Deviation Maximization for rank-deficient problems

Monica Dessole^{1,2}, Fabio Marcuzzi¹

¹Dipartimento di Matematica "Tullio Levi Civita", Università di Padova ²Leonardo Labs, Leonardo Company, Genova

Due Giorni di Algebra Lineare Numerica e Applicazioni

14-15 Febbraio 2021

Rank-Deficient Least Squares

2 Numerical Experiments

3 Conclusion

(1)

The problem

Consider A matrix of size $m \times n$

- possibly overdetermined $m \ge n$, numerical rank r < n
- underdetermined m < n, no assumption on the rank

Find x* that solves

$$\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|^2.$$

(1)

The problem

Consider A matrix of size $m \times n$

- possibly overdetermined $m \ge n$, numerical rank r < n
- underdetermined m < n, no assumption on the rank

Find x* that solves

$$\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|^2.$$

Infinitely many solutions: if x* solves (1), then

$$\|A(\mathbf{x}^{\star} + \mathbf{y}) - \mathbf{b}\|^2 = \|A\mathbf{x}^{\star} - \mathbf{b}\|^2$$

for any $\mathbf{y} \in \mathcal{N}(A) = {\mathbf{x} : A\mathbf{x} = 0} \neq \emptyset$.

• The standard QR may not lead a solution.

Gold standard is the SVD, but it is expensive.

Rank-Deficient Least Squares o●oooooo	Numerical Experiments	Conclusion O

Find $r = \operatorname{rank}(A)$ linearly independent columns of A, namely $\{\mathbf{a}_{j_1}, \ldots, \mathbf{a}_{j_r}\}$, then

$$A\Pi = (Q_1 \ Q_2) \begin{pmatrix} R_{11} & R_{12} \\ 0 & 0 \end{pmatrix},$$
 (2)

where R_{11} is upper triangular of order r, and Π permutes $\{\mathbf{a}_{j_1}, \ldots, \mathbf{a}_{j_r}\}$ to the left-most positions.

Rank-Deficient Least Squares	Numerical Experiments	Conclusion
o●oooooo	oooo	O

Find $r = \operatorname{rank}(A)$ linearly independent columns of A, namely $\{\mathbf{a}_{j_1}, \ldots, \mathbf{a}_{j_r}\}$, then

$$A\Pi = (Q_1 \ Q_2) \begin{pmatrix} R_{11} & R_{12} \\ 0 & 0 \end{pmatrix},$$
 (2)

where R_{11} is upper triangular of order r, and Π permutes $\{\mathbf{a}_{j_1}, \ldots, \mathbf{a}_{j_r}\}$ to the left-most positions. The associated basic solution is given by

$$\mathbf{x}^{\star} = \Pi \left(\begin{array}{c} R_{11}^{-1} Q_1^T \mathbf{b} \\ 0 \end{array} \right) \tag{3}$$

- it has at most r nonzero entries;
- it depends on the choice of the basis $\{\mathbf{a}_{j_1} \dots, \mathbf{a}_{j_r}\}$ of $\mathcal{R}(A)$;
- it is not the minimum ℓ_2 solution in general.

(4)

A Rank-Revealing QR (RRQR) factorisation is

$$A\Pi=QR=Qigg(egin{array}{cc} R_{11}&R_{12}\ 0&R_{22} \end{array}igg),$$

- A has numerical rank $r = \operatorname{rank}(A, \varepsilon)$;
- Q is an orthogonal, R₁₁ is upper triangular of order r;
- $\sigma_{\min}(R_{11}) \gg ||R_{22}|| = O(\varepsilon).$

A Rank-Revealing QR (RRQR) factorisation is

$$A\Pi = QR = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{pmatrix},$$
 (4)

- A has numerical rank $r = \operatorname{rank}(A, \varepsilon)$;
- Q is an orthogonal, R_{11} is upper triangular of order r;

•
$$\sigma_{\min}(R_{11}) \gg ||R_{22}|| = O(\varepsilon).$$

Best we can do is to find a column pivoting Π such that

$$\max_{\Pi} \sigma_{\min}(R_{11}), \tag{5}$$

which is NP-hard. Therefore, we solve (5) approximately and we are happy with

$$\sigma_{\min}(R_{11}) \ge \frac{\sigma_r(A)}{p(n)}.$$
(6)

Numerical Experiments

a

 \mathbf{c}_i

First greedy algorithm¹ for approximate solving $\max_{\Pi} \sigma_{\min}(R_{11})$.

