# Deviation Maximization for rank-deficient problems

## Monica Dessole<sup>1,2</sup>, Fabio Marcuzzi<sup>1</sup>

<sup>1</sup>Dipartimento di Matematica "Tullio Levi Civita", Università di Padova <sup>2</sup>Leonardo Labs, Leonardo Company, Genova

Due Giorni di Algebra Lineare Numerica e Applicazioni

14-15 Febbraio 2021

Rank-Deficient Least Squares

2 Numerical Experiments

#### **3** Conclusion

(1)

## The problem

Consider A matrix of size  $m \times n$ 

- possibly overdetermined  $m \ge n$ , numerical rank r < n
- underdetermined m < n, no assumption on the rank

Find x\* that solves

$$\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|^2.$$

(1)

## The problem

Consider A matrix of size  $m \times n$ 

- possibly overdetermined  $m \ge n$ , numerical rank r < n
- underdetermined m < n, no assumption on the rank

Find x\* that solves

$$\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|^2.$$

Infinitely many solutions: if x\* solves (1), then

$$\|A(\mathbf{x}^{\star} + \mathbf{y}) - \mathbf{b}\|^2 = \|A\mathbf{x}^{\star} - \mathbf{b}\|^2$$

for any  $\mathbf{y} \in \mathcal{N}(A) = {\mathbf{x} : A\mathbf{x} = 0} \neq \emptyset$ .

• The standard QR may not lead a solution.

Gold standard is the SVD, but it is expensive.

| Rank-Deficient Least Squares<br>o●oooooo | Numerical Experiments | Conclusion<br>O |
|------------------------------------------|-----------------------|-----------------|
|                                          |                       |                 |

Find  $r = \operatorname{rank}(A)$  linearly independent columns of A, namely  $\{\mathbf{a}_{j_1}, \ldots, \mathbf{a}_{j_r}\}$ , then

$$A\Pi = (Q_1 \ Q_2) \begin{pmatrix} R_{11} & R_{12} \\ 0 & 0 \end{pmatrix},$$
 (2)

where  $R_{11}$  is upper triangular of order r, and  $\Pi$  permutes  $\{\mathbf{a}_{j_1}, \ldots, \mathbf{a}_{j_r}\}$  to the left-most positions.

| Rank-Deficient Least Squares | Numerical Experiments | Conclusion |
|------------------------------|-----------------------|------------|
| o●oooooo                     | oooo                  | O          |
|                              |                       |            |

Find  $r = \operatorname{rank}(A)$  linearly independent columns of A, namely  $\{\mathbf{a}_{j_1}, \ldots, \mathbf{a}_{j_r}\}$ , then

$$A\Pi = (Q_1 \ Q_2) \begin{pmatrix} R_{11} & R_{12} \\ 0 & 0 \end{pmatrix},$$
 (2)

where  $R_{11}$  is upper triangular of order r, and  $\Pi$  permutes  $\{\mathbf{a}_{j_1}, \ldots, \mathbf{a}_{j_r}\}$  to the left-most positions. The associated basic solution is given by

$$\mathbf{x}^{\star} = \Pi \left( \begin{array}{c} R_{11}^{-1} Q_1^T \mathbf{b} \\ 0 \end{array} \right) \tag{3}$$

- it has at most r nonzero entries;
- it depends on the choice of the basis  $\{\mathbf{a}_{j_1} \dots, \mathbf{a}_{j_r}\}$  of  $\mathcal{R}(A)$ ;
- it is not the minimum  $\ell_2$  solution in general.

(4)

#### A Rank-Revealing QR (RRQR) factorisation is

$$A\Pi=QR=Qigg(egin{array}{cc} R_{11}&R_{12}\ 0&R_{22} \end{array}igg),$$

- A has numerical rank  $r = \operatorname{rank}(A, \varepsilon)$ ;
- Q is an orthogonal, R<sub>11</sub> is upper triangular of order r;
- $\sigma_{\min}(R_{11}) \gg ||R_{22}|| = O(\varepsilon).$

#### A Rank-Revealing QR (RRQR) factorisation is

$$A\Pi = QR = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{pmatrix},$$
 (4)

