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Setting the stage: linear inverse problem

Solution of
min ||Ax — bl|2, where Axiue +€=D0
xeRn
and
beR" available observations or measurements
Xtrue € R unknown quantity of interest
AeR™" available ill-conditioned matrix models forward process
eec R™ additive Gaussian white noise
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Setting the stage: linear inverse problem

Solution of
min ||Ax — bl|2, where Axiue +€=D0
xeRn
and
beR" available observations or measurements
Xtrue € R unknown quantity of interest
Ac R™*" available ill-conditioned matrix models forward process
e e R” additive Gaussian white noise

Example: image deblurring

PSF exact noise data

Here m = n = 65536.

S. Gazzola (UoB) Regularization by inexact Krylov methods Feb 14, 2022 2/18



Two new inexact Krylov methods iGK-based algorithms for separable NLLS pbs. Conclusions
00000 0000000 o

Setting the stage: separable nonlinear inverse problem

Solution of

i AG)X = bl where A(Yirue)ame + € = b
and

beR" available observations or measurements

Xerue € R" unknown quantity of interest

Yirue € RP unknown parameters defining A, p < n

A(y) € R™" ill-conditioned matrix models forward process

e eR” additive Gaussian white noise

Example: image (semi-)blind deblurring, with Gaussian PSF P(y)

T -1
1] i—-xa o2 p? i—x1
P()]i = c(on, 02, ! .
[P(¥)]ij = c(o1,02 p)exp< 2|:JX2} |:p2 o2 Ji—x2

.22 4 N
Note: o103 — p > O, Zi,j:l[P(y)]ivj =1.
Here y = [01,02,p]" € R®. For illustrations: yirue = [2.5,2.5,0].
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Dealing with ill-posedness: introducing regularization

m For (large-scale) linear inverse problems
m early termination of Krylov methods (LSQR,CGLS...), applied to

min ||Ax — b|| (from now on, || - | = - |l2)

m combining variational (e.g., Tikhonov) regularization methods

h = b- AXO
Xo + Z)

zZy = argzrg]ilgn |Az — ro||> + X?||z||>, where

and Krylov methods... equivalently

m first project then regularize
m first regularize then project

Main ingredient (for hybrid solvers): shift-invariance of Krylov subspaces
Ki(ATA ATr) = Ki(ATA+ X1, A )

See papers by: Bjorck, Buccini, Calvetti, Chung, Donatelli, Espanol, Fenu, G., Hansen, Hanke, Hnetynkova,
Hochstenbach, Kilmer, Morigi, Nagy, Novati, O'Leary, Renaut, Reichel, Sgallari
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Dealing with ill-posedness: introducing regularization

m For (large-scale) separable nonlinear inverse problems
* . 2 21,12 rn = b—Aly)x
z =ar min Aly)z—nl|"+ A7z where
(2ny") = arg__min ()2~ ol + 2] 2], oz
Trick: exploit separability!
In particular: apply the variable projection method (inner-outer iterations)
e implicitly ‘eliminates’ z (hybrid solver)

e y is updated using a NLLS solver (e.g., Gauss—Newton)
[Golub and Pereyra, Inverse Problems, 2003] [Chung and Nagy, SISC, 2010]

la (UoB)
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Dealing with ill-posedness: introducing regularization
m For (large-scale) separable nonlinear inverse problems
= —A
(ny) =arg__min[A)z— P+ X2z, where 2 27 AVP

Trick: exploit separability!
In particular: apply the variable projection method (inner-outer iterations)
e implicitly ‘eliminates’ z (hybrid solver)
e y is updated using a NLLS solver (e.g., Gauss—Newton)
[Golub and Pereyra, Inverse Problems, 2003] [Chung and Nagy, SISC, 2010]
m In this talk:

m introduce inexact Krylov methods (iLSQR, iCGLS) for regularization

m introducing hybrid iLSQR and hybrid iCGLS for regularization

m adopting inexact solvers within the variable projection method
(application to blind deblurring)
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Transitioning from exact to inexact Golub—Kahan

