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This work is based on the paper Low- and high-density forms of liquid
water revealed by a new medium-range order descriptor, submitted to
Journal of Molecular Liquids (2021), joint work with Michele Benzi1,
Isabella Daidone2 and Laura Zanetti-Polzi3.
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Water

Water is a complex liquid with anomalous properties, for example:
liquid water is denser than solid water (ice);
very high specific heat;
water expands instead of contracting when it cools.

One of the most popular hypotheses for explaining many of the water
anomalies is based on the existence of a transition between two liquid
phases, referred to as low-density liquid (LDL) and high-density liquid
(HDL).

In our work, we present a new order parameter based on graph
theory, in particular on the total communicability of the corresponding
graph, to identify these two density forms. Our parameter can also
show that HDL forms are not homogeneous but composed of regions
at different local densities.
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4 HDL
Not well structurally
characterized

LDL
More ordered,
tetrahedral geometry

4Image of Laura Zanetti-Polzi
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Basic definitions

A graph G = (V ,E) consists of a set of nodes V = {v1, ..., vn} and a
set of edges E ⊆ V × V . Edges of the form (vi , vi ) are usually
ignored.

G is called a directed graph (or a digraph) if the edges have
orientations: (vi , vj ) ∈ E means that there exists an edge from node
vi to node vj . G is an undirected graph if (vi , vj ) ∈ E ⇐⇒ (vj , vi ) ∈ E .

A weighted graph is a graph in which a positive number (the weight)
is assigned to each edge. Otherwise, it is called unweighted.

For an unweighted graph, the adjacency matrix is a matrix A ∈ Rn×n

such that Aij = 1 if (vi , vj ) ∈ E , 0 otherwise .

A graph G is strongly connected if any node can be reached from any
other node by following edges along their directions. In this case the
adjacency matrix is irreducible.

In our work, we consider undirected and unweighted graphs.
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Centrality measures

Given a graph G, the centrality of a node is a quantity which
measures the importance of that node. Formally, a centrality measure
is a function f : V → [0,∞) used for ranking the nodes in the network.

There are different centrality measures, which capture different
properties of the graph. For example:

measures based on the distance from the other nodes;
measures based on shortest paths passing through the node;
measures based on the relative importance of the neighbours of
the node.

The degree centrality is the simplest centrality measure and it is
defined as the number of links incident upon a node:
deg(vi ) := (1T A)i = (A1)i , where 1 is the vector of all ones.
The degree centrality does not work well in predicting whether
information reaches a certain node or in identifying nodes that act as
a link between two clusters of nodes. It is a purely local notion.



Motivation Basic notions of graph theory Centrality measures Construction of the adjacency matrix Results Conclusions

Centrality measures

Given a graph G, the centrality of a node is a quantity which
measures the importance of that node. Formally, a centrality measure
is a function f : V → [0,∞) used for ranking the nodes in the network.

There are different centrality measures, which capture different
properties of the graph. For example:

measures based on the distance from the other nodes;
measures based on shortest paths passing through the node;
measures based on the relative importance of the neighbours of
the node.

The degree centrality is the simplest centrality measure and it is
defined as the number of links incident upon a node:
deg(vi ) := (1T A)i = (A1)i , where 1 is the vector of all ones.
The degree centrality does not work well in predicting whether
information reaches a certain node or in identifying nodes that act as
a link between two clusters of nodes. It is a purely local notion.



Motivation Basic notions of graph theory Centrality measures Construction of the adjacency matrix Results Conclusions

Centrality measures

Given a graph G, the centrality of a node is a quantity which
measures the importance of that node. Formally, a centrality measure
is a function f : V → [0,∞) used for ranking the nodes in the network.

There are different centrality measures, which capture different
properties of the graph. For example:

measures based on the distance from the other nodes;
measures based on shortest paths passing through the node;
measures based on the relative importance of the neighbours of
the node.

The degree centrality is the simplest centrality measure and it is
defined as the number of links incident upon a node:
deg(vi ) := (1T A)i = (A1)i , where 1 is the vector of all ones.
The degree centrality does not work well in predicting whether
information reaches a certain node or in identifying nodes that act as
a link between two clusters of nodes. It is a purely local notion.



