Time integration of Tree Tensor Networks

Gianluca Ceruti, EPF Lausanne. (based on joint work with Ch. Lubich and H. Walach)

Napoli, 15 Febbraio 2022.

Problem

We consider

$$\dot{A}(t) = F(t, A(t)), \quad A(t_0) = A_0 \in \mathbb{C}^{n_1 imes \cdots imes n_d}$$

arising from, e.g.

- discrete Schrödinger equation (d = 3N particles).
- discrete kinetic equations (d = 6).

Direct computational treatment is infeasible for large d and/or n_i .

We start from the real case d = 2.

Dynamical low-rank approximation

Given a matrix differential equation

$$\dot{A}(t) = F(t, A(t)), \quad A(t_0) = A_0 \in \mathbb{R}^{m \times n}$$

we aim to approximate $A(t) \approx Y(t) \in \mathcal{M}_r$ (rank r) by requiring

 $\dot{Y}(t)\in\mathcal{T}_{Y(t)}\mathcal{M}_r$ such that $\|\dot{Y}(t)-F(t,Y(t))\|=\mathsf{min}!$

Koch, Lubich 2007

Tangent space projection

Recalling

 $\dot{Y}(t) \in \mathcal{T}_{Y(t)}\mathcal{M}_r$ such that $\|\dot{Y}(t) - F(t, Y(t))\| = \min!$

it is equivalent to

$$\dot{Y} = \mathsf{P}(Y)F(t, Y),$$

where P(Y) is the orthogonal projection onto the tangent space at $Y = USV^{\top}$ given by

$$P(Y)Z = ZVV^{T} - UU^{T}ZVV^{T} + UU^{T}Z.$$

Matrix projector-splitting integrator

Idea: Split P(Y) into its three parts, solve separately.

Efficiently implementable integrator such that

- + Reproduces rank-r matrices exactly.
- + Robust error bound (independent of small singular values).
- Backward substep (problematic for dissipative problems).

Lubich, Oseledets 2014 Kieri, Lubich, Walach 2016 From matrices to tree tensor networks

Low-rank matrices

Let $\mathbf{Y} \in \mathbb{R}^{n_1 \times n_2}$ be a matrix of multilinear rank (r_1, r_2)

 $\mathbf{Y} = \mathbf{U}_1 \, \mathbf{S} \, \mathbf{U}_2^ op \in \mathbb{R}^{n_1 imes n_2}$

where

$$\begin{aligned} \mathbf{U}_i \in \mathbb{R}^{n_i \times r_i} & \forall i = 1, 2, \\ \mathbf{S} \in \mathbb{R}^{r_1 \times r_2}. \end{aligned}$$

Tucker tensors

Let $Y \in \mathbb{R}^{n_1 imes \cdots imes n_d}$ be a tensor of multilinear rank (r_1, \ldots, r_d)

$$Y = C \underset{i=1}{\overset{d}{\mathsf{V}}} \mathbf{U}_i \in \mathbb{R}^{n_1 \times \cdots \times n_d}$$

where

$$\mathbf{U}_i \in \mathbb{R}^{n_i \times r_i} \quad \forall i = 1, \dots, d,$$
$$C \in \mathbb{R}^{r_1 \times \dots \times r_d} .$$

Tucker Integrators

Starting from $Y^0 = C^0 X_{i=1}^d \mathbf{U}_i^0$:

Set
$$C_0^0 = C^0$$
.
For $i = 1, ..., d$, update $\mathbf{U}_i^0 \to \mathbf{U}_i^1$ and modify $C_{i-1}^0 \to C_i^0$.
Update $C_d^0 \to C^1$.

After one time step, this yields $Y^1 = C^1 X_{i=1}^d \mathbf{U}_i^1$.

Lubich 2015 Lubich, Vandereycken, Walach 2018

Curse of the dimensionality of the rank

Let
$$C \in \mathbb{R}^{r_1 \times \cdots \times r_d}$$
 and $\mathbf{r} := \max(r_1, r_2, \dots, r_d)$,
size $(C) = \mathbf{r}^d$.

The size of the core tensor grows *exponentially with d*.

Tree tensor network - Preparation: Graphical representation

Figure: Graphical representation of a tree $\overline{\tau}$ with three subtrees and set of leaves $\mathcal{L} = \{1, 2, 3, 4, 5, 6\}$.

