Conclusions O

Regularization by inexact Krylov methods with applications to blind deblurring

Silvia Gazzola

S.Gazzola@bath.ac.uk

Joint work M. Sabaté Landman

Department of Mathematical Sciences

2 giorni di Algebra Lineare Numerica Napoli, February 14, 2022

S. Gazzola (UoB)

iGK-based algorithms for separable NLLS pbs. 0000000 Conclusions O

Setting the stage: linear inverse problem

Solution of

 $\min_{x\in\mathbb{R}^n}\|Ax-b\|_2, ext{ where } Ax_{ ext{true}}+e=b$

and

$b\in \mathbb{R}^m$	available observations or measurements
$x_{ ext{true}} \in \mathbb{R}^n$	unknown quantity of interest
$A \in \mathbb{R}^{m imes n}$	available ill-conditioned matrix models forward process
$e \in \mathbb{R}^m$	additive Gaussian white noise

iGK-based algorithms for separable NLLS pbs. 0000000 Conclusions

Setting the stage: linear inverse problem

Solution of

 $\min_{x\in\mathbb{R}^n}\|Ax-b\|_2,$ where $Ax_{ ext{true}}+e=b$

and

$b\in \mathbb{R}^m$	available observations or measurements
$x_{ ext{true}} \in \mathbb{R}^n$	unknown quantity of interest
$A \in \mathbb{R}^{m \times n}$	available ill-conditioned matrix models forward process
$e \in \mathbb{R}^m$	additive Gaussian white noise

Example: image deblurring

Setting the stage: separable nonlinear inverse problem

Solution of

 $\min_{x\in\mathbb{R}^n,y\in\mathbb{R}^p}\|A(y)x-b\|_2, \quad ext{where} \quad A(y_{ ext{true}})x_{ ext{true}}+e=b$

and

$b \in \mathbb{R}^m$	available observations or measurements
$x_{ ext{true}} \in \mathbb{R}^n$	unknown quantity of interest
$y_{ ext{true}} \in \mathbb{R}^p$	unknown parameters defining A, $p \ll n$
$A(y) \in \mathbb{R}^{m \times n}$	ill-conditioned matrix models forward process
$e \in \mathbb{R}^m$	additive Gaussian white noise

Example: image (semi-)blind deblurring, with Gaussian PSF P(y)

$$[P(y)]_{i,j} = c(\sigma_1, \sigma_2, \rho) \exp\left(-\frac{1}{2} \begin{bmatrix} i - \chi_1 \\ j - \chi_2 \end{bmatrix}^T \begin{bmatrix} \sigma_1^2 & \rho^2 \\ \rho^2 & \sigma_2^2 \end{bmatrix}^{-1} \begin{bmatrix} i - \chi_1 \\ j - \chi_2 \end{bmatrix}\right)$$

Note: $\sigma_1^2 \sigma_2^2 - \rho^4 > 0$; $\sum_{i,j=1}^{N} [P(y)]_{i,j} = 1$. Here $y = [\sigma_1, \sigma_2, \rho]^T \in \mathbb{R}^3$. For illustrations: $y_{\text{true}} = [2.5, 2.5, 0]^T$.

Dealing with ill-posedness: introducing regularization

■ For (large-scale) linear inverse problems

early termination of Krylov methods (LSQR,CGLS...), applied to

 $\min_{x} \|Ax - b\| \qquad \text{(from now on, } \|\cdot\| = \|\cdot\|_2\text{)}$

combining variational (e.g., Tikhonov) regularization methods

$$z_{\lambda} = rgmin_{z \in \mathbb{R}^n} \|Az - r_0\|^2 + \lambda^2 \|z\|^2$$
, where $egin{array}{cc} r_0 &=& b - Ax_0 \ x_{\lambda} &=& x_0 + z_{\lambda} \end{array}$

and Krylov methods... equivalently

- first project then regularize
- first regularize then project

Main ingredient (for hybrid solvers): shift-invariance of Krylov subspaces

$$\mathcal{K}_k(A^T A, A^T r_0) = \mathcal{K}_k(A^T A + \lambda^2 I, A^T r_0)$$

See papers by: Bjorck, Buccini, Calvetti, Chung, Donatelli, Espanol, Fenu, G., Hansen, Hanke, Hnetynkova, Hochstenbach, Kilmer, Morigi, Nagy, Novati, O'Leary, Renaut, Reichel, Sgallari

iGK-based algorithms for separable NLLS pbs. $\circ\circ\circ\circ\circ\circ\circ$

