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Goal:

Compute (an approximation of) trace(A)
for a large-scale symmetric matrix A ∈ Rn×n.

Only matrix-vector multiplications with A are available.
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Motivation

Example 1: Trace of matrix functions / Determinant
Matrix functions: For symmetric B, given a spectral decomposition B = Q · diag(λ1, . . . , λn) · QT , the

matrix function f(B) is defined as f(B) = Q · diag(f(λ1), . . . , f(λn)) · QT .

Computing Av = f(B)v is faster than computing f(B)!

Trace(B−1) (Uncertainty quantification, Lattice quantum chromodynamics)

Network analysis (exp(B), Estrada index)

Determinant of symmetric positive definite B via det(B) = exp (trace(log B)) (Statistical
machine learning, Markov random fields models, graph theory (# spanning trees)

Example 2: Frobenius norm estimation ‖B‖2
F = trace(BTB) and other

Schatten-p norms.
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Hutchinson’s trace estimator

Theorem

If X is random vector s.t. E[XXT ] = I then

E[XTAX] = trace(A).

Proof: E[XTAX] =
∑
i,j E[XiXj ]Aij =

∑
iAii = trace(A).

Most common choices for X:
Gaussian vectors (X ∼ N (0, In))
Rademacher vectors (±1 i.i.d. entries)

Hutchinson’s trace estimator: Take N independent copies X(1), . . . , X(N) of X
and approximate

trace(A) ≈ traceN (A) := 1
N

N∑
i=1

(X(i))TAX(i).
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Hutchinson’s trace estimator: Example

trace(A) ≈ traceN (A) := 1
N

N∑
i=1

(X(i))TAX(i)
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Figure: The behavior of |trace(A)− traceN (A)| when increasing N (# probe vectors).
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Convergence of Hutchinson’s trace estimator

Tail bounds:

P (|trace(A)− traceN (A)| ≥ ε) ≤ δ for N ≥
(
C1

ε2 ‖A‖
2
F + C2

ε
‖A‖2

)
log 2

δ
,

with (C1, C2) = (4, 4) for Gaussian random vectors, (C1, C2) = (8, 16) for
Rademacher random vectors [C./Kressner’2021].

10 0 10 2 10 4

Number of samples N

10 -4

10 -3

10 -2

10 -1

10 0

10 1

R
e
la

ti
v
e
 e

rr
o
r

Rademacher random vectors

Estimate

5th to 95th percentiles

Average obtained error

10 0 10 2 10 4

Number of samples N

10 -4

10 -3

10 -2

10 -1

10 0

10 1

R
e
la

ti
v
e
 e

rr
o
r

Gaussian random vectors

Estimate

5th to 95th percentiles

Average obtained error

Alice Cortinovis (EPFL) Randomized algorithms for trace estimation 7 / 14



What if A is approximately low-rank?

Remark: If A has rapidly decaying singular values, denote by Ar = best rank-r
approximation of A, then trace(Ar) is a good approximation of trace(A)!

Reminder: Best rank-r approximation is given by truncated singular value
decomposition (SVD). Expensive to obtain!

Faster method: Randomized SVD [Halko/Martinsson/Tropp’2011].

Input: A ∈ Rn×n, integer r
Output: Rank-r approximation of A

1 Draw r random vectors and put them in an n× r matrix X (r � n).
2 Perform matrix-vectors multiplications Y = AX. (r matvecs)
3 Compute orthonormal basis Q of Y .
4 Return low-rank approximation A ≈ Q(QTA). (r matvecs)
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Hutch++ [Meyer/Musco/Musco/Woodruff’2021]

Input: Matrix A ∈ Rn×n, number of matvecs 3r
Output: Estimate of trace(A)

1 RandSVD phase: X random n× r, compute Qr = ONB of AX.
2 Hutchinson phase:

trace(A) = trace(QT
r AQr) + trace((I −QrQT

r )A(I −QrQT
r ))

≈ trace(QT
r AQr) + tracer((I −QrQT

r )A(I −QrQT
r )).

(r matvecs for AX, r for QT
r A, r for Hutchinson)

For symmetric positive definite ma-
trix A, number of matvecs needed
to reach relative accuracy ε goes
from O

(
1

ε2

)
to O

(
1
ε

)
.

Alg. also useful for indefinite A!
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A-Hutch++

Our goal:
Given A ∈ Rn×n (available through matvecs), find approx. of trace(A)

with accuracy ε > 0, failure probability δ. Also, try to minimize #matvecs.

[From now on: Use Gaussian random vectors to simplify analysis.]

We do not know how many vectors we want to use for the randSVD phase!

But: Assume we have done randSVD with r vectors and we got a low-rank
approximation QrQTr A. Thanks to tail bounds on Hutchinson’s trace estimator,
we know that

≈ 4
ε2 log 2

δ︸ ︷︷ ︸
C(ε,δ)

‖(I −QrQTr )A(I −QrQTr )‖2
F

samples are sufficient for reaching accuracy ε in the Hutchinson phase.
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Counting the required matvecs

Therefore, the cost (= #matvecs) if we use r vectors in the randSVD phase is

m(r) := # matvecs needed =
for rand SVD︷︸︸︷

2r +C(ε, δ)‖

residual from randSVD︷ ︸︸ ︷
(I −QrQTr )A(I −QrQTr ) ‖2

F

= 2r − C(ε, δ)(‖QTr AQr‖2
F − 2‖QTr A‖2

F )︸ ︷︷ ︸
m̃(r)

+C(ε, δ)‖A‖2
F .
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If QrQTr A was the best rank-r approx then m(r) would have a unique
minimum (in practice, still well-behaved).
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A-Hutch++

We start with r = 1, 2, 3, . . . and keep track of m̃(r). We stop the randSVD
phase when

m̃(r∗) ≤ m̃(r∗ ± 1).

Then we need

N := dC(ε, δ)(‖A‖2
F + ‖QTr AQr‖2

F − 2‖QTr A‖2
F )e

matvecs for the Hutchinson phase.

We really need ‖A‖F ! We approximate it by Hutchinson’s trace estimator and
use [Roosta-Khorasani/Szekély/Ascher’2015] for convergence analysis.

Theorem: The accuracy is guaranteed.
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Numerical experiments for A-Hutch++

Set ε, run A-Hutch++, get m = #matvecs, run Hutch++ with input m.

Figure: Eigenvalues of A are
1, 2−0.1, 3−0.1, . . . , n−0.1.

Figure: Eigenvalues of A are
1, 2−1, 3−1, . . . , n−1.
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Conclusions

Summary: A-Hutch++ outputs an estimate of trace(A) with accuracy ε with
small failure probability.

Future directions: If A = f(B), also need to approximate matvecs! One
matvec with A corresponds to many matvecs with B: how to optimize
#matvecs with B? What accuracy is needed?
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