Tree **tensor network** - Preparation: Graphical representation

Figure: Graphical representation of a tree tensor network with the set of leaves $\mathcal{L} = \{1, 2, 3, 4, 5, 6\}$.

Tree tensor network - Definition: Graphical representation

Tree tensor network - Definition

Definition (Tree tensor network)

For a given tree $\bar{\tau} \in \mathcal{T}$ and basis matrices \mathbf{U}_{ℓ} and connection tensors C_{τ} as described above, we recursively define a tensor $X_{\bar{\tau}}$ with a tree tensor network representation as follows:

(i) For each leaf $\tau = \ell \in \mathcal{L}$, we set

$$X_{\ell} := \mathbf{U}_{\ell}^{\top} \in \mathbb{R}^{r_{\ell} \times n_{\ell}}$$

(ii) If, for some $m \ge 2$, the tree $\tau = (\tau_1, \ldots, \tau_m)$ is a subtree of $\overline{\tau}$, then we set $n_{\tau} = \prod_{i=1}^m n_{\tau_i}$ and \mathbf{I}_{τ} the identity matrix of dimension r_{τ} , and

$$\begin{split} X_{\tau} &:= C_{\tau} \times_{0} \mathsf{I}_{\tau} \mathsf{X}_{i=1}^{m} \mathsf{U}_{\tau_{i}} \in \mathbb{R}^{r_{\tau} \times n_{\tau_{1}} \times \cdots \times n_{\tau_{m}}}, \\ \mathsf{U}_{\tau} &:= \mathsf{Mat}_{0}(X_{\tau})^{\top} \in \mathbb{R}^{n_{\tau} \times r_{\tau}} \ . \end{split}$$

Tree tensor network integrator - Tucker integrator first

Tree tensor network integrator - Recursion process

Figure: We apply the Tucker integrator on the smaller tree tensor network.

Definition of F_{τ_i} and $Y_{\tau_i}^0$

Let $\tau = (\tau_1, \ldots, \tau_m)$ and $i = 1, \ldots, m$. We recursively define

$$\begin{split} \mathbf{F}_{\tau_i} &:= \pi_{\tau,i}^{\dagger} \circ \mathbf{F}_{\tau} \circ \pi_{\tau,i}, \\ \mathbf{Y}_{\tau_i}^{\mathbf{0}} &:= \pi_{\tau,i}^{\dagger} (\mathbf{Y}_{\tau}^{\mathbf{0}}). \end{split}$$

Definition of F_{τ_i} and $Y_{\tau_i}^0$ - Prolongation

Let $\tau = (\tau_1, \ldots, \tau_m)$ and $i = 1, \ldots, m$. We recursively define

$$\begin{split} F_{\tau_i} &:= \pi_{\tau,i}^{\dagger} \circ F_{\tau} \circ \pi_{\tau,i}, \\ Y_{\tau_i}^{\mathbf{0}} &:= \pi_{\tau,i}^{\dagger} (Y_{\tau}^{\mathbf{0}}). \end{split}$$

Definition of F_{τ_i} and $Y_{\tau_i}^0$ - Restriction

Let $\tau = (\tau_1, \ldots, \tau_m)$ and $i = 1, \ldots, m$. We recursively define

$$\begin{split} \mathbf{F}_{\tau_i} &:= \pi_{\tau,i}^{\dagger} \circ F_{\tau} \circ \pi_{\tau,i}, \\ \mathbf{Y}_{\tau_i}^{\mathbf{0}} &:= \pi_{\tau,i}^{\dagger} (\mathbf{Y}_{\tau}^{\mathbf{0}}). \end{split}$$

Prolongation and restriction - Definition

Consider a tree $\tau = (\tau_1, \ldots, \tau_m)$. We define

 $\mathcal{V}_{\tau} := \mathbb{R}^{r_{\tau} \times n_{\tau_1} \times \cdots \times n_{\tau_m}}$.