Dealing with ill-posedness: introducing regularization

■ For (large-scale) separable nonlinear inverse problems

$$(z_{\lambda}, y^*) = \arg\min_{z \in \mathbb{R}^n, y \in \mathbb{R}^p} \|A(y)z - r_0\|^2 + \lambda^2 \|z\|^2, \quad \text{where} \quad \begin{array}{l} r_0 = b - A(y)x_0 \\ x_{\lambda} = x_0 + z_{\lambda} \end{array}$$

Trick: exploit separability!

In particular: apply the variable projection method (inner-outer iterations)

- implicitly 'eliminates' z (hybrid solver)
- y is updated using a NLLS solver (e.g., Gauss-Newton)

[Golub and Pereyra, Inverse Problems, 2003] [Chung and Nagy, SISC, 2010]

iGK-based algorithms for separable NLLS pbs. $\verb"ooooooo"$

Dealing with ill-posedness: introducing regularization

For (large-scale) separable nonlinear inverse problems

$$(z_{\lambda}, y^{*}) = \arg\min_{z \in \mathbb{R}^{n}, y \in \mathbb{R}^{p}} \|A(y)z - r_{0}\|^{2} + \lambda^{2} \|z\|^{2}, \text{ where } \begin{cases} r_{0} = b - A(y)x_{0} \\ x_{\lambda} = x_{0} + z_{\lambda} \end{cases}$$

Trick: exploit separability!

In particular: apply the variable projection method (inner-outer iterations)

- implicitly 'eliminates' z (hybrid solver)
- y is updated using a NLLS solver (e.g., Gauss–Newton)

[Golub and Pereyra, Inverse Problems, 2003] [Chung and Nagy, SISC, 2010]

In this talk:

- introduce inexact Krylov methods (iLSQR, iCGLS) for regularization
- introducing hybrid iLSQR and hybrid iCGLS for regularization
- adopting inexact solvers within the variable projection method (application to blind deblurring)

Conclusions O

Transitioning from exact to inexact Golub-Kahan

Inspired by: [Simoncini and Szyld, SIMAX, 2003], [Gaaf and Simoncini, Appl.Num.Math., 2017]

exact (GKB) inexact (iGK) 'iteration-wise' $u_1 = r_0 / \beta, v_1 = A^T u_1 / \alpha_1$ $u_1 = r_0/\beta$, $v_1 = (A + F_1)^T u_1/[L_{k+1}]_{1,1}$ $u_{i+1} = (I - U_i U_i^T)(A + E_i)v_i/[M_k]_{i+1,i+1}$ $u_{i+1} = (Av_i - \alpha_i u_i)/\beta_{i+1}$ $v_{i+1} = (A^T u_{i+1} - \beta_{i+1} v_i) / \alpha_{i+1}$ $v_{i+1} = (I - V_i V_i^T)(A + F_{i+1})^T u_{i+1} / [L_{k+1}]_{i+1,i+1}$ 'factorization-wise' $AV_k = U_{k+1}\overline{B}_k$ $[(A + E_1)v_1, ..., (A + E_k)v_k] = U_{k+1}M_k$ $A^T U_{k+1} = V_{k+1} B_{k+1}^T$ $\left[(A + F_1)^T u_1, ..., (A + F_{k+1})^T u_{k+1} \right] = V_{k+1} L_{k+1}^T$ where $V_{k+1} = [v_1, \ldots, v_{k+1}], \quad U_{k+1} = [u_1, \ldots, u_{k+1}]$ 'compactly factorization-wise' $(A + \mathcal{E}_k)V_k = U_{k+1}M_k$ $(A + \mathcal{F}_{k+1})^T U_{k+1} = V_{k+1} L_{k+1}^T$ where $\begin{array}{rcl} \mathcal{E}_{k} & = & \sum_{i=1}^{k} \mathbf{E}_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T} \\ \mathcal{F}_{k+1} & = & \sum_{i=1}^{k+1} (u_{i} u_{i}^{T}) \mathbf{F}_{i} \end{array}$ links with symmetric Lanczos $(A^T A + \mathcal{F}_{k+1}^T A + A^T \mathcal{E}_k + \mathcal{F}_{k+1}^T \mathcal{E}_k)V_k = V_{k+1}L_{k+1}^T M_k$ $A^T A V_k = V_{k+1} B_{k+1}^T \bar{B}_k$

