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Motivations

Faults and fractures are very important
features of any subsurface system. Among
other phenomena, faults and fractures are
related to:

micro-seismicity

fluid leakage

fault reactivation

fracture propagation

The accurate simulation of the geome-
chanical response of complex systems is of
paramount importance to model these dis-
continuities.

Figure: Map of earthquakes in Texas. From
Frohlich, Cliff et al. A historical review of
induced earthquakes in Texas, Seismological
Research Letters 87.4 (2016): 1022-1038.
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Problem statement

The aim is to develop an efficient preconditioner for the saddle-point matrix arising
from the contact mechanics problem solved with the Lagrange multipliers technique.

The domain is:

Figure: Conceptual scheme for the fracture modeling and local reference system on the fracture
surface.
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Contact mechanics

The governing equations for linear momentum balance is:

−∇ · 2 = b in Ω × T (linear momentum balance),

subject to the contact constraints:

C# = t · n 5 ≤ 0, 6# = ÈuÉ · n 5 ≥ 0, C# 6# = 0, (impenetrability),

‖ t) ‖2 ≤ gmax(C# ), ¤g) · t) = gmax(C# ) | | ¤g) | |2, (friction),

where ÈuÉ is the displacement jump across the fracture surface.

The weak form reads:

(∇B(,2)Ω + (È(É, t)Γ 5
= ((, b)

Ω
, ∀( ∈ U0,

(C# − `# , 6# )Γ 5
+ ( t) − -) , ¤g) )Γ 5

≥ 0, ∀- ∈M( t).
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Discretization and submatrices of J

The discretized version of the residuals and Jacobian matrix are:{
rD = b − (�u + �1t)
rC = −�2u

J =

[
� �1

�2 0

]
where the subblocks are:

� ∈ R=D×=D : the tangent stiffness matrix of the continuous body (in this study, we
assume � is SPD);

�1 ∈ R=D×=C : first coupling block;

�2 ∈ R=C×=D : second coupling block;

(2,2) null block of size =C × =C .
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Symmetrized J
In general, the Jacobian matrix is a non symmetric saddle-point matrix, but since
�1 = �

)
2 + � , with | |� | |2 � ||�2 | |2, for the preconditioning purpose we can consider the

symmetrized version of J :

A =

[
� �

�) 0

]
We use a Q1 finite element discretization for the displacement field (u). The Lagrange
multiplier (t) can be approximated:

by a node-based P0 field, requiring a dual grid and producing a stable
discretization or

by a cell-centered P0 field, without dual grid and interpolation, but needing a
stabilization term (an SPSD matrix as (2,2) block)1.

1A. Franceschini et al. “Algebraically stabilized Lagrange multiplier method for frictional contact
mechanics with hydraulically active fractures”. In: Comput. Methods Appl. Mech. Eng. 368 (2020),
p. 113161. doi: 10.1016/j.cma.2020.113161.
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Standard preconditioning framework

The usual way to build a preconditioner for A is to use a block LDU factorization:

A−1 =
[
�D −�−1�
0 �C

] [
�−1 0
0 (−1

] [
�D 0

−��−1 �C

]
The main issues are:

it is not easy to obtain a good sparse approximation of ( = −�) �−1�, since �−1

is dense

even if a sparse ( is available, there are no off-the-shelf algebraic preconditioning
tools for this matrix

� has to be a regular matrix
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Preconditioning framework

The idea is to reverse this factorization. To do so, we always need a nonzero (2,2)
block but this block is available only when a stabilization contribution is added, so we
propose to introduce an SPD matrix � to substitute the zero (2,2) block in the general
case, obtaining:

Â =

[
� �

�) −�

]
,

where � is an augmentation matrix. Now, we can write a block UDL factorization as:

Â = UDL =
[
�D −��−1
0 �C

] [
(D 0
0 −�

] [
�D 0

−�−1�) �C

]
,

with (D the so-called primal Schur complement2 defined as (D = � + ��−1�) . Note
that (D ∈ R=D×=D is SPD.