We introduce the *prolongation*

$$\pi_{\tau,i}(Y_{\tau_i}) := \operatorname{Ten}_i((\mathbf{V}_{\tau_i}^0 \operatorname{Mat}_0(Y_{\tau_i}))^\top) \in \mathcal{V}_{\tau} \quad \text{ for } \ Y_{\tau_i} \in \mathcal{V}_{\tau_i},$$

and the restriction

$$\pi_{\tau,i}^\dagger(Z_\tau):=\mathsf{Ten}_0((\mathsf{Mat}_i(Z_\tau)\mathsf{V}^0_{\tau_i})^\top)\in\mathcal{V}_{\tau_i}\quad\text{ for }\ Z_\tau\in\mathcal{V}_\tau.$$

Prolongation and restriction - Properties

Lemma

Let $\tau = (\tau_1, \ldots, \tau_m)$ and $i = 1, \ldots, m$. The restriction $\pi_{\tau,i}^{\dagger} : \mathcal{V}_{\tau} \to \mathcal{V}_{\tau_i}$ is both a left inverse and the adjoint (with respect to the tensor Euclidean inner product) of the prolongation $\pi_{\tau,i} : \mathcal{V}_{\tau_i} \to \mathcal{V}_{\tau}$, that is,

$$\pi_{\tau,i}^{\dagger}(\pi_{\tau,i}(Y_{\tau_i})) = Y_{\tau_i} \quad \text{for all } Y_{\tau_i} \in \mathcal{V}_{\tau_i}$$
$$\langle \pi_{\tau,i}(Y_{\tau_i}), Z_{\tau} \rangle_{\mathcal{V}_{\tau}} = \langle Y_{\tau_i}, \pi_{\tau,i}^{\dagger}(Z_{\tau}) \rangle_{\mathcal{V}_{\tau_i}} \quad \text{for all } Y_{\tau_i} \in \mathcal{V}_{\tau_i}, Z_{\tau} \in \mathcal{V}_{\tau}.$$

Moreover, $\|\pi_{\tau,i}(Y_{\tau_i})\|_{\mathcal{V}_{\tau}} = \|Y_{\tau_i}\|_{\mathcal{V}_{\tau_i}}$ and $\|\pi_{\tau,i}^{\dagger}(Z_{\tau})\|_{\mathcal{V}_{\tau_i}} \le \|Z_{\tau}\|_{\mathcal{V}_{\tau}}$, where the norms are the tensor Euclidean norms.

The recursive tree tensor network integrator is derived as a *recursive* application of the Tucker integrator.

Due to its recursive derivation, it preserves the **exactness** property and it remains **robust** with respect to the presence of small singular values in the matricizations of the connection tensors, as the matrix and the Tucker projector splitting integrator.

C., Lubich, Walach 2021

Thanks for your attention!

Matrix projector-splitting integrator

1. **K-step** : Update $U_0 \rightarrow U_1, S_0 \rightarrow \hat{S}_1$ Integrate to $t = t_1$ the **m** × **r** differential equation

$$\dot{K}(t) = F(t, K(t)V_0^T)V_0, \quad K(t_0) = U_0S_0$$

and perform a QR factorization $K(t_1) = U_1 \hat{S}_1$.

2. **S-step** : Update $\hat{S}_1 \rightarrow \tilde{S}_0$ Integrate to $t = t_1$ the **r** × **r** differential equation

$$\dot{S}(t) = -U_1^T F(t, U_1 S(t) V_0^T) V_0, \quad S(t_0) = \hat{S}_1$$
 (!)

3. **L-step** : Update $V_0 \rightarrow V_1$, $\tilde{S}_0 \rightarrow S_1$ Integrate to $t = t_1$ the **r** × **n** differential equation

$$\dot{L}^{T}(t) = U_1^{T}F(t, U_1L(t)^{T}), \quad L^{T}(t_0) = \tilde{S}_0V_0^{T}$$

and perform a **QR factorization** $L(t_1) = V_1 S_1^T$.

Lubich, Oseledets 2014

Tensors in Tucker Format

A tensor $Y \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ has multilinear rank (r_1, \ldots, r_d) if and only if it can be factorized as a *Tucker tensor*

$$Y = C X_{i=1}^{d} \mathbf{U}_{i}, \quad \text{i.e.,} \quad y_{k_{1},...,k_{d}} = \sum_{l_{1}=1}^{r_{1}} \cdots \sum_{l_{d}=1}^{r_{d}} c_{l_{1},...,l_{d}} u_{k_{1},l_{1}} \dots u_{k_{d},l_{d}},$$

where the basis matrices $\mathbf{U}_i \in \mathbb{R}^{n_i \times r_i}$ have orthonormal columns and the core tensor $C \in \mathbb{R}^{r_1 \times \cdots \times r_d}$ has full multilinear rank (r_1, \ldots, r_d) .