Transitioning from exact to inexact linear system solvers

Inspired by: [Simoncini and Szyld, SIMAX, 2003]

 $\begin{aligned} x_k &= x_0 + z_k = x_0 + V_k s_k \\ \text{GKB: } AV_k &= U_{k+1} \bar{B}_k, \dots \\ \text{LSQR} \end{aligned}$

iGK: $(A + \mathcal{E}_k)V_k = U_{k+1}M_k, ...$ inexact LSQR (iLSQR)

 $q_k = \arg\min_{q \in \mathcal{R}(U_{k+1}\bar{B}_k) = \mathcal{R}(AV_k)} \|q - r_0\| \quad q_k = \arg\min_{q \in \mathcal{R}(U_{k+1}M_k)} \|q - r_0\|$ = quivalently

 $s_k = \operatorname{arg\,min}_{s \in \mathbb{R}^k} \|\bar{B}_k s - \beta e_1\|$

 $s_k = \arg \min_{s \in \mathbb{R}^k} \|M_k s - \beta e_1\|$ does not minimize the true residual!

 $(M_{k}^{T}M_{k})s_{k}=M_{k}^{T}(\beta e_{1})$

equivalently

 $(\bar{B}_k^T\bar{B}_k)s_k=\bar{B}_k^T(\beta e_1)$

Transitioning from exact to inexact linear system solvers

Inspired by: [Simoncini and Szyld, SIMAX, 2003]

 $x_k = x_0 + z_k = x_0 + V_k s_k$ GKB: $AV_k = U_{k+1}\overline{B}_k, ...$ LSQR

iGK: $(A + \mathcal{E}_k)V_k = U_{k+1}M_k, ...$ inexact LSQR (iLSQR)

 $\begin{aligned} q_k &= \arg\min_{q \in \mathcal{R}(U_{k+1}\tilde{B}_k) = \mathcal{R}(AV_k)} \|q - r_0\| \quad q_k = \arg\min_{q \in \mathcal{R}(U_{k+1}M_k)} \|q - r_0\| \\ &\quad equivalently \end{aligned}$

 $s_k = \operatorname{arg\,min}_{s \in \mathbb{R}^k} \|\bar{B}_k s - \beta e_1\|$

 $s_k = \arg \min_{s \in \mathbb{R}^k} \|M_k s - \beta e_1\|$ does not minimize the true residual!

equivalently

$$\begin{split} & (\bar{B}_{k}^{T}\bar{B}_{k})s_{k} = \bar{B}_{k}^{T}(\beta e_{1}) \\ & equivalently, \ \textbf{CGLS} \\ & V_{k}^{T}(A^{T}A)V_{k}s_{k} = V_{k}^{T}A^{T}r_{0} = \bar{B}_{k}^{T}\beta e_{1} \\ & equivalently \\ & q_{k} \in \mathcal{R}(V_{k+1}\bar{T}_{k}), \ A^{T}r_{0} - q_{k} \perp \mathcal{R}(V_{k}) \end{split}$$

 $(M_k^T M_k)s_k = M_k^T(\beta e_1)$

Transitioning from exact to inexact linear system solvers

Inspired by: [Simoncini and Szyld, SIMAX, 2003]

 $x_k = x_0 + z_k = x_0 + V_k s_k$ GKB: $AV_k = U_{k+1}\overline{B}_k, ...$ LSQR

iGK: $(A + \mathcal{E}_k)V_k = U_{k+1}M_k, ...$ inexact LSQR (iLSQR)

 $\begin{aligned} q_k &= \arg\min_{q \in \mathcal{R}(U_{k+1}\bar{B}_k) = \mathcal{R}(AV_k)} \|q - r_0\| \quad q_k = \arg\min_{q \in \mathcal{R}(U_{k+1}M_k)} \|q - r_0\| \\ &\quad equivalently \end{aligned}$

 $s_k = {
m arg\,min}_{s \in \mathbb{R}^k} \, \|ar{B}_k s - eta e_1\|$

 $s_k = \arg \min_{s \in \mathbb{R}^k} \|M_k s - \beta e_1\|$ does not minimize the true residual!

