Deviation Maximization for rank-deficient problems

Monica Dessole ${ }^{1,2}$, Fabio Marcuzzi ${ }^{1}$

${ }^{1}$ Dipartimento di Matematica "Tullio Levi Civita", Università di Padova
${ }^{2}$ Leonardo Labs, Leonardo Company, Genova
Due Giorni di Algebra Lineare Numerica e Applicazioni
14-15 Febbraio 2021

(1) Rank-Deficient Least Squares

(2) Numerical Experiments

(3) Conclusion

The problem

Consider A matrix of size $m \times n$

- possibly overdetermined $m \geq n$, numerical rank $r<n$
- underdetermined $m<n$, no assumption on the rank

Find \mathbf{x}^{\star} that solves

$$
\begin{equation*}
\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|^{2} . \tag{1}
\end{equation*}
$$

The problem

Consider A matrix of size $m \times n$

- possibly overdetermined $m \geq n$, numerical rank $r<n$
- underdetermined $m<n$, no assumption on the rank

Find \mathbf{x}^{\star} that solves

$$
\begin{equation*}
\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|^{2} \tag{1}
\end{equation*}
$$

- Infinitely many solutions: if \mathbf{x}^{\star} solves (1), then

$$
\left\|A\left(\mathbf{x}^{\star}+\mathbf{y}\right)-\mathbf{b}\right\|^{2}=\left\|A \mathbf{x}^{\star}-\mathbf{b}\right\|^{2}
$$

for any $\mathbf{y} \in \mathcal{N}(A)=\{\mathbf{x}: A \mathbf{x}=0\} \neq \emptyset$.

- The standard QR may not lead a solution.

Gold standard is the SVD, but it is expensive.

Find $r=\operatorname{rank}(A)$ linearly independent columns of A, namely $\left\{\mathbf{a}_{j_{1}} \ldots, \mathbf{a}_{j_{r}}\right\}$, then

$$
A \Pi=\left(Q_{1} Q_{2}\right)\left(\begin{array}{cc}
R_{11} & R_{12} \tag{2}\\
0 & 0
\end{array}\right)
$$

where R_{11} is upper triangular of order r, and Π permutes $\left\{\mathbf{a}_{j_{1}} \ldots, \mathbf{a}_{j_{r}}\right\}$ to the left-most positions.

Find $r=\operatorname{rank}(A)$ linearly independent columns of A, namely $\left\{\mathbf{a}_{j_{1}} \ldots, \mathbf{a}_{j_{r}}\right\}$, then

$$
A \Pi=\left(Q_{1} Q_{2}\right)\left(\begin{array}{cc}
R_{11} & R_{12} \tag{2}\\
0 & 0
\end{array}\right)
$$

where R_{11} is upper triangular of order r, and Π permutes $\left\{\mathbf{a}_{j_{1}} \ldots, \mathbf{a}_{j_{r}}\right\}$ to the left-most positions. The associated basic solution is given by

$$
\begin{equation*}
\mathbf{x}^{\star}=\Pi\binom{R_{11}^{-1} Q_{1}^{\top} \mathbf{b}}{0} \tag{3}
\end{equation*}
$$

- it has at most r nonzero entries;
- it depends on the choice of the basis $\left\{\mathbf{a}_{j_{1}} \ldots, \mathbf{a}_{j_{r}}\right\}$ of $\mathcal{R}(A)$;
- it is not the minimum ℓ_{2} solution in general.

A Rank-Revealing QR (RRQR) factorisation is

$$
A \Pi=Q R=Q\left(\begin{array}{cc}
R_{11} & R_{12} \tag{4}\\
0 & R_{22}
\end{array}\right)
$$

- A has numerical rank $r=\operatorname{rank}(A, \varepsilon)$;
- Q is an orthogonal, R_{11} is upper triangular of order r;
- $\sigma_{\text {min }}\left(R_{11}\right) \gg\left\|R_{22}\right\|=O(\varepsilon)$.

A Rank-Revealing QR (RRQR) factorisation is

$$
A \Pi=Q R=Q\left(\begin{array}{cc}
R_{11} & R_{12} \tag{4}\\
0 & R_{22}
\end{array}\right)
$$

- A has numerical rank $r=\operatorname{rank}(A, \varepsilon)$;
- Q is an orthogonal, R_{11} is upper triangular of order r;
- $\sigma_{\text {min }}\left(R_{11}\right) \gg\left\|R_{22}\right\|=O(\varepsilon)$.