Tucker Projector splitting integrator

Dynamical low-rank approximation of tensors in Tucker format is equivalent to

$$\dot{Y}=P(Y)F(t,Y), \quad Y(t_0)=Y_0\in \mathcal{M}_{\mathsf{r}}\;.$$

The orthogonal projection P(Y) onto $\mathcal{T}_Y \mathcal{M}_r$ is given by

$$P(Y) = \sum_{i=1}^{d} \left(P_i^+(Y) - P_i^-(Y) \right) + P_0(Y) \; .$$

(d=3) Nested Tucker integrator

Lubich, Vandereycken, Walach 2018

The result of the Tucker tensor integrator after one time step can be expressed in a compact way as

$$Y^1 = \Psi \circ \Phi^{(d)} \circ \cdots \circ \Phi^{(1)}(Y^0) \; .$$

C., Lubich, Walach 2021

Algorithm 1: Subflow $\Phi^{(i)}$

Data: $Y^0 = C^0 X_{i=1}^d \mathbf{U}_i^0$ in factorized form, $F(t, Y), t_0, t_1$ **Result:** $Y^1 = C^1 X_{i-1}^d \mathbf{U}_i^1$ in factorized form begin set $\mathbf{U}_i^1 = \mathbf{U}_i^0 \quad \forall j \neq i$ compute the QR decomposition $Mat_i(C^0)^{\top} = \mathbf{Q}_i^0 \mathbf{S}_i^{0,\top} \in \mathbb{R}^{r_{\neg i} \times r_i}$ set $\mathbf{K}_{i}^{0} = \mathbf{U}_{i}^{0} \mathbf{S}_{i}^{0} \in \mathbb{R}^{n_{i} \times r_{i}}$ solve the $n_i \times r_i$ matrix differential equation $\dot{\mathbf{K}}_{i}(t) = \mathbf{F}_{i}(t, \mathbf{K}_{i}(t))$ with initial value $\mathbf{K}_{i}(t_{0}) = \mathbf{K}_{i}^{0}$ and return $\mathbf{K}_{i}^{1} = \mathbf{K}_{i}(t_{1})$; here $\mathbf{F}_i(t, \mathbf{K}_i) = \mathbf{Mat}_i(F(t, \mathrm{Ten}_i(\mathbf{K}_i(t)\mathbf{V}_i^{0, \top}))\mathbf{V}_i^0$ with $\mathbf{V}_{i}^{0,\top} = \mathbf{Mat}_{i}(\mathrm{Ten}_{i}(\mathbf{Q}_{i}^{0,\top})\mathbf{X}_{i\neq i}\mathbf{U}_{i}^{0})$ compute the **QR** decomposition $\mathbf{K}_{i}^{1} = \mathbf{U}_{i}^{1} \widehat{\mathbf{S}}_{i}^{1}$ solve the $r_i \times r_i$ matrix differential equation $\dot{\mathbf{S}}_{i}(t) = -\widehat{\mathbf{F}}_{i}(t, \mathbf{S}_{i}(t))$ with initial value $\mathbf{S}_{i}(t_{0}) = \widehat{\mathbf{S}}_{i}^{1}$ and return $\mathbf{S}_{i}^{0} = \mathbf{S}_{i}(t_{1})$; here $\widehat{\mathbf{F}}_i(t, \mathbf{S}_i) = \mathbf{U}_i^{1, \top} \mathbf{F}_i(t, \mathbf{U}_i^1 \mathbf{S}_i)$ set $C^1 = \operatorname{Ten}_i(\widetilde{\mathbf{S}}_i^0 \mathbf{Q}_i^{0,\top})$ end

Algorithm 2: Subflow Ψ

Data: $Y^0 = C^0 X_{j=1}^d \mathbf{U}_j^0$ in factorized form, $F(t, Y), t_0, t_1$ **Result:** $Y^1 = C^1 X_{j=1}^d \mathbf{U}_j^1$ in factorized form **begin** $\begin{cases} \text{set } \mathbf{U}_j^1 = \mathbf{U}_j^0 \quad \forall j = 1, \dots, d. \\ \text{solve the } r_1 \times \dots \times r_d \text{ tensor differential equation} \\ \dot{C}(t) = \tilde{F}(t, C(t)) \text{ with initial value } C(t_0) = C^0 \\ \text{and return } C^1 = C(t_1); \text{ here} \\ \tilde{F}(t, C) = F(t, C X_{j=1}^d \mathbf{U}_j^1) X_{j=1}^d \mathbf{U}_j^{1, \top} \end{cases}$

end

The recursive TTN integrator is derived as a recursive application of the Nested Tucker integrator

$$Y^1_ au = \Psi_ au \circ \Phi^{(m)}_ au \circ \cdots \circ \Phi^{(1)}_ au(Y^0_ au)$$
 .

