Time integration of Tree Tensor Networks

Gianluca Ceruti, EPF Lausanne.

(based on joint work with Ch. Lubich and H. Walach)

Napoli, 15 Febbraio 2022.

Problem

We consider

$$
\dot{A}(t)=F(t, A(t)), \quad A\left(t_{0}\right)=A_{0} \in \mathbb{C}^{n_{1} \times \cdots \times n_{d}}
$$

arising from, e.g.

- discrete Schrödinger equation ($d=3 N$ particles).
- discrete kinetic equations $(d=6)$.

Direct computational treatment is infeasible for large d and/or n_{i}.

We start from the real case $d=2$.

Dynamical low-rank approximation

Given a matrix differential equation

$$
\dot{A}(t)=F(t, A(t)), \quad A\left(t_{0}\right)=A_{0} \in \mathbb{R}^{m \times n}
$$

we aim to approximate $A(t) \approx Y(t) \in \mathcal{M}_{r}$ (rank r) by requiring

$$
\dot{Y}(t) \in \mathcal{T}_{Y(t)} \mathcal{M}_{r} \quad \text { such that } \quad\|\dot{Y}(t)-F(t, Y(t))\|=\min !
$$

Tangent space projection

Recalling

$$
\dot{Y}(t) \in \mathcal{T}_{Y(t)} \mathcal{M}_{r} \quad \text { such that } \quad\|\dot{Y}(t)-F(t, Y(t))\|=\min !
$$

it is equivalent to

$$
\dot{Y}=\mathrm{P}(Y) F(t, Y)
$$

where $P(Y)$ is the orthogonal projection onto the tangent space at $Y=U S V^{\top}$ given by

$$
P(Y) Z=Z V V^{T}-U U^{T} Z V V^{T}+U U^{T} Z
$$

Matrix projector-splitting integrator

Idea: Split $P(Y)$ into its three parts, solve separately.

Efficiently implementable integrator such that

+ Reproduces rank-r matrices exactly.
+ Robust error bound (independent of small singular values).
- Backward substep (problematic for dissipative problems).

From matrices to tree tensor networks

Low-rank matrices

Tucker tensors
\downarrow
Tree tensor networks

Low-rank matrices

Let $\mathbf{Y} \in \mathbb{R}^{n_{1} \times n_{2}}$ be a matrix of multilinear rank (r_{1}, r_{2})

$$
\mathbf{Y}=\mathbf{U}_{1} \mathbf{S} \mathbf{U}_{2}^{\top} \in \mathbb{R}^{n_{1} \times n_{2}}
$$

where

$$
\begin{aligned}
\mathbf{U}_{i} & \in \mathbb{R}^{n_{i} \times r_{i}} \quad \forall i=1,2, \\
\mathbf{S} & \in \mathbb{R}^{r_{1} \times r_{2}} .
\end{aligned}
$$

Tucker tensors

Let $Y \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$ be a tensor of multilinear rank $\left(r_{1}, \ldots, r_{d}\right)$

$$
Y=C{\underset{i=1}{d}}_{X} \mathbf{U}_{i} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}
$$

where
$\mathbf{U}_{i} \in \mathbb{R}^{n_{i} \times r_{i}} \quad \forall i=1, \ldots, d$,
 $C \in \mathbb{R}^{r_{1} \times \cdots \times r_{d}}$.

Tucker Integrators

Starting from $Y^{0}=C^{0} X_{i=1}^{d} \mathbf{U}_{i}^{0}$:
Set $C_{0}^{0}=C^{0}$.
For $i=1, \ldots, d$, update $\mathbf{U}_{i}^{0} \rightarrow \mathbf{U}_{i}^{1}$ and modify $C_{i-1}^{0} \rightarrow C_{i}^{0}$.
Update $C_{d}^{0} \rightarrow C^{1}$.
After one time step, this yields $Y^{1}=C^{1} X_{i=1}^{d} \mathbf{U}_{i}^{1}$.