 $(M_{k}^{T}M_{k})s_{k}=M_{k}^{T}(\beta e_{1})$

equivalently

 $(\bar{B}_{k}^{T}\bar{B}_{k})s_{k} = \bar{B}_{k}^{T}(\beta e_{1})$ equivalently, **CGLS** $V_{k}^{T}(A^{T}A)V_{k}s_{k} = V_{k}^{T}A^{T}r_{0} = \bar{B}_{k}^{T}\beta e_{1}$ equivalently

 $q_k \in \mathcal{R}(V_{k+1}\bar{T}_k), \ A^T r_0 - q_k \perp \mathcal{R}(V_k)$

inexact CGLS (iCGLS) $q_k \in \mathcal{R}(V_{k+1}\widehat{H}_k), (A + \mathcal{F}_{k+1})^T r_0 - q_k \perp \mathcal{R}(V_k)$ not orthogonal to the true NE residual! equivalently $V_k^T(\widehat{A} + \widehat{\mathcal{E}}_k)V_k s_k = V_k^T(A + \mathcal{F}_{k+1})^T r_0$ equivalently $\overline{L}_k^T M_k s_k = [\overline{L}_k]_{1,1}\beta e_1$

Transitioning from inexact linear system solvers to inexact hybrid solvers

Recall, iGK:
$$(A + \mathcal{E}_k)V_k = U_{k+1}M_k$$
, $(A + \mathcal{F}_{k+1})^T U_{k+1} = V_{k+1}L_{k+1}^T$
 $x_{\lambda,k} = x_0 + z_{\lambda,k} = x_0 + V_k s_{\lambda,k}$
 λ fixed

inexact LSQR (iLSQR)

$$q_k = rgmin_{q \in \mathcal{R}(U_{k+1}M_k)} \|q - r_0\|$$

inexact hybrid LSQR (hybrid-iLSQR)

$$\begin{aligned} q_{\lambda,k} &= \operatorname{arg\,min}_{q \in \mathcal{R}(W_{\lambda,k})} \left\| q - \left[\begin{array}{c} r_0 \\ 0 \end{array} \right] \right\|, \\ W_{\lambda,k} &= \left[(U_{k+1}M_k)^T, \lambda (V_k)^T \right]^T. \end{aligned}$$

$$q_{\lambda,k} = \arg \min_{q \in \mathcal{R}(W_{\lambda,k})} \left\| q - \begin{bmatrix} 0 \end{bmatrix} \right\|$$
$$W_{\lambda,k} = \left[(U_{k+1}M_k)^T, \lambda (V_k)^T \right]^T$$

inexact CGLS (iCGLS)

$$q_k \in \mathcal{R}(V_{k+1}\overline{T}_k), \ A^T r_0 - q_k \perp \mathcal{R}(V_k)$$

$$q_{\lambda,k} \in \mathcal{R}(W_{\lambda,k}) = \mathcal{R}(V_{k+1}(\widehat{H}_k + \lambda^2 \overline{I})), \\ (A + \mathcal{F}_{k+1})^T r_0 - q_{\lambda,k} \perp \mathcal{R}(V_k)$$

iGK-based algorithms for separable NLLS pbs.

Conclusions O

Transitioning from inexact linear system solvers to inexact hybrid solvers

Recall, iGK:
$$(A + \mathcal{E}_k)V_k = U_{k+1}M_k$$
, $(A + \mathcal{F}_{k+1})^T U_{k+1} = V_{k+1}L_{k+1}^T$
 $x_{\lambda,k} = x_0 + z_{\lambda,k} = x_0 + V_k s_{\lambda,k}$
 λ fixed

inexact LSQR (iLSQR)

$$q_k = rgmin_{q \in \mathcal{R}(U_{k+1}M_k)} \|q - r_0\|$$

inexact hybrid LSQR (hybrid-iLSQR)

$$q_{\lambda,k} = \arg \min_{q \in \mathcal{R}(W_{\lambda,k})} \left\| q - \begin{bmatrix} r_0 \\ 0 \end{bmatrix} \right\|,$$
$$W_{\lambda,k} = \begin{bmatrix} (U_{k+1}M_k)^T, \lambda(V_k)^T \end{bmatrix}^T$$

equivalently

$$s_{\lambda,k} = \arg \min_{s \in \mathbb{R}^k} \|M_k s - \beta e_1\|^2 + \lambda^2 \|s\|^2$$