2M. Benzi, G. H. Golub, and J. Liesen. “Numerical solution of saddle point problems”. In: Acta
Numer. 14 (2005), pp. 1–137. doi: 10.1017/S0962492904000212.
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Optimal choice of the augmentation matrix

Theorem

Let A and Â be the saddle-point matrices defined above, with � non singular. If
� = �) �−1�, then the eigenvalues _ of the preconditioned matrix Â−1A are either 1,
with multiplicity =D, or 0.5, with multiplicity =C .

Thus, it is enough to propose a cheap approximation of � for the saddle-point case.

The idea is to start from the basic definition of the augmentation matrix3 � = W�, with
W = | |�| |2/| |�| |.

3Benzi, Golub, and Liesen, “Numerical solution of saddle point problems”.
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Local augmentation matrix

The standard augmentation matrix can be improved with a local definition of W,
reading4:

�8,8 =
| |A (b8) | |22
| |�|18 | |2

where A (·) is the restriction operator retaining the non-zero entries only, b8 the 8-th
column of � and �|18 the square block gathered from matrix � according to b8.

It turns out that the eigenvalues of the stabilization matrix (when present) are very
close to those of the optimal �5.

4A. Franceschini et al. “A Reverse Augmented Constraint preconditioner for Lagrange multiplier
methods in contact mechanics (accepted)”. In: Comput. Methods Appl. Mech. Eng. (2022).

5Franceschini et al., “Algebraically stabilized Lagrange multiplier method for frictional contact
mechanics with hydraulically active fractures”.
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Reverse Augmented Constraint Preconditioner

Once � is defined, we can read the resulting preconditioner M−1 as:

M−1 = L−1D̃−1U−1 =
[

�D 0
�−1�) �C

] [
(̃−1D 0
0 −�−1

] [
�D ��−1

0 �C

]
In essence, M−1 uses a reverse approach with respect to classical constraint
preconditioners, by exploiting the primal Schur complement of an augmented matrix.
For this reason, we denote it as Reverse Augmented Constraint Preconditioner
(RACP).

It can be proved that (D is very similar to a stiffness matrix, thus any of the effective
methods already available to solve structural problems can be used to approximate (̃−1D .
In this work, we use algebraic multigrids (either GAMG from PETSc or Chronos6).

6G. Isotton et al. “Chronos: A general purpose classical AMG solver for High Performance
Computing”. In: SIAM J. Sci. Comput. 43.5 (2021), pp. C335–C357. doi: 10.1137/21M1398586.
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Theorem

Let A and M−1 be the matrices previously defined and:

UD = _min

(
(̃−1D

(
(D + ��−1�)

))
, VD = _max

(
(̃−1D

(
(D + ��−1�)

))
,

UC = fmin

(
(̃
−1/2
D ��−1/2

)
, VC = fmax

(
(̃
−1/2
D ��−1/2

)
.

where _(·) and f(·) denote eigenvalues and singular values, respectively. Then, the
real eigenvalues of M−1A are such that:

min

UD ,
2U2C

VD +
√
V2D − 4U2C

 ≤ _ ≤ VD ,
and the real and imaginary part, _< and _=, of the complex eigenvalues are such that:

UD

2
≤ _< ≤

VD

2
, |_= | ≤

√
V2C −

U2D

4
,

with no complex eigenvalues if 2VC < UD.



Eigenvalues analysis

For a simple case, the eigenvalues are computed and compared with the theoretical
bounds:
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Figure: Non-unitary eigenvalues distribution of M−1A for (̃−1D = (−1D (left). Eigenspectrum of

M−1A using (̃−1D = AMG((D) (right).
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Augmentation effects on the conditioning

To show the influence of the augmentation matrix on the conditioning, i.e., how ^((D)
behaves with respect to ^(�), three cases have been considered: floating-side (a
fault-constrained case, with a singular leading block), node-surf and 15-faults.