Lubich 2015
Lubich, Vandereycken, Walach 2018

Curse of the dimensionality of the rank

$$
\begin{gathered}
\text { Let } C \in \mathbb{R}^{r_{1} \times \cdots \times r_{d}} \text { and } \mathbf{r}:=\max \left(r_{1}, r_{2}, \ldots, r_{d}\right), \\
\text { size }(C)=\mathbf{r}^{d} .
\end{gathered}
$$

The size of the core tensor grows exponentially with d.

Tree tensor network - Preparation:

Graphical representation

Figure: Graphical representation of a tree $\bar{\tau}$ with three subtrees and set of leaves $\mathcal{L}=\{1,2,3,4,5,6\}$.

Tree tensor network - Preparation:

Graphical representation

Figure: Graphical representation of a tree tensor network with the set of leaves $\mathcal{L}=\{1,2,3,4,5,6\}$.

Tree tensor network - Definition:

Graphical representation

Tree tensor network - Definition

Definition (Tree tensor network)

For a given tree $\bar{\tau} \in \mathcal{T}$ and basis matrices \mathbf{U}_{ℓ} and connection tensors C_{τ} as described above, we recursively define a tensor $X_{\bar{\tau}}$ with a tree tensor network representation as follows:
(i) For each leaf $\tau=\ell \in \mathcal{L}$, we set

$$
X_{\ell}:=\mathbf{U}_{\ell}^{\top} \in \mathbb{R}^{r_{\ell} \times n_{\ell}} .
$$

(ii) If, for some $m \geq 2$, the tree $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right)$ is a subtree of $\bar{\tau}$, then we set $n_{\tau}=\prod_{i=1}^{m} n_{\tau_{i}}$ and \mathbf{I}_{τ} the identity matrix of dimension r_{τ}, and

$$
\begin{aligned}
X_{\tau} & :=C_{\tau} \times{ }_{0} \mathbf{I}_{\tau} X_{i=1}^{m} \mathbf{U}_{\tau_{i}} \in \mathbb{R}^{r_{\tau} \times n_{\tau_{1}} \times \cdots \times n_{\tau_{m}}}, \\
\mathbf{U}_{\tau} & :=\operatorname{Mat}_{0}\left(X_{\tau}\right)^{\top} \in \mathbb{R}^{n_{\tau} \times r_{\tau}}
\end{aligned}
$$

Tree tensor network integrator - Tucker integrator first

Tree tensor network integrator - Recursion process

Figure: We apply the Tucker integrator on the smaller tree tensor network.

Definition of $F_{\tau_{i}}$ and $Y_{\tau_{i}}^{0}$

Let $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right)$ and $i=1, \ldots, m$. We recursively define

$$
\begin{aligned}
& F_{\tau_{i}}:=\pi_{\tau, i}^{\dagger} \circ F_{\tau} \circ \pi_{\tau, i}, \\
& Y_{\tau_{i}}^{0}:=\pi_{\tau, i}^{\dagger}\left(Y_{\tau}^{0}\right) .
\end{aligned}
$$

Definition of $F_{\tau_{i}}$ and $Y_{\tau_{i}}^{0}$ - Prolongation

Let $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right)$ and $i=1, \ldots, m$. We recursively define

$$
\begin{aligned}
& F_{\tau_{i}}:=\pi_{\tau, i}^{\dagger} \circ F_{\tau} \circ \pi_{\tau, i} \\
& Y_{\tau_{i}}^{0}:=\pi_{\tau, i}^{\dagger}\left(Y_{\tau}^{0}\right)
\end{aligned}
$$

Definition of $F_{\tau_{i}}$ and $Y_{\tau_{i}}^{0}$ - Restriction

Let $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right)$ and $i=1, \ldots, m$. We recursively define

$$
\begin{aligned}
& F_{\tau_{i}}:=\pi_{\tau, i}^{\dagger} \circ F_{\tau} \circ \pi_{\tau, i} \\
& Y_{\tau_{i}}^{0}:=\pi_{\tau, i}^{\dagger}\left(Y_{\tau}^{0}\right)
\end{aligned}
$$

