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Outline

At a glance

Second-order random walks are increasingly popular.
How can we define (and compute) their hitting/return times?
And what properties do they have?

[§ D.F., A. Tonetto, F. Tudisco
Hitting times for second-order random walks.
arXiv:2105.14438 (2021).
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Intro

Random walk on a graph G = (V, E)

@ Start from a node chosen i € V' with some probability
e Pick one of the outgoing edges
e Move to the destination of the edge
o Repeat.

Applications

Random walks are widely used in network science to
@ model user navigation and diffusive processes
@ quantify node centrality and accessibility

@ reveal network communities and core-periphery structures.
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Intro

Random walk on a graph G = (V, E)

@ Start from a node chosen ¢ € V' with some probability

e Pick one of the outgoing edges
e Move to the destination of the edge

o Repeat.
First-order random walk @ X;: node visited at time t =0,1,...
@ x4 probability vector of X}
~ 2 @ P: (row stochastic) transition matrix

T T
Ty =z P
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Intro

Random walk on a graph G = (V, E)

@ Start from a node chosen ¢ € V' with some probability
e Pick one of the outgoing edges
e Move to the destination of the edge
o Repeat.

Second-order random walk @ Y;: joint probability matrix
(Y2)ij =P(Xy =4, X4—1 = 1)

@ e P: transition tensor
% Pijr = P(Xi11 = k| Xy = j, X1 = 1)
@ {(YtJrl)jk = 22 Pie(Ye)ij

1 =17V,
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Notations

Let S C V, with G = (V, E) strongly connected.
@ 7,_.g: hitting time to S starting from 1.
0 1€ 8
Tiss = ,
o 1+ 22:1 Pika_>5 1 ¢ S.

o 7,4 return time to S starting from 4.

=S
T 1+ ZZ:l Pyt 1€8
Tiss = .
0 i¢S.
o m=(my,...,m)" : the stationary probability vector,

T >0, 7t =7a" P, 1" 7 =1.
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For a fixed S C V, let t° and b° be the vectors with the hitting
times and return times to S, respectively:

s )0 ieS b — g 1€ES
’ Tins ¢S ' 0 idS.

The vector ¢ solves the singular equation (I — P)t% =1 —b°.

Hitting time matrix

The hitting time matrix 7' = (7;_,;) solves the equation
(I - P)T = 117 — Diag(py, .., pn)

where p; = TZ»+_H- is the return time to node .
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For a fixed S C V, let t° and b° be the vectors with the hitting
times and return times to S, respectively:

50 i€S b — g i€S
’ Tins ¢S ' 0 idS.

The vector ¢ solves the singular equation (I — P)t% =1 —b°.

Let pg = Y ;cq miT; , g be the average return time to S. Then,

ps = (Zies 772')_1'

In particular, p; = 1/m;.

D. Fasino 2ggALN 4/12



From first- to second-order rw.s

Classical random walks suffer from a few drawbacks:
localization, limited expressiveness, slow mixing rates. ..

Extend 1-order random walk idea by accounting for an earlier step
in navigation:

P(Xnt1 =kl Xn = J, Xno1 = 1) = piji
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From first- to second-order rw.s

Classical random walks suffer from a few drawbacks:
localization, limited expressiveness, slow mixing rates. ..

Extend 1-order random walk idea by accounting for an earlier step
in navigation:

P(Xnt1 =kl Xn = J, Xno1 = 1) = piji

non-backtracking rw

D. Fasino 2ggALN 5/12



From first- to second-order rw.s

Classical random walks suffer from a few drawbacks:
localization, limited expressiveness, slow mixing rates. ..

Extend 1-order random walk idea by accounting for an earlier step
in navigation:

P(Xnt1 =kl Xn = J, Xno1 = 1) = piji

non-backtracking rw node2vec algorithm

@
@ e’
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From second- to first-order random walks

The “lifting” idea: Introduce a walker moving from edge to edge,
pijk = P(Whi1 = (4, k)[Wn = (i, 7))

This converts the second-order
rwon V... ...to a first-order rw on F
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From second- to first-order random walks

The “lifting” idea: Introduce a walker moving from edge to edge,
pijk = P(Whi1 = (4, k)[Wn = (i, 7))