Inspired by: [Simoncini and Szyld, SIMAX, 2003], [Gaaf and Simoncini, Appl.Num.Math., 2017]

exact (GKB) inexact (iGK)

‘iteration-wise’
un = I‘o/ﬁ7 Vi = ATul/al up = I’o/,@, v = (A+ F1)Tu1/[Lk+1]171
uir1 = (Avi — aiui)/Biva i1 = (I = Ui U YA+ E)vi/[Mis1,is1

Virer = (AT i1 — Biravi) /i Vier = (I = ViVID(A + Fiia) T i1 /[Lisa]ivnin

‘factorization-wise’

AVi = Uk1Bx [(A+E)vi, .., A+ Ew] = Uk Mk
ATUkn = ViBl, [(A+ F) T,y (At Fin) i) = Vil
where Vi1 = [va, ..., vikq1],  Uksr = [, - -y Ukga]

‘compactly factorization-wise'

(A+ &) Vi = U1 Mk
A+ Fii1) Ui = Vinlla
_ kK oo T
where &k = Zﬁll E; vl\?
Fierr = Yo (wu])F

links with symmetric_Lanczos
ATAV = Vi1 Bl 1 Bx (ATA+FI A+ ATE A+ FLLE) Vi = Vi L Mi
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Transitioning from exact to inexact linear system solvers

Inspired by: [Simoncini and Szyld, SIMAX, 2003]
Xk = Xo + zk = xo + Viesk

GKB: AVi = U1 By, ... iIGK: (A + E)Vi = Ui M, ...
LSQR inexact LSQR (iLSQR)
Qe = argmingc ., 5)-r(av) 19 = rll g = argminger v,y m,) lg = rol|
_ equivalently
sk = arg mingcpk ||Brs — Berl| Sk = arg mingcpe |[Mys — Berl|
does not minimize the true residual!
equivalently
(B{ Bi)sk = B{ (Be1) (M{ Mi)sic = M (Ber)
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Xk = Xo + zk = xo + Viesk

GKB: AVi = U1 By, ... iIGK: (A + E)Vi = Ui M, ...
LSQR inexact LSQR (iLSQR)
Qe = argmingc ., 5)-r(av) 19 = rll g = argminger v,y m,) lg = rol|
_ equivalently
sk = arg mingcpk ||Brs — Berl| Sk = arg mingcpe |[Mys — Berl|
does not minimize the true residual!
equivalently
(B{ Bi)sk = B{ (Be1) (M{ Mi)sic = M (Ber)

equivalently, CGLS _

VI (ATA Vs = VI ATy = B/ Ber
equivalently

gk € R(Vis1 Ti), ATro — g L R(Vi)
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Transitioning from exact to inexact linear system solvers

Inspired by: [Simoncini and Szyld, SIMAX, 2003]
Xk = X0+ zk = X0 + Visk
GKB: AVk = Uk+1Bk,
LSQR

gk = arg minqeR(UkHE’k):R(AVk) llg — roll

iGK: (A + Sk)vk = Uk+1Mk,
inexact LSQR (iLSQR)

Gk = arg Minger(u,, M) llg — rol]

equivalently

sk = arg min gk || Bis — Bei|

Sk = arg mingcp« || Miks — Ber||
does not minimize the true residual!

equivalently

(B{ Bi)sk = B{ (Be1)

equivalently, CGLS

VI(ATA)VVisk = VI ATry = B] Be
equivalently

gk € R(Vis1 Ti), ATro — g L R(Vi)
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(M{ Mi)sic = M (Bex)

inexact CGLS (iCGLS)
gk € R( Vk+1Hk), (A + ]:k+1)7—r0 — qu_R( Vk)

not orthogonal to the true NE residual!
equivalently

VkT(Z + EAk)Vksk = VkT(A + .7:/(+1)Tr0
equivalently

L] Misi = [Li]i18e
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Transitioning from inexact linear system solvers
to inexact hybrid solvers
Recall, iGK: (A + &) Vi = Uik Mk, (A+]:k+1)TUk+1 = Vk+11—kT+1

Xak = Xo + Zx,k = X0 + ViSx .k
A fixed

inexact LSQR (iLSQR) inexact hybrid LSQR (hybrid-iLSQR)