Prolongation and restriction - Definition

Consider a tree $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right)$. We define

$$
\mathcal{V}_{\tau}:=\mathbb{R}^{r_{\tau} \times n_{\tau_{1}} \times \cdots \times n_{\tau_{m}}}
$$

We introduce the prolongation

$$
\pi_{\tau, i}\left(Y_{\tau_{i}}\right):=\operatorname{Ten}_{i}\left(\left(\mathbf{V}_{\tau_{i}}^{0} \operatorname{Mat}_{0}\left(Y_{\tau_{i}}\right)\right)^{\top}\right) \in \mathcal{V}_{\tau} \quad \text { for } \quad Y_{\tau_{i}} \in \mathcal{V}_{\tau_{i}}
$$

and the restriction

$$
\pi_{\tau, i}^{\dagger}\left(Z_{\tau}\right):=\operatorname{Ten}_{0}\left(\left(\mathbf{M a t}_{i}\left(Z_{\tau}\right) \mathbf{V}_{\tau_{i}}^{0}\right)^{\top}\right) \in \mathcal{V}_{\tau_{i}} \quad \text { for } \quad Z_{\tau} \in \mathcal{V}_{\tau}
$$

Prolongation and restriction - Properties

Lemma

Let $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right)$ and $i=1, \ldots, m$. The restriction
$\pi_{\tau, i}^{\dagger}: \mathcal{V}_{\tau} \rightarrow \mathcal{V}_{\tau_{i}}$ is both a left inverse and the adjoint (with respect to the tensor Euclidean inner product) of the prolongation $\pi_{\tau, i}: \mathcal{V}_{\tau_{i}} \rightarrow \mathcal{V}_{\tau}$, that is,

$$
\begin{aligned}
\pi_{\tau, i}^{\dagger}\left(\pi_{\tau, i}\left(Y_{\tau_{i}}\right)\right) & =Y_{\tau_{i}} \quad \text { for all } \quad Y_{\tau_{i}} \in \mathcal{V}_{\tau_{i}} \\
\left\langle\pi_{\tau, i}\left(Y_{\tau_{i}}\right), Z_{\tau}\right\rangle_{\mathcal{V}_{\tau}} & =\left\langle Y_{\tau_{i}}, \pi_{\tau, i}^{\dagger}\left(Z_{\tau}\right)\right\rangle_{\mathcal{V}_{\tau_{i}}} \quad \text { for all } \quad Y_{\tau_{i}} \in \mathcal{V}_{\tau_{i}}, Z_{\tau} \in \mathcal{V}_{\tau}
\end{aligned}
$$

Moreover, $\left\|\pi_{\tau, i}\left(Y_{\tau_{i}}\right)\right\| \mathcal{V}_{\tau}=\left\|Y_{\tau_{i}}\right\| \mathcal{V}_{\tau_{i}}$ and $\left\|\pi_{\tau, i}^{\dagger}\left(Z_{\tau}\right)\right\| \mathcal{V}_{\tau_{i}} \leq\left\|Z_{\tau}\right\| \mathcal{V}_{\tau}$, where the norms are the tensor Euclidean norms.

Recursive tree tensor network integrator

The recursive tree tensor network integrator is derived as a recursive application of the Tucker integrator.

Due to its recursive derivation, it preserves the exactness property and it remains robust with respect to the presence of small singular values in the matricizations of the connection tensors, as the matrix and the Tucker projector splitting integrator.

Thanks for your attention!

Matrix projector-splitting integrator

1. K-step : Update $U_{0} \rightarrow U_{1}, S_{0} \rightarrow \hat{S}_{1}$ Integrate to $t=t_{1}$ the $\mathbf{m} \times \mathbf{r}$ differential equation

$$
\dot{K}(t)=F\left(t, K(t) V_{0}^{T}\right) V_{0}, \quad K\left(t_{0}\right)=U_{0} S_{0}
$$

and perform a QR factorization $K\left(t_{1}\right)=U_{1} \hat{S}_{1}$.
2. S-step: Update $\hat{S}_{1} \rightarrow \tilde{S}_{0}$ Integrate to $t=t_{1}$ the $\mathbf{r} \times \mathbf{r}$ differential equation

$$
\dot{S}(t)=-U_{1}^{T} F\left(t, U_{1} S(t) V_{0}^{T}\right) V_{0}, \quad S\left(t_{0}\right)=\hat{S}_{1}
$$