Motivation Basic notions of graph theory Centrality measures Construction of the adjacency matrix Results Conclusions

Eigenvector centrality

If we assume that the graph is strongly connected, then the matrix A
is irreducible. Since A ≥ 0, by the Perron-Frobenius Theorem, there
exists a unique vector p > 0 such that Ap = ρ(A)p (ρ(A) is the
spectral radius of A ). The eigenvector centrality is defined as

EC(vi ) = pi

Walk interpretation of EC:

pi = lim
k→∞

#{walks of length k through vi}
#{walks of length k in G}

It takes into account how well connected a node is and how many
links their connections have and so on through the network. It
identifies nodes with influence over the whole network, not just those
directly connected to it.
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Total communicability

Let β > 0, then the total communicability (Benzi & Klymko, 2013) is
defined as:

TC(vi ) = [eβA1]i =
∞∑

k=0

βk

k !
[Ak1]i = 1 + β[A1]i +

β2

2
[A21]i + ...

We recall that [Ak ]ij is the number of walks of length k between nodes
vi and vj .

The TC gives a measure of how well each node communicates with
the other nodes of the network. The default value of β is 1.

Theorem: [Benzi, Klymko (2015)]

Let G = (V ,E) be a strongly connected and undirected graph. Then:
for β → 0+, the total communicability rankings reduce to degree
centrality rankings;
for β → +∞, the total communicability rankings reduce to
eigenvector centrality rankings;
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Distinct advantages of the Total Communicability are:

it does not require the graph to be strongly-connected;
it can be computed efficiently using algorithms for evaluating the
action of a matrix function on a vector, that is, for computing the
vector f (A)v for a matrix A (usually large and sparse). In our
case f (A) = eβA and v = 1.
the TC contains much information about the network’s structure,
especially if the spectral gap is small. In detail, if A is symmetric
and real-valued, it can be decomposed into A =

∑n
k=1 λk pk pT

k ,
where λ1 ≥ λ2 ≥ ... ≥ λn are the eigenvalues and pk is the
eigenvector associated with λk . Note that the TC takes into
account all the terms of the expansion:

TC(vi ) = eβλ1 (pT
1 1)p1(vi ) +

n∑
k=2

eβλk (pT
k 1)pk (vi ),

for all vi ∈ V .
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If G is strongly connected, λ1 > λ2, (pT
1 1) > 0 (by the

Perron-Frobenius Theorem) and we can divide both sides by
eβλ1 (pT

1 1):

TC(vi )

eβλ1 (pT
1 1)

= p1(vi ) +
n∑

k=2

eβ(λk−λ1)
(pT

k 1)pk (vi )

(pT
1 1)

.

Taking the limit as β →∞, the left-hand side TC(vi ) converges
to EC(vi ), for all vi ∈ V . If the spectral gap (λ2 − λ1) is large
this convergence is very fast, but if the gap is tiny the
convergence will be slow. In this latter case, ignoring the
contributions of the eigenvectors pk for k ≥ 2 implies a great
loss of information, at least for β not too large.

In other words, using only the first term in the expansion
A =

∑n
k=1 λk pk pT

k (Eigenvector centrality) yields a poor
approximation when the gap is very small.
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Construction of the adjacency matrix

In this work we aim to analyze water molecules in a box. We build a
graph G = (V ,E), where each water molecule corresponds to a
vertex vi , and the bonds between two water molecules are the edges
eij of the graph. Two molecules are bonded when the distance
between oxygen atoms is ≤ 0.35 nm.

Figure: Box with 300 molecules of water
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Results

We analyze four temperatures along the 1950 bars isobar that
crosses the liquid-liquid phase transition: 170 K (LDL phase), 180 K
(HDL phase, just above the coexistence line), 200 and 240 K (HDL
phase). At each temperature we analyze 10ns of the corresponding
MD simulation sampled every 100 ps. For each network we then
compute the centrality measures.

Figure: Distribution of the Degree and the Eigenvector centrality

The average spectral gap |λ2 − λ1| is equal to 10−4.
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Figure: Distribution of the TC (left). The right plot highlights the TC
distributions in the HDL phase.