[

Wik = [(Uk+1Mk)T, /\(Vk)T] 4

Gk = argminger(w, ) ;

Qk = arg minger (U, my) lg = roll

inexact CGLS (iCGLS) inexact hybrid CGLS (hybrid-iCGLS)

Ok € R(Wa k) = R(Virr (Hi + X°T)),

9 € R(Via T, ATro = ax L R(V) (A+ Fisn) o — aaw L R(VK)
+ - s
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Transitioning from inexact linear system solvers
to inexact hybrid solvers

Recall, iGK: (A + &) Vi = Uk Mk, (A+ -/Tk+1)TUk+1 = Vk+11—kT+1
Xak = Xo + Zx,k = X0 + ViSx .k
A fixed

inexact LSQR (iLSQR) inexact hybrid LSQR (hybrid-iLSQR)

)
710
T T
Wik = [(Uk+1Mk) s A(Vi) ]
equivalently

Gk = argminger(w, ) ;

Qk = arg minger (U, my) lg = roll

svk = argmincpe | Mis — Ber® + 3|5 ]®
= (MM + X217 M (Ber)
inexact CGLS (iCGLS) inexact hybrid CGLS (hybrid-iCGLS)

Ok € R(Wa k) = R(Virr (Hi + X°T)),
(A+ .7:k+1)TI’0 — gk L R(Vi)
equivalently
(LZMk + )\2/)5)\,/( = [Lk]lylﬂﬁ
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Transitioning from inexact linear system solvers
to inexact hybrid solvers

Recall, iGK: (A + &) Vi = UksaMi, (A+ Fii1) T Uksr = Vi L],y
XAk = X0 + Zxk = Xo + ViSx
A fixed: shift-invariance only under some conditions!

inexact LSQR (iLSQR) inexact hybrid LSQR (hybrid-iLSQR)

)
710
T T
Wik = [(Uk+1Mk) s A(Vi) ]
equivalently

Gk = argminger(w, ) ;

Qi = arg Minger (v, 1 my) 119 = rol|

svk = argmincpe | Mis — Ber® + 3|5 ]®
= (MM + X217 M (Ber)
inexact CGLS (iCGLS) inexact hybrid CGLS (hybrid-iCGLS)

Ok € R(Wa k) = R(Virr (Hi + X°T)),
(A+ .7:k+1)TI’0 — gk L R(Vi)
equivalently
(LZMk + )\2/)5)\,/( = [Lk]lylﬂﬁ
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When are inexact solvers ‘meaningful’?
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When are inexact solvers ‘meaningful’?

Inspired by: [Simoncini and Szyld, SIMAX, 2003]
Depends on the relations between exact (i.e., r r5 ;) and inexact (i.e., r, ra x) residuals,
keeping in mind that:

m there is ill-posedness: r® may not be small

m there is regularization: r§ , may not be small

(i.e., |

1/2 1/2
2| = (1Azirue — 112 + Nlzeruel?) > = (llel2 + 22| zerue12) )
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When are inexact solvers ‘meaningful’?

Inspired by: [Simoncini and Szyld, SIMAX, 2003]

Depends on the relations between exact (i.e., r r5 ;) and inexact (i.e., r, ra x) residuals,
keeping in mind that:

m there is ill-posedness: r® may not be small
m there is regularization: ry , may not be small
,

(iew [|r5 ]l = (1Azirme — 12 + X2 lzirucl2) ' = (llel + N2l|zeruel) )
Focusing on:

. . k
= QLSQR: (gl < Il + | Eoxoll + 32—y lIEll [[seli]
m hybrid-iLSQR, fixed A

k
[Pkl < Ikl + 1 Boxoll + > IEi[sn,i]
=1
‘A priori” bounds, € desired accuracy:
- . O'k(Mk) 1 .
m iLSQR: ||| < P Hrj,1||6'-/:1""’k
m hybrid-iLSQR, fixed A
M My + N21))?
15 < MM XN T 1y
k -l
Regularization by inexact Krylov methods
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An illustration

satellite blind deblurring example, with A = 0.5

(M) 1
Tk Mg Vs J
2
10 —o—Kk=2
[ —o—k=10
e k=20
—o—k=40
101/‘ P
100?""4
107
2
10%, 20 40 60

(ok (M My + N21))"?