3. L-step : Update $V_{0} \rightarrow V_{1}, \tilde{S}_{0} \rightarrow S_{1}$ Integrate to $t=t_{1}$ the $\mathbf{r} \times \mathbf{n}$ differential equation

$$
\dot{L}^{T}(t)=U_{1}^{T} F\left(t, U_{1} L(t)^{T}\right), \quad L^{T}\left(t_{0}\right)=\tilde{S}_{0} V_{0}^{T}
$$

and perform a QR factorization $L\left(t_{1}\right)=V_{1} S_{1}^{T}$.

Tensors in Tucker Format

A tensor $Y \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$ has multilinear rank $\left(r_{1}, \ldots, r_{d}\right)$ if and only if it can be factorized as a Tucker tensor
$Y=C X_{i=1}^{d} \mathbf{U}_{i}, \quad$ i.e., $\quad y_{k_{1}, \ldots, k_{d}}=\sum_{l_{1}=1}^{r_{1}} \ldots \sum_{l_{d}=1}^{r_{d}} c_{l_{1}, \ldots, l_{d}} u_{k_{1}, l_{1}} \ldots u_{k_{d}, l_{d}}$,
where the basis matrices $\mathbf{U}_{i} \in \mathbb{R}^{n_{i} \times r_{i}}$ have orthonormal columns and the core tensor $C \in \mathbb{R}^{r_{1} \times \cdots \times r_{d}}$ has full multilinear rank $\left(r_{1}, \ldots, r_{d}\right)$.

Tucker Projector splitting integrator

Dynamical low-rank approximation of tensors in Tucker format is equivalent to

$$
\dot{Y}=P(Y) F(t, Y), \quad Y\left(t_{0}\right)=Y_{0} \in \mathcal{M}_{\mathbf{r}}
$$

The orthogonal projection $P(Y)$ onto $\mathcal{T}_{Y} \mathcal{M}_{\mathbf{r}}$ is given by

$$
P(Y)=\sum_{i=1}^{d}\left(P_{i}^{+}(Y)-P_{i}^{-}(Y)\right)+P_{0}(Y)
$$

$(\mathrm{d}=3)$ Nested Tucker integrator

K S				

Lubich, Vandereycken, Walach 2018

Nested Tucker integrator - Compact formulation

The result of the Tucker tensor integrator after one time step can be expressed in a compact way as

$$
Y^{1}=\Psi \circ \Phi^{(d)} \circ \cdots \circ \Phi^{(1)}\left(Y^{0}\right)
$$

Algorithm 1: Subflow $\Phi^{(i)}$

Data: $Y^{0}=C^{0} X_{j=1}^{d} \mathbf{U}_{j}^{0}$ in factorized form, $F(t, Y), t_{0}, t_{1}$
Result: $Y^{1}=C^{1} X_{j=1}^{d} \mathbf{U}_{j}^{1}$ in factorized form

begin

set $\mathbf{U}_{j}^{1}=\mathbf{U}_{j}^{0} \quad \forall j \neq i$
compute the QR decomposition $\operatorname{Mat}_{i}\left(C^{0}\right)^{\top}=\mathbf{Q}_{i}^{0} \mathbf{S}_{i}^{0, \top} \in \mathbb{R}^{r_{\sim i} \times r_{i}}$
set $\mathbf{K}_{i}^{0}=\mathbf{U}_{i}^{0} \mathbf{S}_{i}^{0} \in \mathbb{R}^{n_{i} \times r_{i}}$
solve the $n_{i} \times r_{i}$ matrix differential equation
$\dot{\mathbf{K}}_{i}(t)=\mathbf{F}_{i}\left(t, \mathbf{K}_{i}(t)\right)$ with initial value $\mathbf{K}_{i}\left(t_{0}\right)=\mathbf{K}_{i}^{0}$ and return $\mathbf{K}_{i}^{1}=\mathbf{K}_{i}\left(t_{1}\right)$; here