We define two regions:
if TC(vi ) ≤ 95, the molecule vi is assigned to the LDL phase
if TC(vi ) > 95, the molecule vi is assigned to the HDL phase
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A number of parameters are commonly used to assign water
molecules to the LDL or HDL phase along a MD simulation:

the local structure index I. The set of radial oxygen-oxygen
distances rj , corresponding to the n(i) neighbouring molecules
that are within a cutoff distance of 0.37 nm, are ordered:
r1 < ... < rj < ... < rn(i) < 0.37 < rn(i)+1. Then

I(i) =
1

n(i)

n(i)∑
j=1

(∆(j ; i)− ∆̄(i))2

where ∆(j ; i) = rj+1 − rj and ∆̄(i) is the average of ∆(j ; i);
d5 parameter is a very simple order parameter and it is based on
the distance to the fifth nearest neighbor
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Figure: LDL population as a function of the temperature as obtained by
defining the LDL phase according to the TC values (black circles), the d5

parameter (red squares) and the local structure index (blue triangles).
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Figure: Representative snapshots of the arrangement of the patches of
high-TC molecules at 200 K and 240 K. Blue nodes represent LDL
molecules, red nodes HDL molecules, silver nodes molecules with high-TC
value, silver edges highlight the connections among these nodes.
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Conclusions

All the above-mentioned order parameters, including the TC, are
based on the use of cutoff values to discriminate the two liquid
phases. This intrinsic limitation, together with the fact that no
robust benchmark is currently available for the HDL/LDL fraction
in the supercooled region, makes it difficult to assess the
reliability of the results obtained with one or another order
parameter.
Nonetheless, the present data suggest that the TC performs very
well in distinguishing between the LDL and HDL phases.
Since the TC is a descriptor of the structural properties at the
molecular level, it is also able to identify patches at very high
local density.
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Future work

to improve the structural descriptor of the liquid water as a
directed graph in which the connections will be defined to take
into account hydrogen bonds among molecules;
to investigate additional centrality measures for the structural
characterization of liquids;
to use other global properties of the graph, for example, the Total
Network Communicability, the Bipartivity measure, the Algebraic
Connectivity, and some global metrics, such as the total number
of triangles, the Watts-Strogatz clustering coefficient, the
transitivity coefficient, etcetera.
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Figure: Distribution of the Total Communicability as obtained from the
simulations at 1950 bars and 170 K (blue), 180 K (orange), 200 K(red) and
240 K (violet) with cutoffs 0.32 nm (top), 0.35 nm (middle) and 0.37 nm
(bottom). It can be observed that the overall trend remains unaltered.
Nonetheless, with the 0.32 nm cutoff the distributions at the three highest
temperatures are slightly more overlapped. There is no relevant difference
between the results obtained with cutoffs 0.35 and 0.37 nm.
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Figure: Distribution of the Total Communicability as obtained from the
simulations at 1950 bars and 170 K (blue), 180 K (orange), 200 K(red) and
240 K (violet) for different values of the parameter β.
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Figure: Distribution of the scaled Total Communicability as obtained from the
simulations at 1950 bars and 170 K (blue), 180 K (orange), 200 K(red) and
240 K (violet) for different values of the parameter β. To compare the
distributions with the corresponding distributions of the Eigenvector centrality,
the TC values have been divided by eβλ1(pT

1 1) where λ1 is the largest
eigenvalue of the adjacency matrix A, p1 is the associated eigenvector with
λ1 (p1 > 0 by the Perron-Frobenius Therorem) and 1 is the vector of all ones.
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Figure: Distribution of the local structure index, LSI, as obtained from the MD
simulations at 1950 bars and 170 K (blue), 180 K (orange), 200 K (red), 240
K (violet).
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Figure: Schematic representation of the phase diagram for the TIP4P/2005
water model. The estimate of the liquid-liquid critical point (LLCP) is reported
as a red circle. The temperature/pressure conditions of the present work are
shown as blue squares.
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Figure: In the liquid–liquid phase transition hypothesis, a first-order phase
transition (red line) occurs between two distinct forms of supercooled liquid
water: low-density liquid (LDL) and high-density liquid (HDL). The first-order
transition terminates at a critical point, C′. (C is the liquid–gas critical point;
the liquid–gas coexistence curve is shown in green.) Because of fast
crystallization, it is extremely challenging to observe experimentally. Image
from "P. G. Debenedetti, Supercooled and glassy water, J. Condens. Matter
Phys. 15 (45) (2003) R1669.".
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