Best we can do is to find a column pivoting Π such that

$$
\begin{equation*}
\max _{\Pi} \sigma_{\min }\left(R_{11}\right) \tag{5}
\end{equation*}
$$

which is NP-hard. Therefore, we solve (5) approximately and we are happy with

$$
\begin{equation*}
\sigma_{\min }\left(R_{11}\right) \geq \frac{\sigma_{r}(A)}{p(n)} \tag{6}
\end{equation*}
$$

First greedy algorithm ${ }^{1}$ for approximate solving $\max _{\Pi} \sigma_{\min }\left(R_{11}\right)$.

QR with column pivoting (QRP)

1: for $s=1, \ldots, n-1$ do
2: \quad Choose j such that $\left\|\mathbf{c}_{j}\right\|$ is maximum
3: \quad Swap columns $s+1$ and $s+j$
4: Compute and apply the Householder reflector
5: end for

- Column pivoting is a performance killer
- QP3 ${ }^{2}$, block version implemented in LAPACK

[^0]Problem: How to pick $k>1$ columns at once?

Lemma

$C=\left(\mathbf{c}_{1} \ldots \mathbf{c}_{k}\right)$. If there exists $1>\tau>0$ such that

- $\left\|\mathbf{c}_{j}\right\| \geq \tau\left\|\mathbf{c}_{1}\right\|=\tau \max _{i}\left\|\mathbf{c}_{i}\right\|$, for all $1 \leq j \leq k$,
- $C^{\top} C$ is τ-scaled diagonally dominant w.r.t. the ∞-norm, i.e.

$$
\begin{equation*}
C^{\top} C=D \Theta D=D(I+N) D, \quad\|N\|_{\infty}<\tau \tag{7}
\end{equation*}
$$

where D is diagonal and Θ is the correlation matrix,
then

$$
\begin{equation*}
\sigma_{\min }(C) \geq \tau \sqrt{1-\tau}\left\|\mathbf{c}_{1}\right\|>0 \tag{8}
\end{equation*}
$$

Deviation Maximization (DM) ${ }^{3}$: Pick k indices such that the corresponding columns have

- a large norm w.r.t. to τ, i.e. $\left\|\mathbf{c}_{j}\right\| \geq \tau$ max $_{i}\left\|\mathbf{c}_{i}\right\|$,
- large deviations, i.e. pairwise orthogonal columns up to δ :

$$
\begin{equation*}
\left|\theta_{i j}\right|=\left|\frac{\mathbf{c}_{i}^{T} \mathbf{c}_{j}}{\left\|\mathbf{c}_{i}\right\|\left\|\mathbf{c}_{j}\right\|}\right|<\delta, \quad i \neq j \tag{9}
\end{equation*}
$$

where $\theta_{i j}$ is the cosine of the angle $(\bmod \pi)$ between \mathbf{c}_{i} and \mathbf{c}_{j} and it is the (i, j)-th entry of the correlation matrix Θ.

[^1]
QR with Deviation Maximization (QRDM (τ, δ))

1: while $n_{s}<n$ do
2: \quad Choose k_{s} columns within $\left\{c_{i}:\left\|c_{i}\right\| \geq \tau \max _{i}\left\|c_{i}\right\|\right\}$ pairwise orthogonal up to δ
3: Move selected columns in the first k_{s} leading positions
4: Compute and apply the block Householder reflectors

$$
\text { 5: } \quad s=s+1, n_{s}=n_{s}+k_{s}
$$

6: end while

- Naturally based on BLAS-3 operations for efficiency
- Communication avoiding: if a column is already within the the first k_{s} leading positions, then it is not moved

Worst-case bounds on $\sigma_{\text {min }}$

Let $\bar{\sigma}^{(s)}$ be the smallest singular value of the computed R_{11} block at step s.

Worst-case bounds on $\sigma_{\text {min }}$

Let $\bar{\sigma}^{(s)}$ be the smallest singular value of the computed R_{11} block at step s.