= $(M_k^T M_k + \lambda^2 I)^{-1} M_k^T (\beta e_1)$

inexact CGLS (iCGLS)

$$q_k \in \mathcal{R}(V_{k+1}\overline{T}_k), \ A^T r_0 - q_k \perp \mathcal{R}(V_k)$$

$$q_{\lambda,k} \in \mathcal{R}(W_{\lambda,k}) = \mathcal{R}(V_{k+1}(\widehat{H}_k + \lambda^2 \overline{I})),$$

$$(A + \mathcal{F}_{k+1})^T r_0 - q_{\lambda,k} \perp \mathcal{R}(V_k)$$
equivalently
$$[\overline{L}_k^T M_k + \lambda^2 I) s_{\lambda,k} = [\overline{L}_k]_{1,1} \beta e_1$$

S. Gazzola (UoB)

iGK-based algorithms for separable NLLS pbs.

Conclusions O

Transitioning from inexact linear system solvers to inexact hybrid solvers

Recall, iGK:
$$(A + \mathcal{E}_k)V_k = U_{k+1}M_k$$
, $(A + \mathcal{F}_{k+1})^T U_{k+1} = V_{k+1}L_{k+1}^T$
 $x_{\lambda,k} = x_0 + z_{\lambda,k} = x_0 + V_k s_{\lambda,k}$
 λ fixed: shift-invariance only under some conditions!

inexact LSQR (iLSQR)

$$q_k = rgmin_{q \in \mathcal{R}(U_{k+1}M_k)} \|q - r_0\|$$

inexact hybrid LSQR (hybrid-iLSQR)

$$q_{\lambda,k} = \arg \min_{q \in \mathcal{R}(W_{\lambda,k})} \left\| q - \begin{bmatrix} r_0 \\ 0 \end{bmatrix} \right\|,$$
$$W_{\lambda,k} = \begin{bmatrix} (U_{k+1}M_k)^T, \lambda (V_k)^T \end{bmatrix}^T$$

equivalently

$$s_{\lambda,k} = \arg \min_{s \in \mathbb{R}^k} \|M_k s - \beta e_1\|^2 + \lambda^2 \|s\|^2$$

= $(M_k^T M_k + \lambda^2 I)^{-1} M_k^T (\beta e_1)$

inexact CGLS (iCGLS)

inexact hybrid CGLS (hybrid-iCGLS)

$$q_k \in \mathcal{R}(V_{k+1}\overline{T}_k), \ A^T r_0 - q_k \perp \mathcal{R}(V_k)$$

$$q_{\lambda,k} \in \mathcal{R}(W_{\lambda,k}) = \mathcal{R}(V_{k+1}(\widehat{H}_k + \lambda^2 \overline{I})),$$

$$(A + \mathcal{F}_{k+1})^T r_0 - q_{\lambda,k} \perp \mathcal{R}(V_k)$$
equivalently
$$[\overline{L}_k^T M_k + \lambda^2 I) s_{\lambda,k} = [\overline{L}_k]_{1,1} \beta e_1$$

iGK-based algorithms for separable NLLS pbs 0000000 Conclusions O

When are inexact solvers 'meaningful'?

iGK-based algorithms for separable NLLS pbs. 0000000 Conclusions O

When are inexact solvers 'meaningful'?

Inspired by: [Simoncini and Szyld, SIMAX, 2003]

Depends on the relations between exact (i.e., r^e , $r^e_{\lambda,k}$) and inexact (i.e., r, $r_{\lambda,k}$) residuals, keeping in mind that:

- there is ill-posedness: r^e may not be small
- there is regularization: $r_{\lambda,k}^e$ may not be small

(i.e., $\left\| r_{\lambda,k}^{e} \right\| = \left(\|Az_{\text{true}} - r_{0}^{e}\|^{2} + \lambda^{2} \|z_{\text{true}}\|^{2} \right)^{1/2} = \left(\|e\|^{2} + \lambda^{2} \|z_{\text{true}}\|^{2} \right)^{1/2}$

When are inexact solvers 'meaningful'?