- A has numerical rank  $r = \operatorname{rank}(A, \varepsilon)$ ;
- Q is an orthogonal,  $R_{11}$  is upper triangular of order r;

• 
$$\sigma_{\min}(R_{11}) \gg ||R_{22}|| = O(\varepsilon).$$

Best we can do is to find a column pivoting  $\Pi$  such that

$$\max_{\Pi} \sigma_{\min}(R_{11}), \tag{5}$$

which is NP-hard. Therefore, we solve (5) approximately and we are happy with

$$\sigma_{\min}(R_{11}) \ge \frac{\sigma_r(A)}{p(n)}.$$
(6)

Numerical Experiments

a

 $\mathbf{c}_i$ 

First greedy algorithm<sup>1</sup> for approximate solving  $\max_{\Pi} \sigma_{\min}(R_{11})$ .

## QR with column pivoting (QRP)

- 1: for s = 1, ..., n 1 do
- 2: Choose *j* such that  $||\mathbf{c}_j||$  is maximum
- 3: Swap columns s + 1 and s + j
- 4: Compute and apply the Householder reflector

5: end for

- Column pivoting is a performance killer
- QP3<sup>2</sup>, block version implemented in LAPACK

<sup>1</sup>Peter Businger and Gene H. Golub. "Linear Least Squares Solutions by Householder Transformations". In: *Numer. Math.* 7.3 (June 1965), pp. 269–276. ISSN: 0029-599X. <sup>2</sup>G. Quintana-Ortí, X. Sun, and C. H. Bischof. "A BLAS-3 Version of the QR Factorization with Column Pivoting". In: *SIAM Journal on Scientific Computing* 19.5 (1998), pp. 1486–1494.

6/15

Problem: How to pick k > 1 columns at once?

#### Lemma

- $C = (\mathbf{c}_1 \dots \mathbf{c}_k)$ . If there exists  $1 > \tau > 0$  such that
  - $\|\mathbf{c}_{j}\| \ge \tau \|\mathbf{c}_{1}\| = \tau \max_{i} \|\mathbf{c}_{i}\|$ , for all  $1 \le j \le k$ ,
  - $C^{T}C$  is  $\tau$ -scaled diagonally dominant w.r.t. the  $\infty$ -norm, i.e.

$$C^{\mathsf{T}}C = D\Theta D = D(I+N)D, \quad ||N||_{\infty} < \tau, \tag{7}$$

where D is diagonal and  $\Theta$  is the correlation matrix,

then

$$\sigma_{\min}(C) \ge \tau \sqrt{1-\tau} \|\mathbf{c}_1\| > 0.$$
(8)

Deviation Maximization  $(DM)^3$ : Pick *k* indices such that the corresponding columns have

- a large norm w.r.t. to  $\tau$ , i.e.  $\|\mathbf{c}_{j}\| \ge \tau \max_{i} \|\mathbf{c}_{i}\|$ ,
- large deviations, i.e. pairwise orthogonal columns up to  $\delta$ :

$$\left|\theta_{ij}\right| = \left|\frac{\mathbf{c}_{i}^{\mathsf{T}}\mathbf{c}_{j}}{||\mathbf{c}_{i}||||\mathbf{c}_{j}||}\right| < \delta, \quad i \neq j, \tag{9}$$

where  $\theta_{ij}$  is the cosine of the angle (mod  $\pi$ ) between  $\mathbf{c}_i$  and  $\mathbf{c}_j$  and it is the (i, j)-th entry of the correlation matrix  $\Theta$ .

<sup>3</sup>M. D. and F. Marcuzzi. "Deviation Maximization for Rank-Revealing QR Factorizations". To appear in Numerical Algorithms. 2021.

# QR with Deviation Maximization (QRDM( $\tau, \delta$ ))

```
1: while n_{s} < n \, do
```

- 2: Choose  $k_s$  columns within  $\{c_i : ||c_i|| \ge \tau \max_i ||c_i||\}$  pairwise orthogonal up to  $\delta$
- 3: Move selected columns in the first  $k_s$  leading positions
- 4: Compute and apply the block Householder reflectors

```
5: s = s + 1, n_s = n_s + k_s
```

6: end while



- Naturally based on BLAS–3 operations for efficiency
- Communication avoiding: if a column is already within the first k<sub>s</sub> leading positions, then it is not moved

# Worst-case bounds on $\sigma_{\it min}$

Let  $\bar{\sigma}^{(s)}$  be the smallest singular value of the computed  $R_{11}$  block at step *s*.

