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Goal:

Compute (an approximation of) trace(A)
for a large-scale symmetric matrix A € R"*".

Only matrix-vector multiplications with A are available.
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@ Motivation
@ Hutchinson’s trace estimator + bounds
© Hutch++

© Our improved version of Hutch++ (A-Hutch++)
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Motivation

Example 1: Trace of matrix functions / Determinant
Matrix functions: For symmetric B, given a spectral decomposition B = Q - diag(\1, ..., An) - QT the
matrix function f(B) is defined as f(B) = Q - diag(f (A1), .-, f(An)) - QT.

Computing Av = f(B)v is faster than computing f(B)!

@ Trace(B~!) (Uncertainty quantification, Lattice quantum chromodynamics)
@ Network analysis (exp(B), Estrada index)

@ Determinant of symmetric positive definite B via det(B) = exp (trace(log B)) (Statistical
machine learning, Markov random fields models, graph theory (# spanning trees)

Example 2: Frobenius norm estimation || B||% = trace(B” B) and other
Schatten-p norms.
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S
Hutchinson’s trace estimator

Theorem
If X is random vector s.t. E[X XT] = I then

E[XT AX] = trace(A).

Proof: EXTAX]| =3, SEIXiX;]Aiy = 2, Aii = trace(A).

Most common choices for X:
@ Gaussian vectors (X ~ N(0,1,))
@ Rademacher vectors (£1 i.i.d. entries)

Hutchinson’s trace estimator: Take N independent copies X ..., X(N) of X
and approximate

N
trace(A) & tracey (A) : Z XNTAx®
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Hutchinson’s trace estimator: Example
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Figure: The behavior of |trace(A) — tracen (A)| when increasing N (# probe vectors).
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Convergence of Hutchinson’s trace estimator

Tail bounds:

P (|trace(A) — tracen (A)| > 6) <5 for N > <§;1|A||§ + %||A||2> log

with (C1, C2) = (4, 4) for Gaussian random vectors, (Cy,C5) = (8,16) for

Rademacher random vectors [C./Kressner2021].
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What if A is approximately low-rank?

Remark: If A has rapidly decaying singular values, denote by A, = best rank-r
approximation of A, then trace(A,) is a good approximation of trace(A)!

Reminder: Best rank-r approximation is given by truncated singular value
decomposition (SVD). Expensive to obtain!

Faster method: Randomized SVD [Halko/Martinsson/Tropp'2011].

Input: A € R**", integer r
Output: Rank-r approximation of A

@ Draw r random vectors and put them in an n x r matrix X (r < n).
@ Perform matrix-vectors multiplications Y = AX. (r matvecs)

@ Compute orthonormal basis @ of Y.

@ Return low-rank approximation A ~ Q(QT A). (r matvecs)
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H UtCh ++ [Meyer/Musco/Musco/Woodruff’2021]

Input: Matrix A € R™*™, number of matvecs 3r
Output: Estimate of trace(A)

@ RandSVD phase: X random n x r, compute Q, = ONB of AX.
@ Hutchinson phase:
trace(A) = trace(Qr AQ,.) + trace((I — Q,QF)A(I — Q.QF))
~ trace(Qr AQ;) + trace, (I — Q-Qr)A(I — Q. Q).

(r matvecs for AX, r for QF A, r for Hutchinson)

For symmetric positive definite ma- 10°

trix A, number of matvecs needed _ WM\\
to reach relative accuracy ¢ goes
from O (&) to O ().

=)
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Alg. also useful for indefinite A!
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S
A-Hutch++

Our goal:
Given A € R™*™ (available through matvecs), find approx. of trace(A)
with accuracy € > 0, failure probability §. Also, try to minimize #matvecs.

[From now on: Use Gaussian random vectors to simplify analysis.]
We do not know how many vectors we want to use for the randSVD phase!

But: Assume we have done randSVD with » vectors and we got a low-rank
approximation Q,.Q* A. Thanks to tail bounds on Hutchinson’s trace estimator,
we know that

4 2
~ log 5 (1 - Q@A - Q.Q7)[&
————
C(g,9)

samples are sufficient for reaching accuracy ¢ in the Hutchinson phase.
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Counting the required matvecs

Therefore, the cost (= #matvecs) if we use r vectors in the randSVD phase is
for rand SVD residual from randSVD
m(r) := # matvecs needed = e +C(e,0)|| (I — Q.QNA(I — Q.Q1) |%
=2r — C(¢,0)(|Q7 AQ | % — 21Q; All%) +C(e, ) || All3-

m(r)

150

r

If Q,.QT A was the best rank-r approx then m(r) would have a unique
minimum (in practice, still well-behaved).
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S
A-Hutch++

We start with r = 1,2,3,... and keep track of m(r). We stop the randSVD
phase when
m(re) <m(re £1).

Then we need
N :=[C(e,0)(|AI% + |QF AQ.|1F — 2|1QF Al 7)1

matvecs for the Hutchinson phase.

We really need || A|| »! We approximate it by Hutchinson’s trace estimator and
use [Roosta-Khorasani/Szekély/Ascher2015] for convergence analysis.

Theorem: The accuracy is guaranteed.
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Numerical experiments for A-Hutch++

Set ¢, run A-Hutch++, get m = #matvecs, run Hutch++ with input m.
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.
Conclusions

Summary: A-Hutch++ outputs an estimate of trace(A) with accuracy ¢ with
small failure probability.

Future directions: If A = f(B), also need to approximate matvecs! One
matvec with A corresponds to many matvecs with B: how to optimize
#matvecs with B? What accuracy is needed?
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