Inspired by: [Simoncini and Szyld, SIMAX, 2003]

Depends on the relations between exact (i.e., r^e , $r^e_{\lambda,k}$) and inexact (i.e., r, $r_{\lambda,k}$) residuals, keeping in mind that:

- there is ill-posedness: r^e may not be small
- there is regularization: $r_{\lambda,k}^e$ may not be small

(i.e., $\left\| r_{\lambda,k}^{e} \right\| = \left(\|Az_{\text{true}} - r_{0}^{e}\|^{2} + \lambda^{2} \|z_{\text{true}}\|^{2} \right)^{1/2} = \left(\|e\|^{2} + \lambda^{2} \|z_{\text{true}}\|^{2} \right)^{1/2}$) Focusing on:

- **iLSQR**: $||r_k^e|| \le ||r_k|| + ||E_0x_0|| + \sum_{l=1}^k ||E_l|| |[s_k]_l|$
- hybrid-iLSQR, fixed λ

$$\|r_{\lambda,k}^{e}\| \leq \|r_{\lambda,k}\| + \|E_{0}x_{0}\| + \sum_{l=1}^{k} \|E_{l}\| |[s_{\lambda,k}]_{l}|$$

'A priori' bounds, ϵ desired accuracy:

iGK-based algorithms for separable NLLS pb 0000000 Conclusions O

An illustration

satellite blind deblurring example, with $\lambda=0.5$

Conclusions O

Recap on separable NLLS and VarPro

[Golub and Pereyra, Inverse Problems, 2003] [Chung and Nagy, SISC, 2010]

Problem to be solved

$$z_{\lambda} = \arg\min_{z \in \mathbb{R}^{n}, y \in \mathbb{R}^{p}} g(z, y), \text{ where } \begin{array}{l} g(z, y) &= \|F(z, y)\|^{2} \\ F(z, y) &= \widetilde{A}_{\lambda}(y)z - \widetilde{r}_{0} \\ \widetilde{A}_{\lambda}(y) &= [A^{T}(y), \lambda I]^{T}, \ \widetilde{r}_{0} = [r_{0}^{T}, 0^{T}]^{T} \\ x_{\lambda} &= x_{0} + z_{\lambda} \end{array}$$

Consider the reduced cost functional

$$\begin{split} h(y) &:= g(z_{\lambda}(y), y), \quad \text{where} \quad \begin{aligned} z_{\lambda}(y) &= & \arg\min_{z \in \mathbb{R}^{n}} g(z, y) \\ &= & (A^{T}(y)A(y) + \lambda^{2}I)^{-1}A^{T}(y)r_{0} \end{aligned} \\ \end{split}$$

$$\begin{aligned} \text{Take } x_{\lambda}(y) &= x_{0} + z_{\lambda}(y) \end{aligned}$$

Apply Gauss-Newton to minimize the reduced cost functional

 $y_l = y_{l-1} + \gamma_l d_{l-1}$ (setting the steplength γ_l)

Note that

$$d_{l-1} = \arg\min_{d} \|\widehat{J}_{h}d - r_{l-1}\|, \ J_{h} = \begin{bmatrix} d(A(y)z_{\lambda})/dy \\ 0 \end{bmatrix} = \begin{bmatrix} \widehat{J}_{h} \\ 0 \end{bmatrix}, \ J_{h}^{\mathsf{T}}F(z_{\lambda}, y) = \nabla_{y}g(z_{\lambda}, y)$$

(computationally convenient analytical expression of $d(A(y)z_{\lambda})/dy$ for blind deblurring)

iGK-based algorithms for separable NLLS pbs.

Conclusions O

Towards an iGK-based algorithm for separable nonlinear least squares problems

[Chung and Nagy, SISC, 2010]

Algorithm Variable projection with Gauss-Newton and hybrid LSQR solver

- 1: Choose initial guesses x_0 and y_0
- 2: for $l = 1, 2, \ldots$ until a stopping criterion is satisfied do
- 3: for k = 1, 2, ... until a stopping criterion is satisfied do
- 4: Expand $\mathcal{K}_k(A(y_{l-1})^T A(y_{l-1}), A(y_{l-1})^T r_0)$ using GKB
- 5: Compute $x_{\lambda,k}$ solving the projected problem with adaptive choice of λ
- 6: end for
- 7: Compute the residual $r_l = b A(y_{l-1})x_{\lambda,k}$