Theorem

The standard pivoting guarantees

$$
\begin{equation*}
\bar{\sigma}^{(s+1)} \geq \sigma_{s+1}(A) \frac{\bar{\sigma}^{(s)}}{\sigma_{1}(A)} \frac{1}{\sqrt{2(n-s)(s+1)}} \tag{10}
\end{equation*}
$$

The DM pivoting guarantees

$$
\begin{equation*}
\bar{\sigma}^{(s+1)} \geq \sigma_{n_{s+1}}(A) \frac{\bar{\sigma}^{(s)}}{\sigma_{1}(A)} \frac{1}{\sqrt{2\left(n-n_{s+1}\right) n_{s+1}}} \frac{\sqrt{\delta+\tau^{2}-1}}{k^{2} n_{s}} . \tag{11}
\end{equation*}
$$

- Theoretically, the quality of the two RRQR factorizations is similar.
- Subset of San Jose State University singular matrices dataset, $m, n=O\left(10^{3}\right)-O\left(10^{4}\right)$
- Double precision codes QRDM vs QP3 (LAPACK)
- Subset of San Jose State University singular matrices dataset, $m, n=O\left(10^{3}\right)-O\left(10^{4}\right)$
- Double precision codes QRDM vs QP3 (LAPACK)

Minimum (red) and maximum (blue) values of ratio $\frac{\left|\operatorname{diag}\left(R_{11}\right)_{i}\right|}{\sigma_{i}(A)}$ for each A :

Minimum (red) and maximum (blue) values of ratio $\frac{\sigma_{i}\left(R_{11}\right)}{\sigma_{i}(A)}$ for each A :

Singular values $\sigma_{i}(\cdot)$ and diagonal values $d_{i}=\left|\operatorname{diag}\left(R_{11}\right)_{i}\right|$ computed with QP3 (\times) and QRDM (+):

(a) Natural scale

(b) Logarithmic scale

- QP3 di's are monotonically non increasing
- QRDM does not show this property

Execution times of QRDM (\star) and QP3 (•) over QR without pivoting:

* time QRDM/QR
- time QP3/QR
- QR is $3 \times$ faster than QP3;
- QR is only $1.3 \times$ faster than QRDM;
- QRDM is $2.1 \times$ faster then QP3.

The proposed Deviation Maximization block pivoting

- is naturally based on BLAS-3 kernels for efficiency;
- can substantially decrease the amount of communication due to column permutation;
- has been successfully extended to NonNegative Least Squares (NNLS) problems ${ }^{4}$.

Future perspectives

- investigate the benefits on parallel environments;
- extension to least squares problems with general linear constraints.

[^2]
Thank you for your attention!

Questions?

References I

[1] Peter Businger and Gene H. Golub. "Linear Least Squares Solutions by Householder Transformations". In: Numer. Math. 7.3 (June 1965), pp. 269-276. issn: 0029-599X.
[2] M. D. and F. Marcuzzi. "Deviation Maximization for Rank-Revealing QR Factorizations". To appear in Numerical Algorithms. 2021.
[3] M. D., F. Marcuzzi, and M. Vianello. "Accelerating the Lawson-Hanson NNLS solver for large-scale Tchakaloff regression designs". In: Dolomites Research Notes on Approximation 13 (1 2020), pp. 20-29.
[4] G. Quintana-Ortí, X. Sun, and C. H. Bischof. "A BLAS-3 Version of the QR Factorization with Column Pivoting". In: SIAM Journal on Scientific Computing 19.5 (1998), pp. 1486-1494.

[^0]: ${ }^{1}$ Peter Businger and Gene H. Golub. "Linear Least Squares Solutions by Householder Transformations". In: Numer. Math. 7.3 (June 1965), pp. 269-276. Issn: 0029-599X.
 ${ }^{2}$ G. Quintana-Ortí, X. Sun, and C. H. Bischof. "A BLAS-3 Version of the QR Factorization with Column Pivoting". In: SIAM Journal on Scientific Computing 19.5 (1998), pp. 1486-1494.

[^1]: ${ }^{3}$ M. D. and F. Marcuzzi. "Deviation Maximization for Rank-Revealing QR Factorizations". To appear in Numerical Algorithms. 2021.

[^2]: ${ }^{4}$ M. D., F. Marcuzzi, and M. Vianello. "Accelerating the Lawson-Hanson NNLS solver for large-scale Tchakaloff regression designs". In: Dolomites Research Notes on Approximation 13 (1 2020), pp. 20-29.