QR with column pivoting (QRP)

- 1: for s = 1, ..., n 1 do
- 2: Choose *j* such that $||\mathbf{c}_j||$ is maximum
- 3: Swap columns s + 1 and s + j
- 4: Compute and apply the Householder reflector

5: end for

- Column pivoting is a performance killer
- QP3², block version implemented in LAPACK

¹Peter Businger and Gene H. Golub. "Linear Least Squares Solutions by Householder Transformations". In: *Numer. Math.* 7.3 (June 1965), pp. 269–276. ISSN: 0029-599X. ²G. Quintana-Ortí, X. Sun, and C. H. Bischof. "A BLAS-3 Version of the QR Factorization with Column Pivoting". In: *SIAM Journal on Scientific Computing* 19.5 (1998), pp. 1486–1494.

6/15

Problem: How to pick k > 1 columns at once?

Lemma

- $C = (\mathbf{c}_1 \dots \mathbf{c}_k)$. If there exists $1 > \tau > 0$ such that
 - $\|\mathbf{c}_{j}\| \ge \tau \|\mathbf{c}_{1}\| = \tau \max_{i} \|\mathbf{c}_{i}\|$, for all $1 \le j \le k$,
 - $C^{T}C$ is τ -scaled diagonally dominant w.r.t. the ∞ -norm, i.e.

$$C^{\mathsf{T}}C = D\Theta D = D(I+N)D, \quad ||N||_{\infty} < \tau, \tag{7}$$

where D is diagonal and Θ is the correlation matrix,

then

$$\sigma_{\min}(C) \ge \tau \sqrt{1-\tau} \|\mathbf{c}_1\| > 0.$$
(8)

Deviation Maximization $(DM)^3$: Pick *k* indices such that the corresponding columns have

- a large norm w.r.t. to τ , i.e. $\|\mathbf{c}_{j}\| \ge \tau \max_{i} \|\mathbf{c}_{i}\|$,
- large deviations, i.e. pairwise orthogonal columns up to δ :

$$\left|\theta_{ij}\right| = \left|\frac{\mathbf{c}_{i}^{\mathsf{T}}\mathbf{c}_{j}}{||\mathbf{c}_{i}||||\mathbf{c}_{j}||}\right| < \delta, \quad i \neq j, \tag{9}$$

where θ_{ij} is the cosine of the angle (mod π) between \mathbf{c}_i and \mathbf{c}_j and it is the (i, j)-th entry of the correlation matrix Θ .

³M. D. and F. Marcuzzi. "Deviation Maximization for Rank-Revealing QR Factorizations". To appear in Numerical Algorithms. 2021.

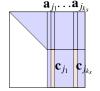
QR with Deviation Maximization (QRDM(τ, δ))

```
1: while n_{s} < n \, do
```

- 2: Choose k_s columns within $\{c_i : ||c_i|| \ge \tau \max_i ||c_i||\}$ pairwise orthogonal up to δ
- 3: Move selected columns in the first k_s leading positions
- 4: Compute and apply the block Householder reflectors

```
5: s = s + 1, n_s = n_s + k_s
```

6: end while



- Naturally based on BLAS–3 operations for efficiency
- Communication avoiding: if a column is already within the first k_s leading positions, then it is not moved

Worst-case bounds on $\sigma_{\it min}$

Let $\bar{\sigma}^{(s)}$ be the smallest singular value of the computed R_{11} block at step *s*.

Worst-case bounds on σ_{\min}

Let $\bar{\sigma}^{(s)}$ be the smallest singular value of the computed R_{11} block at step *s*.

Theorem

The standard pivoting guarantees

$$\bar{\sigma}^{(s+1)} \ge \sigma_{s+1}(A) \frac{\bar{\sigma}^{(s)}}{\sigma_1(A)} \frac{1}{\sqrt{2(n-s)(s+1)}}.$$
 (10)

The DM pivoting guarantees

$$\bar{\sigma}^{(s+1)} \ge \sigma_{n_{s+1}}(A) \frac{\bar{\sigma}^{(s)}}{\sigma_1(A)} \frac{1}{\sqrt{2(n-n_{s+1})n_{s+1}}} \frac{\sqrt{\delta + \tau^2 - 1}}{k^2 n_s}.$$
 (11)

• Theoretically, the quality of the two RRQR factorizations is similar.

