Remember where you came from:
 Hitting times for second-order random walks

Dario Fasino
Univ. Udine

Napoli, Feb. 15, 2022

Outline

At a glance
Second-order random walks are increasingly popular. How can we define (and compute) their hitting/return times?
And what properties do they have?

R D. F., A. Tonetto, F. Tudisco
Hitting times for second-order random walks.
arXiv:2105.14438 (2021).

Random walk on a graph $\mathcal{G}=(V, E)$

- Start from a node chosen $i \in V$ with some probability
- Pick one of the outgoing edges
- Move to the destination of the edge
- Repeat.

Applications

Random walks are widely used in network science to

- model user navigation and diffusive processes
- quantify node centrality and accessibility
- reveal network communities and core-periphery structures.

Random walk on a graph $\mathcal{G}=(V, E)$

- Start from a node chosen $i \in V$ with some probability
- Pick one of the outgoing edges
- Move to the destination of the edge
- Repeat.

First-order random walk

- X_{t} : node visited at time $t=0,1, \ldots$
- x_{t} : probability vector of X_{t}
- P : (row stochastic) transition matrix $P_{i j}=\mathbb{P}\left(X_{t+1}=j \mid X_{t}=i\right)$

$$
x_{t+1}^{\mathrm{T}}=x_{t}^{\mathrm{T}} P
$$

Intro

Random walk on a graph $\mathcal{G}=(V, E)$

- Start from a node chosen $i \in V$ with some probability
- Pick one of the outgoing edges
- Move to the destination of the edge
- Repeat.

Second-order random walk

- Y_{t} : joint probability matrix

$$
\left(Y_{t}\right)_{i j}=\mathbb{P}\left(X_{t}=j, X_{t-1}=i\right)
$$

- \mathbf{P} : transition tensor

$$
\begin{aligned}
& \mathbf{P}_{i j k}=\mathbb{P}\left(X_{t+1}=k \mid X_{t}=j, X_{t-1}=i\right) \\
& \left\{\begin{array}{l}
\left(Y_{t+1}\right)_{j k}=\sum_{i} \mathbf{P}_{i j k}\left(Y_{t}\right)_{i j} \\
x_{t+1}=\mathbb{1}^{\mathrm{T}} Y_{t+1} .
\end{array}\right.
\end{aligned}
$$

Notations

Let $S \subset V$, with $\mathcal{G}=(V, E)$ strongly connected.

- $\tau_{i \rightarrow S}$: hitting time to S starting from i.

$$
\tau_{i \rightarrow S}= \begin{cases}0 & i \in S \\ 1+\sum_{k=1}^{n} P_{i k} \tau_{k \rightarrow S} & i \notin S\end{cases}
$$

- $\tau_{i \rightarrow S}^{+}$: return time to S starting from i.

$$
\tau_{i \rightarrow S}^{+}= \begin{cases}1+\sum_{k=1}^{n} P_{i k} \tau_{k \rightarrow S} & i \in S \\ 0 & i \notin S\end{cases}
$$

- $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)^{\mathrm{T}}$: the stationary probability vector,

$$
\pi>0, \quad \pi^{\mathrm{T}}=\pi^{\mathrm{T}} P, \quad \mathbb{1}^{\mathrm{T}} \pi=1
$$

For a fixed $S \subset V$, let t^{S} and b^{S} be the vectors with the hitting times and return times to S, respectively:

$$
t_{i}^{S}=\left\{\begin{array}{ll}
0 & i \in S \\
\tau_{i \rightarrow S} & i \notin S
\end{array} \quad b_{i}^{S}= \begin{cases}\tau_{i \rightarrow S}^{+} & i \in S \\
0 & i \notin S\end{cases}\right.
$$

The vector t^{S} solves the singular equation $(I-P) t^{S}=\mathbb{1}-b^{S}$.

Hitting time matrix

The hitting time matrix $T=\left(\tau_{i \rightarrow j}\right)$ solves the equation

$$
(I-P) T=\mathbb{1}^{\mathrm{T}}-\operatorname{Diag}\left(\rho_{1}, \ldots, \rho_{n}\right)
$$

where $\rho_{i}=\tau_{i \rightarrow i}^{+}$is the return time to node i.