8: Compute
$$d_l = \arg \min_d \|\widehat{J}_h d - r_l\|$$

9: Update
$$y_l = y_{l-1} + \gamma_l d_l$$
 (setting the steplength γ_l)

- 10: Update x_0
- 11: end for

Conclusions O

Towards an iGK-based algorithm for separable nonlinear least squares problems

Algorithm Variable projection with Gauss-Newton and hybrid LSQR solver

- 1: Choose initial guesses x_0 and y_0
- 2: for $l = 1, 2, \ldots$ until a stopping criterion is satisfied do
- 3: for k = 1, 2, ... until a stopping criterion is satisfied do
- 4: Expand $\mathcal{K}_k(A(y_{l-1})^T A(y_{l-1}), A(y_{l-1})^T r_0)$ using GKB
- 5: Compute $x_{\lambda,k}$ solving the projected problem with adaptive choice of λ
- 6: end for
- 7: Compute the residual $r_l = b A(y_{l-1})x_{\lambda,k}$
- 8: Compute $d_l = \arg \min_d \|\widehat{J}_h d r_l\|$
- 9: Update $y_l = y_{l-1} + \gamma_l d_l$ (setting the steplength γ_l)
- 10: Update x_0
- 11: end for

iGK-based algorithms for separable NLLS pbs. 000000

Conclusions

Towards an iGK-based algorithm for separable nonlinear least squares problems

Algorithm Variable projection with Gauss-Newton and *hybrid-iLSQR* solver

Choose initial guesses x_0 and y_0

for k = 1, 2, ... until inexactness exceeds the bound ε do Expand the approximation subspace $\mathcal{R}(V_k)$ using $A(y_{k-1})$ and iGK Compute $x_{\lambda,k}$ solving the projected problem with adaptive choice of λ Compute the residual $r_k = b - A(y_{k-1})x_{\lambda,k}$ Compute $d_k = \arg\min_d \|\widehat{J}_h d - r_k\|$ Update $y_k = y_{k-1} + \gamma_k d_k$ (setting the steplength γ_k) end for

iGK-based algorithms for separable NLLS pbs. $\bigcirc \bullet \circ \circ \circ \circ \circ$

Conclusions 0

Towards an iGK-based algorithm for separable nonlinear least squares problems

Algorithm Variable projection with Gauss-Newton and *hybrid-iLSQR* solver 1: Choose initial guesses x_0 and y_0 ; set an accuracy ε for l = 1, 2, ... until a stopping criterion is satisfied do 2: for $k = 1, 2, \ldots$ until inexactness exceeds the bound ε do 3: Expand the approximation subspace $\mathcal{R}(V_k)$ using $A(y_{k-1})$ and iGK 4: Compute $x_{\lambda,k}$ solving the projected problem with adaptive choice of λ 5: Compute the residual $r_k = b - A(y_{k-1})x_{\lambda,k}$ 6: Compute $d_k = \arg \min_d \|\widehat{J}_h d - r_k\|$ 7: Update $y_k = y_{k-1} + \gamma_k d_k$ (setting the steplength γ_k) 8: end for 9: 10: Update x_0 ; take $y_0 = y_k$ 11: end for

iGK-based algorithms for separable NLLS pbs. oooooooo

Conclusions

A few details

Defining inexactness, with some pragmatism:

consider as exact matrix the latest computed approximation of A(y), i.e.,

after j - 1 iterations, $A(y_{i-1}) = A(y_{j-1}) + \frac{E_i^j}{k}$, where $E_i^j := A(y_{i-1}) - A(y_{j-1})$,

iGK being expressed as

$$(A(y_{j-1}) + \mathcal{E}_{j}^{j})V_{j} = U_{j+1}M_{j}, \qquad \mathcal{E}_{j}^{j} = \sum_{i=1}^{j} \mathcal{E}_{i}^{j}v_{i}v_{i}^{T} (A(y_{j-1}) + \mathcal{F}_{j+1}^{j})^{T}U_{j+1} = V_{j+1}L_{j+1}^{T}, \qquad \mathcal{F}_{j+1}^{j} = \sum_{i=1}^{j-1} u_{i}u_{i}^{T}\mathcal{E}_{i-1}^{j}$$