Monica Dessole

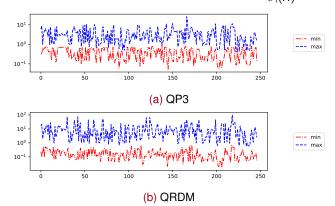
Numerical Experiments

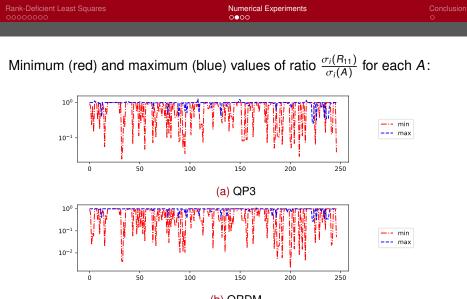
Conclusion

- Subset of San Jose State University singular matrices dataset, $m, n = O(10^3) - O(10^4)$
- Double precision codes QRDM vs QP3 (LAPACK)

- Subset of San Jose State University singular matrices dataset, $m, n = O(10^3) - O(10^4)$
- Double precision codes QRDM vs QP3 (LAPACK)

Minimum (red) and maximum (blue) values of ratio $\frac{|\text{diag}(R_{11})_i|}{\sigma_i(A)}$ for each A:

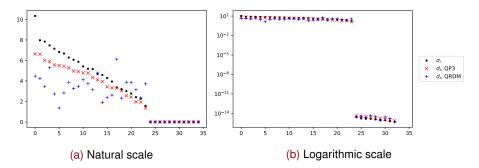




(b) QRDM

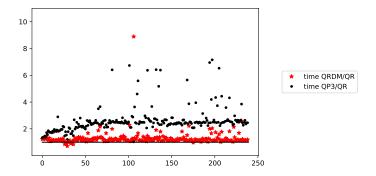
Rank-Deficient Least Squares	Numerical Experiments	Conclusion o

Singular values σ_i (·) and diagonal values $d_i = |\operatorname{diag}(R_{11})_i|$ computed with QP3 (×) and QRDM (+):



- QP3 d_i's are monotonically non increasing
- QRDM does not show this property

Execution times of QRDM (\star) and QP3 (\cdot) over QR without pivoting:



- QR is 3× faster than QP3;
- QR is only 1.3× faster than QRDM;
- QRDM is 2.1× faster then QP3.

Conclusion

The proposed Deviation Maximization block pivoting

- is naturally based on BLAS-3 kernels for efficiency;
- can substantially decrease the amount of communication due to column permutation;
- has been successfully extended to NonNegative Least Squares (NNLS) problems⁴.

Future perspectives

- investigate the benefits on parallel environments;
- extension to least squares problems with general linear constraints.

⁴M. D., F. Marcuzzi, and M. Vianello. "Accelerating the Lawson-Hanson NNLS solver for large-scale Tchakaloff regression designs". In: *Dolomites Research Notes on Approximation* 13 (1 2020), pp. 20–29.

Thank you for your attention!

Questions?

References I

- Peter Businger and Gene H. Golub. "Linear Least Squares Solutions by Householder Transformations". In: *Numer. Math.* 7.3 (June 1965), pp. 269–276. ISSN: 0029-599X.
- [2] M. D. and F. Marcuzzi. "Deviation Maximization for Rank-Revealing QR Factorizations". To appear in Numerical Algorithms. 2021.
- [3] M. D., F. Marcuzzi, and M. Vianello. "Accelerating the Lawson-Hanson NNLS solver for large-scale Tchakaloff regression designs". In: *Dolomites Research Notes on Approximation* 13 (1 2020), pp. 20–29.
- [4] G. Quintana-Ortí, X. Sun, and C. H. Bischof. "A BLAS-3 Version of the QR Factorization with Column Pivoting". In: SIAM Journal on Scientific Computing 19.5 (1998), pp. 1486–1494.