This converts the second-order
rwon V... ...to a first-order rw on F

Second-order rw.s on G = (V, E) correspond to
first-order rw.s on G = (E, E), the (directed) line graph of G. J
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e L:V — E, the “lifting matrix” ) _Restriot N
e R: E—V, the “restriction matrix”
R
{Wt}&_/{Xt} .
L '. -——- -
Lift



Main results

o L:V — FE, the "lifting matrix” ) _Restrict N
@ R: E+—V, the “restriction matrix”

R

Wiy —{X}
L

Vena=="
Lift
Theorem

Let ]3, 7 be the transition matrix and stationary density of {W;}.
The matrix P = LPR is irreducible, row stochastic, and

Py =P(Xyy = j|X; =14), t=>1

The stationary density of P is 77 = 7T R.

We call P the pullback of P.
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Main results

e L:V — E, the “lifting matrix” ) _Restrict N
o R: E— V, the “restriction matrix”
R
{Wt}&_/ {Xt} .
L Y" -—-- -
Lift

Theorem

Let T = (Ti—;) be the second-order hitting times matrix for {X;}
and T' = (T ¢) the hitting time matrix for {I;}. Then,

T = LT Diag(a)R — 107,

for some (explicitly known) vectors a, b.
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Main results

e L:V — E, the “lifting matrix” ) _Restrict N
o R: E— V, the “restriction matrix”
R
{Wt}&_/ {Xt} .
L Y" -—-- -
Lift

Corollary

Let X be any solution of (I — ﬁ)X =117 — Diag(7)~ L.
Then T' = (7;—;) is given by

T = LX Diag(a)R — 1",

where b is chosen so that fn =0.
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Main results - A 2nd-order Kac's-type result

Corollary

Let ps be the average 2nd-order average return time to S C V of
{X:}. Then
ps =1/(Xies ™),

where ™ = (m1,...,m,)"

matrix P.

is the stationary density of the pullback

Proof. Let Z = Ujes {(j,i) € E}. By Kac’s lemma,

N ~ -1
pPs =pr = (Z(j,z‘)eI 7T(j,i))

= (CiesFTR)) ' = (Siesm) ™
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Examples

network nodes edges diam.
Guppy 98 725 5
Dolphins 53 150 7

Householder93 73 180 5

Dolphins Householder93
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Examples

network nodes edges diam.
Guppy 98 725 5
Dolphins 53 150 7
Householder93 73 180 5
Gu Dolphins Householder93
1000 PPy 300 P
1%} // P 4 =
_f_{U s ;' s . 7 7
2 s 200 7 . L
£
S 500 7 ‘o 200 7 09
2 f/. 7 & °® /6‘."'
Q f 100 P /@ e p Z
m @ /
pz4
0 0 0
0 500 1000 0 100 200 300 0 200 400

Figure: The mean hitting time ¢;

random walks

random walks

random walks

(Z;—lzl Ti—j)/n computed from

1-order (z-axis) and non-backtracking (y-axis) random walks.

Red dotted line: the y = z line.
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Examples

Experiments with a second-order rw depending on « € [0, 1] that
interpolates between classical (o« = 1) and non-backtracking
(a = 0) random walks.

; Guppy . Dolphins ; Householder93
()
£ 0.9 0.9 0.9
g’ 0.8 0.8 0.8
E
< 0.7 0.7 0.7
(5]
£ 0.6 0.6 0.6
0.5 0.5 0.5
0 0.5 1 0 0.5 1 0 0.5 1
alpha alpha alpha

Figure: Mean hitting times ¢; = (2?21 Ti—;)/n normalized to the a =1
case. Solid lines: maximum, average, and minimum values as « € [0, 1].
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Kemeny's (almost) constant

Corollary

Let G = (V, E) be such that, for every pair of edges
(7,1), (k,i) € E there exists a graph automorphism ¢ : V — V
such that ¢(j) = k and @(k) = j. Then

n
§ : = l

TjTi—j = K
J=1

for some constant x’ < k, where 7 is the stationary density of the
pullback and k the Kemeny's constant of the rw on G.
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Examples
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Figure: The non-backtracking mean access time m; = E;Zl TjTisj-

In classical (first-order) rw.s we have m; = k, Kemeny's constant.

network Guppy Dolphins Householder93
Kemeny 119.03 84.524 97.697
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Thank you for your attention.




