### Randomized algorithms for trace estimation

Alice Cortinovis

### Joint work with Daniel Kressner and David Persson

15 February 2022 Due giorni di Algebra Lineare Numerica – Napoli 2022



# Goal:

# Compute (an approximation of) $\operatorname{trace}(A)$ for a large-scale symmetric matrix $A \in \mathbb{R}^{n \times n}$ .

Only matrix-vector multiplications with A are available.

### Outline

### Motivation

- Hutchinson's trace estimator + bounds
- Hutch++
- Our improved version of Hutch++ (A-Hutch++)

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

## **Motivation**

### Example 1: Trace of matrix functions / Determinant

Matrix functions: For symmetric B, given a spectral decomposition  $B = Q \cdot \operatorname{diag}(\lambda_1, \ldots, \lambda_n) \cdot Q^T$ , the matrix function f(B) is defined as  $f(B) = Q \cdot \operatorname{diag}(f(\lambda_1), \ldots, f(\lambda_n)) \cdot Q^T$ .

### Computing Av = f(B)v is faster than computing f(B)!

- Trace(B<sup>-1</sup>) (Uncertainty quantification, Lattice quantum chromodynamics)
- Network analysis (exp(B), Estrada index)
- Determinant of symmetric positive definite B via det(B) = exp (trace(log B)) (Statistical machine learning, Markov random fields models, graph theory (# spanning trees)

Example 2: Frobenius norm estimation  $||B||_F^2 = \text{trace}(B^T B)$  and other Schatten-*p* norms.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

# Hutchinson's trace estimator

#### Theorem

If X is random vector s.t.  $\mathbb{E}[XX^T] = I$  then

 $\mathbb{E}[X^T A X] = \operatorname{trace}(A).$ 

**Proof:**  $\mathbb{E}[X^T A X] = \sum_{i,j} \mathbb{E}[X_i X_j] A_{ij} = \sum_i A_{ii} = \operatorname{trace}(A).$ 

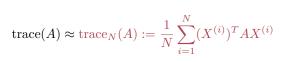
Most common choices for X:

- Gaussian vectors  $(X \sim \mathcal{N}(0, I_n))$
- Rademacher vectors (±1 i.i.d. entries)

Hutchinson's trace estimator: Take N independent copies  $X^{(1)}, \ldots, X^{(N)}$  of X and approximate

trace(A) 
$$\approx$$
 trace<sub>N</sub>(A) :=  $\frac{1}{N} \sum_{i=1}^{N} (X^{(i)})^T A X^{(i)}$ .

### Hutchinson's trace estimator: Example



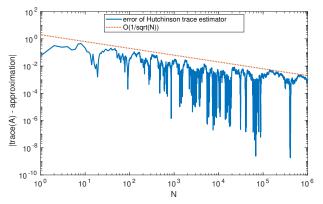


Figure: The behavior of  $|\operatorname{trace}(A) - \operatorname{trace}_N(A)|$  when increasing N (# probe vectors).

Alice Cortinovis (EPFL)

### Convergence of Hutchinson's trace estimator

Tail bounds:

$$\mathbb{P}\left(\left|\operatorname{trace}(A) - \operatorname{trace}_{N}(A)\right| \geq \varepsilon\right) \leq \delta \quad \text{ for } N \geq \left(\frac{C_{1}}{\varepsilon^{2}} \|A\|_{F}^{2} + \frac{C_{2}}{\varepsilon} \|A\|_{2}\right) \log \frac{2}{\delta},$$

with  $(C_1, C_2) = (4, 4)$  for Gaussian random vectors,  $(C_1, C_2) = (8, 16)$  for Rademacher random vectors [C./Kressner'2021].

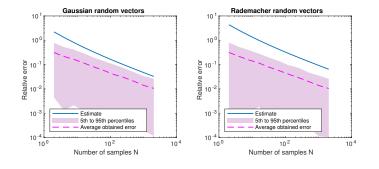


Image: Image:

( )

# What if A is approximately low-rank?

Remark: If A has rapidly decaying singular values, denote by  $A_r$  = best rank-r approximation of A, then trace $(A_r)$  is a good approximation of trace(A)!

Reminder: Best rank-r approximation is given by truncated singular value decomposition (SVD). Expensive to obtain!