For a fixed $S \subset V$, let t^{S} and b^{S} be the vectors with the hitting times and return times to S, respectively:

$$
t_{i}^{S}=\left\{\begin{array}{ll}
0 & i \in S \\
\tau_{i \rightarrow S} & i \notin S
\end{array} \quad b_{i}^{S}= \begin{cases}\tau_{i \rightarrow S}^{+} & i \in S \\
0 & i \notin S\end{cases}\right.
$$

The vector t^{S} solves the singular equation $(I-P) t^{S}=\mathbb{1}-b^{S}$.

Kac's lemma

Let $\rho_{S}=\sum_{i \in S} \pi_{i} \tau_{i \rightarrow S}^{+}$be the average return time to S. Then,

$$
\rho_{S}=\left(\sum_{i \in S} \pi_{i}\right)^{-1}
$$

In particular, $\rho_{i}=1 / \pi_{i}$.

From first- to second-order rw.s

Classical random walks suffer from a few drawbacks: localization, limited expressiveness, slow mixing rates...

Extend 1-order random walk idea by accounting for an earlier step in navigation:

$$
\mathbb{P}\left(X_{n+1}=k \mid X_{n}=j, X_{n-1}=i\right)=p_{i j k}
$$

From first- to second-order rw.s

Classical random walks suffer from a few drawbacks: localization, limited expressiveness, slow mixing rates...

Extend 1-order random walk idea by accounting for an earlier step in navigation:

$$
\mathbb{P}\left(X_{n+1}=k \mid X_{n}=j, X_{n-1}=i\right)=p_{i j k}
$$

non-backtracking rw

Classical random walks suffer from a few drawbacks: localization, limited expressiveness, slow mixing rates...

Extend 1-order random walk idea by accounting for an earlier step in navigation:

$$
\mathbb{P}\left(X_{n+1}=k \mid X_{n}=j, X_{n-1}=i\right)=p_{i j k}
$$

non-backtracking rw node2vec algorithm

The "lifting" idea: Introduce a walker moving from edge to edge,

$$
p_{i j k}=\mathbb{P}\left(W_{n+1}=(j, k) \mid W_{n}=(i, j)\right)
$$

This converts the second-order rw on $V \ldots$
... to a first-order rw on E

From second- to first-order random walks

The "lifting" idea: Introduce a walker moving from edge to edge,

$$
p_{i j k}=\mathbb{P}\left(W_{n+1}=(j, k) \mid W_{n}=(i, j)\right)
$$

This converts the second-order rw on V...
... to a first-order rw on E

Second-order rw.s on $\mathcal{G}=(V, E)$ correspond to first-order rw.s on $\widehat{\mathcal{G}}=(E, \widehat{E})$, the (directed) line graph of \mathcal{G}.

Main results

- $L: V \mapsto E$, the "lifting matrix"
- $R: E \mapsto V$, the "restriction matrix"

$$
\left\{W_{t}\right\} \underset{L}{\underset{L}{\leftrightarrows}}\left\{X_{t}\right\}
$$

Main results

- $L: V \mapsto E$, the "lifting matrix"
- $R: E \mapsto V$, the "restriction matrix"

Theorem

Let $\widehat{P}, \widehat{\pi}$ be the transition matrix and stationary density of $\left\{W_{t}\right\}$. The matrix $P=L \widehat{P} R$ is irreducible, row stochastic, and

$$
P_{i j}=\mathbb{P}\left(X_{t+1}=j \mid X_{t}=i\right), \quad t \geq 1
$$

The stationary density of P is $\pi^{T}=\widehat{\pi}^{\mathrm{T}} R$.
We call P the pullback of \widehat{P}.

