform a QR factorization L(t1) = V1ST
1 .

Lubich, Oseledets 2014



Tensors in Tucker Format

A tensor Y ∈ Rn1×···×nd has multilinear rank (r1, . . . , rd ) if and
only if it can be factorized as a Tucker tensor

Y = C Xd
i=1 Ui , i.e., yk1,...,kd =

r1∑
l1=1
· · ·

rd∑
ld =1

cl1,...,ld uk1,l1 . . . ukd ,ld ,

where the basis matrices Ui ∈ Rni×ri have orthonormal columns
and the core tensor C ∈ Rr1×···×rd has full multilinear rank
(r1, . . . , rd ).



Tucker Projector splitting integrator

Dynamical low-rank approximation of tensors in Tucker format is
equivalent to

Ẏ = P(Y )F (t,Y ), Y (t0) = Y0 ∈Mr .

The orthogonal projection P(Y ) onto TYMr is given by

P(Y ) =
d∑

i=1

(
P+

i (Y )− P−i (Y )
)

+ P0(Y ) .

Lubich 2015



(d=3) Nested Tucker integrator
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Lubich, Vandereycken, Walach 2018



Nested Tucker integrator - Compact formulation

The result of the Tucker tensor integrator after one time step can
be expressed in a compact way as

Y 1 = Ψ ◦ Φ(d) ◦ · · · ◦ Φ(1)(Y 0) .

C., Lubich, Walach 2021



Algorithm 1: Subflow Φ(i)

Data: Y 0 = C0 Xd
j=1 U0

j in factorized form, F (t, Y ), t0, t1

Result: Y 1 = C1 Xd
j=1 U1

j in factorized form
begin

set U1
j = U0

j ∀j 6= i
compute the QR decomposition Mati (C0)> = Q0

i S0,>
i ∈ Rr¬i×ri

set K0
i = U0

i S0
i ∈ Rni×ri

solve the ni × ri matrix differential equation
K̇i (t) = Fi (t,Ki (t)) with initial value Ki (t0) = K0

i
and return K1

i = Ki (t1); here
Fi (t,Ki ) = Mati (F (t,Teni (Ki (t)V0,>

i ))V0
i with

V0,>
i = Mati (Teni (Q0,>

i )Xj 6=i U0
j )

compute the QR decomposition K1
i = U1

i Ŝ1
i

solve the ri × ri matrix differential equation
Ṡi (t) = −F̂i (t,Si (t)) with initial value Si (t0) = Ŝ1

i

and return S̃0
i = Si (t1); here

F̂i (t,Si ) = U1,>
i Fi (t,U1

i Si )
set C1 = Teni (S̃0

i Q0,>
i )

end



Algorithm 2: Subflow Ψ
Data: Y 0 = C0 Xd

j=1 U0
j in factorized form,F (t,Y ), t0, t1

Result: Y 1 = C1 Xd
j=1 U1

j in factorized form
begin

set U1
j = U0

j ∀j = 1, . . . , d .
solve the r1 × · · · × rd tensor differential equation

Ċ(t) = F̃ (t,C(t)) with initial value C(t0) = C0

and return C1 = C(t1); here
F̃ (t,C) = F (t,C Xd

j=1 U1
j )Xd

j=1 U
1,>
j

end



Recursive TTN integrator

The recursive TTN integrator is derived as a recursive application
of the Nested Tucker integrator

Y 1
τ = Ψτ ◦ Φ(m)

τ ◦ · · · ◦ Φ(1)
τ (Y 0

τ ) .

C., Lubich, Walach 2021





Tensor Trains represented as TTNs
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Figure: Tensor train represented in hierarchical Tucker (HT) format.