10°

1 .
K Tyl Vs J
2
10 —e—k=2
—e—k=10
[ e k=20
—e—k=40
—e— k=60
0 20 40 60
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Recap on separable NLLS and VarPro

[Golub and Pereyra, Inverse Problems, 2003] [Chung and Nagy, SISC, 2010]
m Problem to be solved
_ 2
g(z,y) = |F(zy)ll

. F(Z,_y) = AA(y)zifFo
z) = arg min z,y), where ~ -
N e 8 Y) A) = (AT, o = [0
X\ = X0+ zxn

m Consider the reduced cost functional

_ 2(y) = argminzcrn g(2,y)

i) = g(ma0)y),  where = (ATAW) + XD AT ()
Take xx(y) = x0 + zx(y)

m Apply Gauss-Newton to minimize the reduced cost functional

yi =yi—1+vidi—1 (setting the steplength ~,)
Note that

~ d(A(y)2») J)
di—1 = argmin[|Jhd — ri-sll, J» = [ OA /dy ] _ { JOh } . In F(za,y) = V,&(2r, y)

(computationally convenient analytical expression of d(A(v)zx)/dy for blind deblurring)
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Towards an iGK-based algorithm
for separable nonlinear least squares problems

[Chung and Nagy, SISC, 2010]

Algorithm Variable projection with Gauss-Newton and hybrid LSQR solver

1: Choose initial guesses xg and yg

2: for [ =1,2,... until a stopping criterion is satisfied do

3: for £k =1,2,... until a stopping criterion is satisfied do
Expand Ky(A(yi—1)TA(yi—1), A(yi—1)Tro) using GKB
Compute z x solving the projected problem with adaptive choice of A

end for

Compute the residual r; = b — A(y1—1)Zxk

Compute d; = arg ming || Jod — 7|

Update y; = yi—1 + vid; (setting the steplength ;)

10: Update zo

11: end for
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Towards an iGK-based algorithm
for separable nonlinear least squares problems

Algorithm Variable projection with Gauss-Newton and hybrid LSQR solver

1: Choose initial guesses g and yo

2: Tor i =12 ———until-a-stepping-eriterivrissatisfied do

3: for £k =1,2,... until a stopping criterion is satisfied do

4: Expand Ky (A(yi-1)" A(y1-1), A(y1-1)" o) using GKB

5: Compute z i solving the projected problem with adaptive choice of A
6: end for

7 Compute the residual 7, = b — A(yi—1)Zxk

8: Compute d; = arg ming ||jhd — |

9: Update y; = yi—1 + vid; (setting the steplength ;)

10: Update xo
11: end-fer_
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Towards an iGK-based algorithm
for separable nonlinear least squares problems

Algorithm Variable projection with Gauss-Newton and hybrid-iLSQR solver

Choose initial guesses zo and yo

for £ =1,2,... until inexactness exceeds the bound € do
Expand the approximation subspace R(V%) using A(yx—1) and iGK
Compute z i solving the projected problem with adaptive choice of A
Compute the residual 7, = b — A(yk—1)Txrk
Compute di = arg ming || Jpd — ||
Update yx = yr—1 + Yxdi (setting the steplength ~)

end for
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Towards an iGK-based algorithm
for separable nonlinear least squares problems

Algorithm Variable projection with Gauss-Newton and hybrid-iLSQR solver

1: Choose initial guesses zy and yo; set an accuracy &

2: for [ =1,2,... until a stopping criterion is satisfied do

3: for £k =1,2,... until inexactness exceeds the bound ¢ do

4 Expand the approximation subspace R(Vy) using A(yx—1) and iGK

5: Compute x x solving the projected problem with adaptive choice of A
6: Compute the residual rp = b — A(yx—1)ZTak