Setting the Gauss-Newton stepsize: set

$$y_j = y_{j-1} + \gamma_j d_{j-1}$$
, where $\gamma_j = \arg\min_{\gamma \ge 0} g(z_\lambda(y_{j-1}), y_{j-1} + \gamma d_{j-1})$

We get

$$\|\widetilde{A}_{\lambda}(y_j)z_{\lambda,j+1}-\widetilde{r}_0\| \leq \|\widetilde{A}_{\lambda}(y_{j-1})z_{\lambda,j}-\widetilde{r}_0\|+2\widetilde{\varepsilon},$$

instead of

$$\|\widetilde{\mathcal{A}}_{\lambda}(y_{j}) \mathbf{z}_{\lambda,j+1} - \widetilde{\mathbf{r}}_{0}\| \leq \|\widetilde{\mathcal{A}}_{\lambda}(y_{j-1}) \mathbf{z}_{\lambda,j} - \widetilde{\mathbf{r}}_{0}\|$$

iGK-based algorithms for separable NLLS pbs. $\texttt{ooo} \bullet \texttt{ooo}$

Conclusions

An illustration

satellite blind deblurring example, with $y_{\rm true} = [2.5, 2.5, 0]^T$, $\lambda = 0.5$

iGK-based algorithms for separable NLLS pbs. 0000000

Conclusions 0

An illustration

satellite blind deblurring example, with $y_{true} = [2.5, 2.5, 0]^T$, $\lambda = 0.5$

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver

S. Gazzola (UoB)

iGK-based algorithms for separable NLLS pbs. 0000000

Conclusions 0

An illustration

satellite blind deblurring example, with $y_{\rm true} = [2.5, 2.5, 0]^T$, $\lambda = 0.5$

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver

S. Gazzola (UoB)

An illustration

iGK-based algorithms for separable NLLS pbs. $\texttt{oooo} \bullet \texttt{oo}$

Conclusions

Hybrid-iLSQR (it. 30, RRE_x 0.5819)

×

Algorithm 4.2 (it. 79, RRE_x 0.2474)

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver

Another example

cameraman blind deblurring example, with $y_{\text{true}} = [3, 4, 0.5]^T$, $y_0 = [5, 6, 1]^T$

exact

Algorithm 4.1 (it. 927, RRE_x 0.1286) (it. 82, RRE_x 0.1219)

Algorithm 4.2

(it. 927, RRE_v 0.0679)

(it. 82, RRE_v 0.1438)

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver

S. Gazzola (UoB)

Regularization by inexact Krylov methods

Conclusions O

Another example

cameraman blind deblurring example, with $y_{\mathrm{true}} = [3,4,0.5]^{\mathcal{T}}$, $y_0 = [5,6,1]^{\mathcal{T}}$

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver

S. Gazzola (UoB)

Another example

cameraman blind deblurring example, with $y_{true} = [3, 4, 0.5]^T$, $y_0 = [5, 6, 1]^T$

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver

S. Gazzola (UoB)

Regularization by inexact Krylov methods

GK-based algorithms for separable NLLS pbs

Conclusions

Summary and Outlook

Conclusions

Summary and Outlook

■ The story so far:

- introduced the new (hybrid) iLSQR and iCGLS methods
- applications to separable NLLS problems arising in blind deblurring, handled with a variable projection approach

Summary and Outlook

- The story so far:
 - introduced the new (hybrid) iLSQR and iCGLS methods
 - applications to separable NLLS problems arising in blind deblurring, handled with a variable projection approach

• Looking ahead:

- inexact solvers other than iLSQR and iCGLS methods other than standard formTikhonov
- nonlinear separable inverse problems other than blind deblurring (MRI, superresolution, instrumental calibration, ML tasks)

Summary and Outlook

- The story so far:
 - introduced the new (hybrid) iLSQR and iCGLS methods
 - applications to separable NLLS problems arising in blind deblurring, handled with a variable projection approach

• Looking ahead:

- inexact solvers other than iLSQR and iCGLS methods other than standard formTikhonov
- nonlinear separable inverse problems other than blind deblurring (MRI, superresolution, instrumental calibration, ML tasks)

Thanks for your attention!

Silvia Gazzola and Malena Sabaté Landman Regularization by inexact Krylov methods with applications to blind deblurring SIAM J. Matrix Anal. Appl. 42, 2021