Figure: From left to right: floating-side, with =D = 218, 790, =C = 6, 336 and 2.9% as
2D/3D ratio, node-surf, with =D = 194, 208, =C = 6, 936 and 3.6% as 2D/3D ratio, and
15-faults, with =D = 379, 983, =C = 167, 799 and 44.2% as 2D/3D ratio.
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Convergence profiles

Applying M as preconditioner, a right-preconditioned GMRES produces these profiles.
From the first case, we can appreciate how RACP can easily solve problems with
singular leading blocks. Moreover, from the last two cases, we can see how
^((D) ≈ ^(�), if not smaller (third case, with large =C/=D).

0 5 10 15 20

iteration count

1×10
-8

1×10
-7

1×10
-6

1×10
-5

1×10
-4

1×10
-3

1×10
-2

1×10
-1

1×10
0

re
la

ti
v

e 
re

si
d

u
al

saddle point

0 10 20 30 40 50 60 70

iteration count

1×10
-8

1×10
-7

1×10
-6

1×10
-5

1×10
-4

1×10
-3

1×10
-2

1×10
-1

1×10
0

re
la

ti
v

e 
re

si
d

u
al

block 11
saddle point

0 50 100 150 200 250 300

iteration count

1×10
-8

1×10
-7

1×10
-6

1×10
-5

1×10
-4

1×10
-3

1×10
-2

1×10
-1

1×10
0

re
la

ti
v

e 
re

si
d

u
al

block 11
saddle point

Figure: Convergence profiles for the three cases: floating-side, node-surf, and 15-faults.
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Comparison with other approaches

We compare RACP with Mixed Constrained Preconditioner (MCP), where the leading
block is approximated by the same AMG used in RACP. The Schur complement is
computed by replacing �−1 with a Factorized Sparse Approximate Inverse (FSAI) of �.

case
RACP MCP+AMG MCP+FSAI

=8C 2app �B =8C 2app �B =8C 2app �B

floating-side 17 5.36 108.12 — — — — — —
node-surf 61 4.21 317.81 153 8.43 1442.79 * 1.85 —
15-faults 89 4.52 491.28 * 9.51 — 270 3.18 1128.60

Table: Computational costs and comparison with other solvers. ∗ means that full GMRES does
not reach convergence within 1,000 iterations. — means that the value cannot be computed.

The application cost 2app denotes the number of floating point operations required to
apply the preconditioner in terms of matrix-vector product with the matrix A. The
total solution cost is estimated as �B = =8C (1 + 2app).
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Mesh independence

Here we show the convergence profiles for different refinement levels when RACP is
used to solve the saddle-point matrix arising from a structured case.
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Figure: Right-preconditioned GMRES convergence profiles for different refinement levels.

We can appreciate how the profiles are almost identical.
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Weak and strong scalability

Here, we show the strong and weak scalability of RACP + Chronos AMG7. Tests are
performed on Marconi100.
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Figure: From left: adopted test case (=D = 73, 042, 971, =C = 10, 553, 856), weak scalability (on
portions of the original model) and strong scalability profiles.

7Isotton et al., “Chronos: A general purpose classical AMG solver for High Performance
Computing”.
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Conclusions

A novel preconditioner for saddle-point matrices, Reverse Augmented Constrained
Preconditioner (RACP), has been presented, tested and analyzed.
To apply the reverse algorithm an optimal augmentation matrix is proposed.
A set of bounds for the eigenspectrum of the M−1A can be proved to provide
theoretical indications on the expected convergence.
RACP addresses effectively problems with a singular leading block. Even when the
leading block is non-singular, the proposed augmentation strategy generates a
Schur complement that generally preserves the conditioning of the leading block.
Numerical results prove the algorithmic weak scalability and the overall
performances of RACP.

Further developments will be:

a more extensive experimentation;
the implementation in a fully-parallel simulator;
testing on different problems using Lagrange multipliers.
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Thanks for your attention.

Questions?
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