$$
\begin{aligned}
& \mathbf{F}_{i}\left(t, \mathbf{K}_{i}\right)=\operatorname{Mat}_{i}\left(F\left(t, \operatorname{Ten}_{i}\left(\mathbf{K}_{i}(t) \mathbf{V}_{i}^{0, \top}\right)\right) \mathbf{V}_{i}^{0}\right. \text { with } \\
& \mathbf{V}_{i}^{0, T}=\operatorname{Mat}_{i}\left(\operatorname{Ten}_{i}\left(\mathbf{Q}_{i}^{0, \top}\right) \mathbf{X}_{j \neq i} \mathbf{U}_{j}^{0}\right)
\end{aligned}
$$

compute the QR decomposition $\mathbf{K}_{i}^{1}=\mathbf{U}_{i}^{1} \widehat{\mathbf{S}}_{i}^{1}$
solve the $r_{i} \times r_{i}$ matrix differential equation
$\dot{\mathbf{S}}_{i}(t)=-\widehat{\mathbf{F}}_{i}\left(t, \mathbf{S}_{i}(t)\right)$ with initial value $\mathbf{S}_{i}\left(t_{0}\right)=\widehat{\mathbf{S}}_{i}^{1}$
and return $\widetilde{\mathbf{S}}_{i}^{0}=\mathbf{S}_{i}\left(t_{1}\right)$; here

$$
\widehat{\mathbf{F}}_{i}\left(t, \mathbf{S}_{i}\right)=\mathbf{U}_{i}^{1, \top} \mathbf{F}_{i}\left(t, \mathbf{U}_{i}^{1} \mathbf{S}_{i}\right)
$$

set $C^{1}=\operatorname{Ten}_{i}\left(\widetilde{\mathbf{S}}_{i}^{0} \mathbf{Q}_{i}^{0, \top}\right)$

Algorithm 2: Subflow Ψ

Data: $\quad Y^{0}=C^{0} X_{j=1}^{d} \mathbf{U}_{j}^{0}$ in factorized form, $F(t, Y), t_{0}, t_{1}$
Result: $Y^{1}=C^{1} X_{j=1}^{d} \mathbf{U}_{j}^{1}$ in factorized form
begin

$$
\text { set } \mathbf{U}_{j}^{1}=\mathbf{U}_{j}^{0} \quad \forall j=1, \ldots, d
$$

solve the $r_{1} \times \cdots \times r_{d}$ tensor differential equation
$\dot{C}(t)=\widetilde{F}(t, C(t))$ with initial value $C\left(t_{0}\right)=C^{0}$
and return $C^{1}=C\left(t_{1}\right)$; here

$$
\widetilde{F}(t, C)=F\left(t, C X_{j=1}^{d} \mathbf{U}_{j}^{1}\right) X_{j=1}^{d} \mathbf{U}_{j}^{1, T}
$$

end

Recursive TTN integrator

The recursive TTN integrator is derived as a recursive application of the Nested Tucker integrator