# Worst-case bounds on $\sigma_{\min}$

Let  $\bar{\sigma}^{(s)}$  be the smallest singular value of the computed  $R_{11}$  block at step *s*.

#### Theorem

The standard pivoting guarantees

$$\bar{\sigma}^{(s+1)} \ge \sigma_{s+1}(A) \frac{\bar{\sigma}^{(s)}}{\sigma_1(A)} \frac{1}{\sqrt{2(n-s)(s+1)}}.$$
 (10)

The DM pivoting guarantees

$$\bar{\sigma}^{(s+1)} \ge \sigma_{n_{s+1}}(A) \frac{\bar{\sigma}^{(s)}}{\sigma_1(A)} \frac{1}{\sqrt{2(n-n_{s+1})n_{s+1}}} \frac{\sqrt{\delta + \tau^2 - 1}}{k^2 n_s}.$$
 (11)

• Theoretically, the quality of the two RRQR factorizations is similar.

Monica Dessole

Numerical Experiments

Conclusion

- Subset of San Jose State University singular matrices dataset,  $m, n = O(10^3) - O(10^4)$
- Double precision codes QRDM vs QP3 (LAPACK)

- Subset of San Jose State University singular matrices dataset,  $m, n = O(10^3) - O(10^4)$
- Double precision codes QRDM vs QP3 (LAPACK)

Minimum (red) and maximum (blue) values of ratio  $\frac{|\text{diag}(R_{11})_i|}{\sigma_i(A)}$  for each A:





(b) QRDM

| Rank-Deficient Least Squares | Numerical Experiments | Conclusion<br>o |
|------------------------------|-----------------------|-----------------|
|                              |                       |                 |

Singular values  $\sigma_i$  (·) and diagonal values  $d_i = |\operatorname{diag}(R_{11})_i|$  computed with QP3 (×) and QRDM (+):



- QP3 d<sub>i</sub>'s are monotonically non increasing
- QRDM does not show this property

Execution times of QRDM ( $\star$ ) and QP3 ( $\cdot$ ) over QR without pivoting:



- QR is 3× faster than QP3;
- QR is only 1.3× faster than QRDM;
- QRDM is 2.1× faster then QP3.

Conclusion

The proposed Deviation Maximization block pivoting

- is naturally based on BLAS-3 kernels for efficiency;
- can substantially decrease the amount of communication due to column permutation;
- has been successfully extended to NonNegative Least Squares (NNLS) problems<sup>4</sup>.

Future perspectives

- investigate the benefits on parallel environments;
- extension to least squares problems with general linear constraints.

<sup>4</sup>M. D., F. Marcuzzi, and M. Vianello. "Accelerating the Lawson-Hanson NNLS solver for large-scale Tchakaloff regression designs". In: *Dolomites Research Notes on Approximation* 13 (1 2020), pp. 20–29.

# Thank you for your attention!

Questions?

## **References** I

- Peter Businger and Gene H. Golub. "Linear Least Squares Solutions by Householder Transformations". In: *Numer. Math.* 7.3 (June 1965), pp. 269–276. ISSN: 0029-599X.
- [2] M. D. and F. Marcuzzi. "Deviation Maximization for Rank-Revealing QR Factorizations". To appear in Numerical Algorithms. 2021.
- [3] M. D., F. Marcuzzi, and M. Vianello. "Accelerating the Lawson-Hanson NNLS solver for large-scale Tchakaloff regression designs". In: *Dolomites Research Notes on Approximation* 13 (1 2020), pp. 20–29.
- [4] G. Quintana-Ortí, X. Sun, and C. H. Bischof. "A BLAS-3 Version of the QR Factorization with Column Pivoting". In: SIAM Journal on Scientific Computing 19.5 (1998), pp. 1486–1494.