Main results

- $L: V \mapsto E$, the "lifting matrix"
- $R: E \mapsto V$, the "restriction matrix"

Theorem

Let $\widetilde{T}=\left(\widetilde{\tau}_{i \rightarrow j}\right)$ be the second-order hitting times matrix for $\left\{X_{t}\right\}$ and $\widehat{T}=\left(\widehat{\tau}_{e \rightarrow f}\right)$ the hitting time matrix for $\left\{W_{t}\right\}$. Then,

$$
\widetilde{T}=L \widehat{T} \operatorname{Diag}(a) R-\mathbb{1} b^{T}
$$

for some (explicitly known) vectors a, b.

Main results

- $L: V \mapsto E$, the "lifting matrix"
- $R: E \mapsto V$, the "restriction matrix"

Corollary

Let X be any solution of $(I-\widehat{P}) X=\mathbb{1}^{\mathrm{T}}-\operatorname{Diag}(\widehat{\pi})^{-1}$. Then $\widetilde{T}=\left(\widetilde{\tau}_{i \rightarrow j}\right)$ is given by

$$
\widetilde{T}=L X \operatorname{Diag}(a) R-\mathbb{1} b^{T}
$$

where b is chosen so that $\widetilde{T}_{i i}=0$.

Main results - A 2nd-order Kac's-type result

Corollary

Let $\widetilde{\rho}_{S}$ be the average 2nd-order average return time to $S \subset V$ of $\left\{X_{t}\right\}$. Then

$$
\widetilde{\rho}_{S}=1 /\left(\sum_{i \in S} \pi_{i}\right)
$$

where $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)^{\mathrm{T}}$ is the stationary density of the pullback matrix P.

Proof. Let $\mathcal{I}=\cup_{i \in S}\{(j, i) \in E\}$. By Kac's lemma,

$$
\begin{aligned}
\widetilde{\rho}_{S}=\widehat{\rho}_{\mathcal{I}} & =\left(\sum_{(j, i) \in \mathcal{I}} \widehat{\pi}_{(j, i)}\right)^{-1} \\
& =\left(\sum_{i \in S}\left(\widehat{\pi}^{T} R\right)_{i}\right)^{-1}=\left(\sum_{i \in S} \pi_{i}\right)^{-1}
\end{aligned}
$$

Examples

network	nodes	edges	diam.
Guppy	98	725	5
Dolphins	53	150	7
Householder93	73	180	5

Householder93

Examples

network	nodes	edges	diam.
Guppy	98	725	5
Dolphins	53	150	7
Householder93	73	180	5

Figure: The mean hitting time $c_{i}=\left(\sum_{j=1}^{n} \tau_{i \rightarrow j}\right) / n$ computed from 1 -order (x-axis) and non-backtracking (y-axis) random walks. Red dotted line: the $y=x$ line.

Examples

Experiments with a second-order rw depending on $\alpha \in[0,1]$ that interpolates between classical ($\alpha=1$) and non-backtracking ($\alpha=0$) random walks.

Figure: Mean hitting times $c_{i}=\left(\sum_{j=1}^{n} \tau_{i \rightarrow j}\right) / n$ normalized to the $\alpha=1$ case. Solid lines: maximum, average, and minimum values as $\alpha \in[0,1]$.

Kemeny's (almost) constant

Corollary

Let $\mathcal{G}=(V, E)$ be such that, for every pair of edges
$(j, i),(k, i) \in E$ there exists a graph automorphism $\varphi: V \mapsto V$ such that $\varphi(j)=k$ and $\varphi(k)=j$. Then

$$
\sum_{i=1}^{n} \pi_{j} \widetilde{\tau}_{i \rightarrow j}=\kappa^{\prime}
$$

for some constant $\kappa^{\prime}<\kappa$, where π is the stationary density of the pullback and κ the Kemeny's constant of the rw on \mathcal{G}.

Examples

Figure: The non-backtracking mean access time $m_{i}=\sum_{j=1}^{n} \pi_{j} \tau_{i \rightarrow j}$.

In classical (first-order) rw.s we have $m_{i}=\kappa$, Kemeny's constant.

network	Guppy	Dolphins	Householder93
Kemeny	119.03	84.524	97.697

Thank you for your attention.