7 Compute d, = argming ||jhd |

8 Update y, = yr—1 + Yxdr (setting the steplength ~y)

9 end for

10: Update xo; take yo = yi

11: end for
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A few details

m Defining inexactness, with some pragmatism:

consider as exact matrix the latest computed approximation of A(y), i.e.,

Conclusions

(o]

after j — 1 iterations, A(yi—1) = A(yj—1) + E/, where E/:= A(yi—1) — A(yj-1),

iGK being expressed as

(A(yj—1) + ENV; = UpaM;, & =31 Elvv’

: . o .
(Ay—1) + 7o) Ui = Vi, FLyo= Y0 w] B

m Setting the Gauss-Newton stepsize: set

Y = Yi-1 +di-1,  where ;= argming(zx(yj-1), yj-1 +7di-1)
Y=

We get

AX(y)2n 01 = ol < [IAN(yj-1)2n; — Foll 4 22,
instead of

Ax(Y)2n 1 = 1ol < [JAN(Yj—1)2x, — Tol]
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An illustration

satellite blind deblurring example, with yirue = [2.5,2.5,0]7, A = 0.5
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An illustration

satellite blind deblurring example, with yirue = [2.5,2.5,0]7, A = 0.5

RRE

[—Algorithm 4.1
o7
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—Algorithm 4.1
— Algorithm 4.2

0 200 400 600

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver
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An illustration

satellite blind deblurring example, with yirue = [2.5,2.5,0]7, A = 0.5

RRE

07
06

05

0.4

0s L

[—Algorithm 4.1
— Algorithm 4.2

0

200 400 600

blur param. y

—Algorithm 4.1
— Algorithm 4.2

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver
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An illustration

Hybrid-iLSQR Algorithm 4.1 Algorithm 4.2
(it. 30, RRE, 0.5819) (it. 577, RRE 0.2454) (it. 79, RREx 0.2474)

x

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver
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Another example

cameraman blind deblurring example, with yirue = [3,4.,0.5]7—, yo = [5,6, 1]T

exact Algorithm 4.1 Algorithm 4.2
(it. 927, RRE, 0.1286) (it. 82, RRE, 0.1219)

AV

(it. 927, RRE, 0.0679) (it. 82, RRE, 0.1438)

Algorithm 4.1: ; Algorithm 4.2: new solver
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Another example

cameraman blind deblurring example, with yiue = [3,4,0.5]7, yo = [5,6,1]"

RRE, blur param. y

- 6
g 5
|— Algorithm 4.2 \_‘_\\‘ﬁ\
: ‘\—\_\\‘h\
3

0 200 400 600 800  10C 0 200 400 600 800 1000

blur param. y

6
05 5
04 — Algorithm 4.2

4
03

3
0.2

0.1

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver
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Another example

cameraman blind deblurring example, with yiue = [3,4,0.5]7, yo = [5,6,1]"

RRE, blur param. y RRE,

w N oo

0.
0 200 400 600 800  10C 0 20 40 60 80 100

blur param. y

Algorithm 4.1:

G

[Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver
(UoB
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Summary and Outlook

m The story so far:
m introduced the new (hybrid) iLSQR and iCGLS methods
m applications to separable NLLS problems arising in blind deblurring,
handled with a variable projection approach
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m The story so far:

m introduced the new (hybrid) iLSQR and iCGLS methods

m applications to separable NLLS problems arising in blind deblurring,
handled with a variable projection approach

m Looking ahead:

m inexact solvers other than iLSQR and iCGLS
methods other than standard formTikhonov

m nonlinear separable inverse problems other than blind deblurring
(MRI, superresolution, instrumental calibration, ML tasks)
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Summary and Outlook

m The story so far:
m introduced the new (hybrid) iLSQR and iCGLS methods
m applications to separable NLLS problems arising in blind deblurring,
handled with a variable projection approach
m Looking ahead:
m inexact solvers other than iLSQR and iCGLS
methods other than standard formTikhonov
m nonlinear separable inverse problems other than blind deblurring
(MR, superresolution, instrumental calibration, ML tasks)

Thanks for your attention!

Silvia Gazzola and Malena Sabaté Landman
Regularization by inexact Krylov methods
with applications to blind deblurring
SIAM J. Matrix Anal. Appl. 42, 2021
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