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Outline

At a glance

Second-order random walks are increasingly popular.
How can we define (and compute) their hitting/return times?
And what properties do they have?

D. F., A. Tonetto, F. Tudisco
Hitting times for second-order random walks.
arXiv:2105.14438 (2021).
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Intro

Random walk on a graph G = (V,E)

Start from a node chosen i ∈ V with some probability

Pick one of the outgoing edges
Move to the destination of the edge
Repeat.

Applications

Random walks are widely used in network science to

model user navigation and diffusive processes

quantify node centrality and accessibility

reveal network communities and core-periphery structures.
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Start from a node chosen i ∈ V with some probability

Pick one of the outgoing edges
Move to the destination of the edge
Repeat.

First-order random walk

?

?
?

?

?

?

?

?
?

?

Xt: node visited at time t = 0, 1, . . .

xt: probability vector of Xt

P : (row stochastic) transition matrix
Pij = P(Xt+1 = j|Xt = i)

xT
t+1 = xT

t P.
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Start from a node chosen i ∈ V with some probability

Pick one of the outgoing edges
Move to the destination of the edge
Repeat.

Second-order random walk

?

?

?

?

??

?
?

? Yt: joint probability matrix
(Yt)ij = P(Xt = j,Xt−1 = i)

P: transition tensor
Pijk = P(Xt+1 = k|Xt = j,Xt−1 = i){

(Yt+1)jk =
∑

iPijk(Yt)ij

xt+1 = 1T Yt+1.
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Notations

Let S ⊂ V , with G = (V,E) strongly connected.

τi→S : hitting time to S starting from i.

τi→S =

{
0 i ∈ S
1 +

∑n
k=1 Pikτk→S i /∈ S.

τ+i→S : return time to S starting from i.

τ+i→S =

{
1 +

∑n
k=1 Pikτk→S i ∈ S

0 i /∈ S.

π = (π1, . . . , πn)
T : the stationary probability vector,

π > 0, πT = πT P, 1T π = 1.
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For a fixed S ⊂ V , let tS and bS be the vectors with the hitting
times and return times to S, respectively:

tSi =

{
0 i ∈ S
τi→S i /∈ S

bSi =

{
τ+i→S i ∈ S
0 i /∈ S.

The vector tS solves the singular equation (I − P )tS = 1− bS .

Hitting time matrix

The hitting time matrix T = (τi→j) solves the equation

(I − P )T = 11T −Diag(ρ1, . . . , ρn)

where ρi = τ+i→i is the return time to node i.
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tSi =

{
0 i ∈ S
τi→S i /∈ S

bSi =

{
τ+i→S i ∈ S
0 i /∈ S.

The vector tS solves the singular equation (I − P )tS = 1− bS .

Kac’s lemma

Let ρS =
∑

i∈S πiτ
+
i→S be the average return time to S. Then,

ρS = (
∑

i∈S πi)
−1.

In particular, ρi = 1/πi.

D. Fasino 2ggALN 4/12



From first- to second-order rw.s

Classical random walks suffer from a few drawbacks:
localization, limited expressiveness, slow mixing rates. . .

Extend 1-order random walk idea by accounting for an earlier step
in navigation:

P(Xn+1 = k|Xn = j,Xn−1 = i) = pijk

non-backtracking rw

?
?

?

node2vec algorithm

?

?
?

?

?

?

?

?
?

?
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From second- to first-order random walks

The “lifting” idea: Introduce a walker moving from edge to edge,

pijk = P(Wn+1 = (j, k)|Wn = (i, j))

This converts the second-order
rw on V . . .

?

?

?

?

??

?
?

? . . . to a first-order rw on E

?

?

?

?

??

?
?

?

Second-order rw.s on G = (V,E) correspond to
first-order rw.s on Ĝ = (E, Ê), the (directed) line graph of G.
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first-order rw.s on Ĝ = (E, Ê), the (directed) line graph of G.

D. Fasino 2ggALN 6/12



Main results

L : V 7→ E, the “lifting matrix”

R : E 7→ V , the “restriction matrix”

{Wt} {Xt}
L

ll
R ,,

?

?

?

?

??

?
?

?

Restrict

Lift
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{Wt} {Xt}
L

ll
R ,,

?

?

?

?

??

?
?

?

Restrict

Lift

Theorem

Let P̂ , π̂ be the transition matrix and stationary density of {Wt}.
The matrix P = LP̂R is irreducible, row stochastic, and

Pij = P(Xt+1 = j|Xt = i), t ≥ 1.

The stationary density of P is πT = π̂TR.

We call P the pullback of P̂ .
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L : V 7→ E, the “lifting matrix”
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Theorem

Let T̃ = (τ̃i→j) be the second-order hitting times matrix for {Xt}
and T̂ = (τ̂e→f ) the hitting time matrix for {Wt}. Then,

T̃ = LT̂ Diag(a)R− 1bT ,

for some (explicitly known) vectors a, b.
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{Wt} {Xt}
L
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Corollary

Let X be any solution of (I − P̂ )X = 11T −Diag(π̂)−1.
Then T̃ = (τ̃i→j) is given by

T̃ = LX Diag(a)R− 1bT ,

where b is chosen so that T̃ii = 0.
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Main results - A 2nd-order Kac’s-type result

Corollary

Let ρ̃S be the average 2nd-order average return time to S ⊂ V of
{Xt}. Then

ρ̃S = 1/(
∑

i∈S πi),

where π = (π1, . . . , πn)
T is the stationary density of the pullback

matrix P .

Proof. Let I = ∪i∈S {(j, i) ∈ E}. By Kac’s lemma,

ρ̃S = ρ̂I =
(∑

(j,i)∈I π̂(j,i)
)−1

=
(∑

i∈S(π̂
TR)i

)−1
= (
∑

i∈S πi)
−1.
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Examples

network nodes edges diam.
Guppy 98 725 5
Dolphins 53 150 7
Householder93 73 180 5
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Figure: The mean hitting time ci = (

∑n
j=1 τi→j)/n computed from

1-order (x-axis) and non-backtracking (y-axis) random walks.
Red dotted line: the y = x line.
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Examples

Experiments with a second-order rw depending on α ∈ [0, 1] that
interpolates between classical (α = 1) and non-backtracking
(α = 0) random walks.

Figure: Mean hitting times ci = (
∑n

j=1 τi→j)/n normalized to the α = 1
case. Solid lines: maximum, average, and minimum values as α ∈ [0, 1].
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Kemeny’s (almost) constant

Corollary

Let G = (V,E) be such that, for every pair of edges
(j, i), (k, i) ∈ E there exists a graph automorphism ϕ : V 7→ V
such that ϕ(j) = k and ϕ(k) = j. Then

n∑
j=1

πj τ̃i→j = κ′

for some constant κ′ < κ, where π is the stationary density of the
pullback and κ the Kemeny’s constant of the rw on G.
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Figure: The non-backtracking mean access time mi =
∑n

j=1 πjτi→j .

In classical (first-order) rw.s we have mi = κ, Kemeny’s constant.

network Guppy Dolphins Householder93

Kemeny 119.03 84.524 97.697
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Thank you for your attention.