Faster method: Randomized SVD [Halko/Martinsson/Tropp'2011].

```
Input: A \in \mathbb{R}^{n \times n}, integer r
```

**Output**: Rank-*r* approximation of *A* 

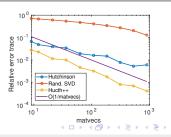
- **()** Draw r random vectors and put them in an  $n \times r$  matrix X ( $r \ll n$ ).
- Perform matrix-vectors multiplications Y = AX. (*r* matvecs)
- Compute orthonormal basis Q of Y.
- Seturn low-rank approximation  $A \approx Q(Q^T A)$ . (*r* matvecs)

### Hutch++ [Meyer/Musco/Musco/Woodruff'2021]



For symmetric positive definite matrix *A*, number of matvecs needed to reach relative accuracy  $\varepsilon$  goes from  $O\left(\frac{1}{\varepsilon^2}\right)$  to  $O\left(\frac{1}{\varepsilon}\right)$ .

Alg. also useful for indefinite A!



### A-Hutch++

### Our goal:

Given  $A \in \mathbb{R}^{n \times n}$  (available through matvecs), find approx. of trace(A) with accuracy  $\varepsilon > 0$ , failure probability  $\delta$ . Also, try to minimize #matvecs.

[From now on: Use Gaussian random vectors to simplify analysis.]

We do not know how many vectors we want to use for the randSVD phase!

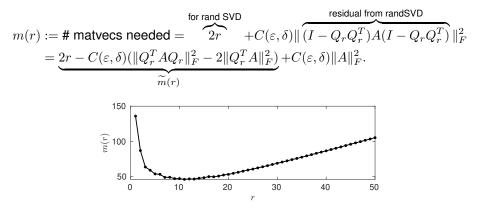
But: Assume we have done randSVD with r vectors and we got a low-rank approximation  $Q_r Q_r^T A$ . Thanks to tail bounds on Hutchinson's trace estimator, we know that

$$\approx \underbrace{\frac{4}{\varepsilon^2} \log \frac{2}{\delta}}_{C(\varepsilon,\delta)} \| (I - Q_r Q_r^T) A (I - Q_r Q_r^T) \|_F^2$$

samples are sufficient for reaching accuracy  $\varepsilon$  in the Hutchinson phase.

# Counting the required matvecs

Therefore, the cost (= #matvecs) if we use r vectors in the randSVD phase is



If  $Q_r Q_r^T A$  was the best rank-*r* approx then m(r) would have a unique minimum (in practice, still well-behaved).

### A-Hutch++

We start with r = 1, 2, 3, ... and keep track of  $\widetilde{m}(r)$ . We stop the randSVD phase when

$$\widetilde{m}(r_*) \le \widetilde{m}(r_* \pm 1).$$

Then we need

$$N := \left[ C(\varepsilon, \delta) (\|A\|_F^2 + \|Q_r^T A Q_r\|_F^2 - 2\|Q_r^T A\|_F^2) \right]$$

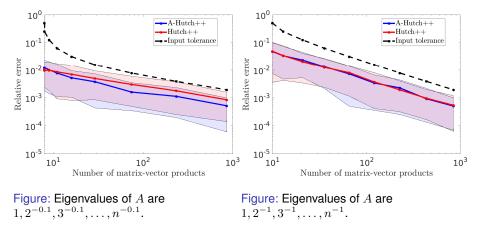
matvecs for the Hutchinson phase.

We really need  $||A||_F!$  We approximate it by Hutchinson's trace estimator and use [Roosta-Khorasani/Szekély/Ascher'2015] for convergence analysis.

Theorem: The accuracy is guaranteed.

### Numerical experiments for A-Hutch++

Set  $\varepsilon$ , run A-Hutch++, get m = #matvecs, run Hutch++ with input m.



A (1) > (1)

→

Summary: A-Hutch++ outputs an estimate of trace(A) with accuracy  $\varepsilon$  with small failure probability.

Future directions: If A = f(B), also need to approximate matvecs! One matvec with *A* corresponds to *many* matvecs with *B*: how to optimize #matvecs with *B*? What accuracy is needed?



AC, Daniel Kressner: On randomized trace estimates for indefinite matrices with an application to determinants. Foundations of Computational Mathematics, 2021.

David Persson, AC, Daniel Kressner. Improved variants of the Hutch++ algorithm for trace estimation. https://arxiv.org/abs/2109.10659

・ロット ( 母 ) ・ ヨ ) ・ ヨ )