C., Lubich, Walach 2021

Algorithm 2: Subflow $\Phi_{\tau}^{(i)}$

Data: tree $\tau = (\tau_1, \ldots, \tau_m)$, TTN in factorized form $Y^0_{\tau} = C^0_{\tau} \times_0 \mathbf{I}_{\tau} \mathsf{X}^m_{j=1} \mathbf{U}^0_{\tau_i} \text{ with } \mathbf{U}^0_{\tau_i} = \mathbf{Mat}_0(X^0_{\tau_i})^{\top},$ function $F_{\tau}(t, Y_{\tau}), t_0, t_1$ **Result:** TTN $Y_{\tau}^1 = C_{\tau}^1 \times_0 \mathbf{I}_r X_{i=1}^m \mathbf{U}_{\tau_s}^1$ with $\mathbf{U}_{\tau_s}^1 = \mathbf{Mat}_0(X_{\tau_s}^1)^\top$ in factorized form begin set $\mathbf{U}_{\tau_1}^1 = \mathbf{U}_{\tau_2}^0 \quad \forall j \neq i$ compute the **QR factorization** $\operatorname{Mat}_i(C^0_{\tau})^{\top} = \mathbf{Q}^0_{\tau} \mathbf{S}^{0,\top}_{\tau}$ set $Y_{\tau_i}^0 = X_{\tau_i}^0 \times_0 \mathbf{S}_{\tau_i}^{0,\top}$ if $\tau_i = \ell$ is a leaf, then solve the $n_\ell \times r_\ell$ matrix differential equation $\dot{Y}_{\tau_i}(t) = F_{\tau_i}(t, Y_{\tau_i}(t))$ with initial value $Y_{\tau_i}(t_0) = Y_{\tau_i}^0$ and return $Y_{\tau_i}^1 = Y_{\tau_i}(t_1)$ else compute $Y_{\tau_i}^1 = Recursive \ TTN \ Integrator \ (\tau_i, Y_{\tau_i}^0, F_{\tau_i}, t_0, t_1)$ compute the **QR factorization** $\mathbf{Mat}_0(C^1_{\tau_i})^{\top} = \widehat{\mathbf{Q}}^1_{\tau_i} \widehat{\mathbf{S}}^1_{\tau_i}$, where $C_{\tau_i}^1$ is the connecting tensor of $Y_{\tau_i}^1$ set $\mathbf{U}_{\tau_i}^1 = \mathbf{Mat}_0(X_{\tau_i}^1)^{\top}$, where the TTN $X_{\tau_i}^1$ is obtained from $Y_{\tau_i}^1$ by replacing the connecting tensor with $\widehat{C}_{\tau_i}^1 = \operatorname{Ten}_0(\widehat{\mathbf{Q}}_{\tau_i}^{1,T})$ solve the $r_{\tau_i} \times r_{\tau_i}$ matrix differential equation $\dot{\mathbf{S}}_{\tau_i}(t) = -\widehat{\mathbf{F}}_{\tau_i}(t, \mathbf{S}_{\tau_i}(t))$ with initial value $\mathbf{S}_{\tau_i}(t_0) = \widehat{\mathbf{S}}_{\tau_i}^1$ and return $\widetilde{\mathbf{S}}_{\tau_i}^0 = \mathbf{S}_{\tau_i}(t_1)$; here $\widehat{\mathbf{F}}_{\tau_i}(t, \mathbf{S}_{\tau_i}) = \mathbf{U}_{\tau_i}^{1, \top} \mathbf{Mat}_0 \left(F_{\tau_i}(t, X_{\tau_i}^1 \times_0 \mathbf{S}_{\tau_i}^\top) \right)^\top$ set $C^1_{\tau} = \operatorname{Ten}_i(\widetilde{\mathbf{S}}^0_{\tau}, \mathbf{Q}^{0, \top}_{\tau})$ end

Tensor Trains represented as TTNs

Figure: Tensor train represented in hierarchical Tucker (HT) format.