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The problem
Consider A matrix of size m × n
• possibly overdetermined m ≥ n, numerical rank r < n
• underdetermined m < n, no assumption on the rank

Find x⋆ that solves
min

x
∥Ax − b∥2. (1)

• Infinitely many solutions: if x⋆ solves (1), then

∥A(x⋆ + y) − b∥2 = ∥Ax⋆ − b∥2

for any y ∈ N(A) = {x : Ax = 0} , ∅.
• The standard QR may not lead a solution.

Gold standard is the SVD, but it is expensive.
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Find r = rank(A) linearly independent columns of A , namely
{
aj1 . . . , ajr

}
,

then

AΠ = (Q1 Q2)

(
R11 R12

0 0

)
, (2)

where R11 is upper triangular of order r , and Π permutes
{
aj1 . . . , ajr

}
to the

left-most positions.

The associated basic solution is given by

x⋆ = Π

(
R−1

11 QT
1 b

0

)
(3)

• it has at most r nonzero entries;
• it depends on the choice of the basis

{
aj1 . . . , ajr

}
of R(A);

• it is not the minimum ℓ2 solution in general.
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A Rank-Revealing QR (RRQR) factorisation is

AΠ = QR = Q
(

R11 R12

0 R22

)
, (4)

• A has numerical rank r = rank(A , ε);
• Q is an orthogonal, R11 is upper triangular of order r ;
• σmin(R11) ≫ ∥R22∥ = O(ε).

Best we can do is to find a column pivoting Π such that

max
Π
σmin(R11), (5)

which is NP-hard. Therefore, we solve (5) approximately and we are
happy with

σmin(R11) ≥
σr(A)

p(n)
. (6)
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First greedy algorithm1 for approximate solving maxΠ σmin(R11).

QR with column pivoting (QRP)
1: for s = 1, . . . , n − 1 do
2: Choose j such that ∥cj∥ is maximum
3: Swap columns s + 1 and s + j
4: Compute and apply the Householder reflector
5: end for

c j

a j

• Column pivoting is a performance killer
• QP32, block version implemented in LAPACK

1Peter Businger and Gene H. Golub. “Linear Least Squares Solutions by Householder
Transformations”. In: Numer. Math. 7.3 (June 1965), pp. 269–276. issn: 0029-599X.

2G. Quintana-Ortı́, X. Sun, and C. H. Bischof. “A BLAS-3 Version of the QR
Factorization with Column Pivoting”. In: SIAM Journal on Scientific Computing 19.5
(1998), pp. 1486–1494.
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Problem: How to pick k > 1 columns at once?

Lemma
C = (c1 . . . ck ). If there exists 1 > τ > 0 such that
• ∥cj∥ ≥ τ∥c1∥ = τmaxi ∥ci∥, for all 1 ≤ j ≤ k ,
• CT C is τ-scaled diagonally dominant w.r.t. the ∞-norm, i.e.

CT C = DΘD = D(I + N)D, ∥N∥∞ < τ, (7)

where D is diagonal and Θ is the correlation matrix,

then
σmin(C) ≥ τ

√
1 − τ ∥c1∥ > 0. (8)
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Deviation Maximization (DM)3: Pick k indices such that the corresponding
columns have
• a large norm w.r.t. to τ, i.e. ∥cj∥ ≥ τmaxi ∥ci∥,

• large deviations, i.e. pairwise orthogonal columns up to δ:

∣∣∣θij ∣∣∣ =
∣∣∣∣∣∣∣ cT

i cj

∥ci∥∥cj∥

∣∣∣∣∣∣∣ < δ, i , j, (9)

where θij is the cosine of the angle (mod π) between ci and cj and it is
the (i, j)–th entry of the correlation matrix Θ.

3M. D. and F. Marcuzzi. “Deviation Maximization for Rank-Revealing QR
Factorizations”. To appear in Numerical Algorithms. 2021.
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QR with Deviation Maximization (QRDM(τ, δ))
1: while ns < n do
2: Choose ks columns within {ci : ∥ci∥ ≥ τmaxi ∥ci∥}

pairwise orthogonal up to δ
3: Move selected columns in the first ks leading

positions
4: Compute and apply the block Householder

reflectors
5: s = s + 1, ns = ns + ks

6: end while

a j1

c j1

. . .a jks

c jks

• Naturally based on BLAS–3 operations for efficiency
• Communication avoiding: if a column is already within the the first ks

leading positions, then it is not moved
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Worst-case bounds on σmin

Let σ̄(s) be the smallest singular value of the computed R11 block at step s.

Theorem
The standard pivoting guarantees

σ̄(s+1) ≥ σs+1(A)
σ̄(s)

σ1(A)

1√
2(n − s)(s + 1)

. (10)

The DM pivoting guarantees

σ̄(s+1) ≥ σns+1(A)
σ̄(s)

σ1(A)

1√
2(n − ns+1)ns+1

√
δ+ τ2 − 1

k 2ns
. (11)

• Theoretically, the quality of the two RRQR factorizations is similar.
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• Subset of San Jose State University singular matrices dataset,
m, n = O(103) − O(104)
• Double precision codes QRDM vs QP3 (LAPACK)

Minimum (red) and maximum (blue) values of ratio | diag(R11)i |

σi(A)
for each A :

0 50 100 150 200 250

10 1

100

101

min
max

(a) QP3

0 50 100 150 200 250

10 1

100

101

102

min
max

(b) QRDM
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Minimum (red) and maximum (blue) values of ratio σi(R11)
σi(A)

for each A :
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Singular values σi (·) and diagonal values di = | diag(R11)i | computed with
QP3 (×) and QRDM (+):
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(a) Natural scale
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101

i

di, QP3
di, QRDM

(b) Logarithmic scale

• QP3 di ’s are monotonically non increasing
• QRDM does not show this property
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Execution times of QRDM (⋆) and QP3 (·) over QR without pivoting:

0 50 100 150 200 250

2
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10

time QRDM/QR
time QP3/QR

• QR is 3× faster than QP3;
• QR is only 1.3× faster than QRDM;
• QRDM is 2.1× faster then QP3.

Monica Dessole DM for rank-deficient problems 14–15 Febbraio 2021 14 / 15



Rank-Deficient Least Squares Numerical Experiments Conclusion

The proposed Deviation Maximization block pivoting
• is naturally based on BLAS–3 kernels for efficiency;
• can substantially decrease the amount of communication due to

column permutation;
• has been successfully extended to NonNegative Least Squares

(NNLS) problems4.

Future perspectives
• investigate the benefits on parallel environments;
• extension to least squares problems with general linear constraints.

4M. D., F. Marcuzzi, and M. Vianello. “Accelerating the Lawson-Hanson NNLS solver for
large-scale Tchakaloff regression designs”. In: Dolomites Research Notes on
Approximation 13 (1 2020), pp. 20–29.
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Thank you for your attention!

Questions?
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