$$
Y_{\tau}^{1}=\Psi_{\tau} \circ \Phi_{\tau}^{(m)} \circ \cdots \circ \Phi_{\tau}^{(1)}\left(Y_{\tau}^{0}\right)
$$

```
Algorithm 2: Subflow \(\Phi_{\tau}^{(i)}\)
    Data: tree \(\tau=\left(\tau_{1}, \ldots, \tau_{m}\right)\), TTN in factorized form
        \(Y_{\tau}^{0}=C_{\tau}^{0} \times_{0} \mathbf{I}_{\tau} \mathbf{X}_{j=1}^{m} \mathbf{U}_{\tau_{j}}^{0}\) with \(\mathbf{U}_{\tau_{j}}^{0}=\operatorname{Mat}_{0}\left(X_{\tau_{j}}^{0}\right)^{\top}\),
        function \(F_{\tau}\left(t, Y_{\tau}\right), t_{0}, t_{1}\)
    Result: TTN \(Y_{\tau}^{1}=C_{\tau}^{1} \times_{0} \mathbf{I}_{r} \mathbf{X}_{j=1}^{m} \mathbf{U}_{\tau_{j}}^{1}\) with \(\mathbf{U}_{\tau_{j}}^{1}=\operatorname{Mat}_{0}\left(X_{\tau_{j}}^{1}\right)^{\top}\)
        in factorized form
    begin
        set \(\mathbf{U}_{\tau_{j}}^{1}=\mathbf{U}_{\tau_{j}}^{0} \quad \forall j \neq i\)
        compute the QR factorization \(\mathbf{M a t}_{i}\left(C_{\tau}^{0}\right)^{\top}=\mathbf{Q}_{\tau_{i}}^{0} \mathbf{S}_{\tau_{i}}^{0, \top}\)
        set \(Y_{\tau_{i}}^{0}=X_{\tau_{i}}^{0} \times{ }_{0} \mathbf{S}_{\tau_{i}}^{0, \top}\)
    if \(\tau_{i}=\ell\) is a leaf, then solve the \(n_{\ell} \times r_{\ell}\) matrix differential equation
        \(\dot{Y}_{\tau_{i}}(t)=F_{\tau_{i}}\left(t, Y_{\pi_{i}}(t)\right)\) with initial value \(Y_{\tau_{i}}\left(t_{0}\right)=Y_{\tau_{i}}^{0}\)
        and return \(Y_{\tau_{i}}^{1}=Y_{\tau_{i}}\left(t_{1}\right)\)
    else
        compute \(Y_{\tau_{i}}^{1}=\) Recursive TTN Integrator \(\left(\tau_{i}, Y_{\tau_{i}}^{0}, F_{\tau_{i}}, t_{0}, t_{1}\right)\)
        compute the QR factorization \(\mathbf{M a t}_{0}\left(C_{\tau_{i}}^{1}\right)^{\top}=\widehat{\mathbf{Q}}_{\tau_{i}}^{1} \widehat{\mathbf{S}}_{\tau_{i}}^{1}\), where
        \(C_{\tau_{i}}^{1}\) is the connecting tensor of \(Y_{\tau_{i}}^{1}\)
        set \(\mathbf{U}_{\tau_{i}}^{1}=\operatorname{Mat}\left(X_{\tau_{i}}^{1}\right)^{\top}\), where the TTN \(X_{\tau_{i}}^{1}\) is obtained from \(Y_{\tau_{i}}^{1}\) by
            replacing the connecting tensor with \(\widehat{C}_{\tau_{i}}^{1}=\operatorname{Ten}_{0}\left(\widehat{\mathbf{Q}}_{\tau_{i}}^{1, T}\right)\)
    solve the \(r_{\tau_{i}} \times r_{\tau_{i}}\) matrix differential equation
        \(\dot{\mathbf{S}}_{\tau_{i}}(t)=-\widehat{\mathbf{F}}_{\tau_{i}}\left(t, \mathbf{S}_{\tau_{i}}(t)\right)\) with initial value \(\mathbf{S}_{\tau_{i}}\left(t_{0}\right)=\widehat{\mathbf{S}}_{\tau_{i}}^{1}\)
        and return \(\widetilde{\mathbf{S}}_{\tau_{i}}^{0}=\mathbf{S}_{\tau_{i}}\left(t_{1}\right)\); here
            \(\widehat{\mathbf{F}}_{\tau_{i}}\left(t, \mathbf{S}_{\tau_{i}}\right)=\mathbf{U}_{\tau_{i}}^{1, \top} \operatorname{Mat}_{0}\left(F_{\tau_{i}}\left(t, X_{\tau_{i}}^{1} \times_{0} \mathbf{S}_{\tau_{i}}^{\top}\right)\right)^{\top}\)
    set \(C_{\tau}^{1}=\operatorname{Ten}_{i}\left(\widetilde{\mathbf{S}}_{\tau_{i}}^{0} \mathbf{Q}_{\tau_{i}}^{0, \top}\right)\)
    end
```


Tensor Trains represented as TTNs

Figure: Tensor train represented in hierarchical Tucker (HT) format.

