UUniversita
 bíCAMERİ@

Preconditioning in collocation and interpolation with radial basis functions

Josephin Giacomini

Joint work with: Nadaniela Egidi, Pierluigi Maponi, Alessia Perticarini

Università degli Studi di Camerino

School of Science and Technology - Mathematics Division
josephin.giacomini@unicam.it

Due Giorni di Algebra Lineare Numerica e Applicazioni - February 15th, 2022

Overview

Overall objective:
To solve a physico-chemical problem with the RBFs approximation \rightarrow water percolation into a porous medium made of coffee powder.

Specific objectives:
Large linear system solved by iterative methods:

- need of an efficient computation of the action of the interpolation matrix on a vector
- need of a preconditioning strategy

The interpolation problem

Let $N \in \mathbb{N}$ be the number of interpolation points. Let f be the function $f: \mathscr{D} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$. Considering the inverse multiquadric $\operatorname{RBFs}\left\{\varphi_{j}\right\}_{\{j=1, \ldots, N\}}$,

$$
\varphi_{j}(\mathbf{x})=\varphi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)=\frac{1}{\sqrt{t^{2}+\left\|\mathbf{x}-\mathbf{x}_{j}\right\|^{2}}}
$$

where $\mathbf{x}, \mathbf{x}_{j} \in \mathscr{D}, j=1,2, \ldots, N, t \in \mathbb{R}$ and $\|\cdot\|=\|\cdot\|_{2}$, the interpolation system is

$$
\sum_{j=1}^{N} \varphi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right) c_{j}=b_{i}, i=1,2, \ldots, N
$$

or, in matrix form,

$$
A \mathbf{c}=\mathbf{b}
$$

where $A \in \mathbb{R}^{N \times N}, A_{i j}=\varphi_{j}\left(\mathbf{x}_{i}\right), \mathbf{c}, \mathbf{b} \in \mathbb{R}^{N}, b_{i}=f\left(\mathbf{x}_{i}\right)$.

Outline of the work

Fast matrix action

Iterative method \rightarrow row-column product of A with tentative solutions: computational $\operatorname{cost} \approx N^{2}$.

An efficient technique to compute the action of A on a vector.

Preconditioning

A is ill-conditioned (depending on the shape parameter t).
Stabilisation techniques:

- Perturbation of A
- MLS preconditioner ${ }^{a}$

[^0]
Fast action of the matrix on a vector

A decomposition

A decomposition:

$$
A=U D V
$$

where $U \in \mathbb{R}^{N \times s}, D \in \mathbb{R}^{s \times s}, D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{s}\right), V \in \mathbb{R}^{s \times N}$, and $s<N$. Thus

$$
A_{i j}=\sum_{l=1}^{s} U_{i l} d_{l} V_{l j}, \quad i, j=1,2, \ldots, N
$$

Inspired by Green function of the Laplacian operator in \mathbb{R}^{3} :

$$
\begin{aligned}
\Delta \mathscr{G}(\mathbf{x} ; \mathbf{y}) & =\delta(\mathbf{x}-\mathbf{y}) \\
\mathscr{G}(\mathbf{x} ; \mathbf{y}) & =\frac{1}{\|\mathbf{x}-\mathbf{y}\|}
\end{aligned}
$$

Considering $\overline{\mathbf{x}}=\left(x_{1}, x_{2}, t / 2\right), \overline{\mathbf{y}}=\left(y_{1}, y_{2},-t / 2\right) \in \mathbb{R}^{3}$ and $\mathbf{x}=\left(x_{1}, x_{2}\right), \mathbf{y}=\left(y_{1}, y_{2}\right) \in$ \mathbb{R}^{2},

$$
\mathscr{G}(\overline{\mathbf{x}} ; \overline{\mathbf{y}})=\frac{1}{\|\overline{\mathbf{x}}-\overline{\mathbf{y}}\|}=\frac{1}{\sqrt{\|\mathbf{x}-\mathbf{y}\|^{2}+t^{2}}}=\varphi(\|\mathbf{x}-\mathbf{y}\|)
$$

Fast action of the matrix on a vector

Let $\overline{\mathbf{x}}=\left(x_{1}, x_{2}, t / 2\right)=\left(\rho_{x}, \theta_{x}, \omega_{x}\right), \overline{\mathbf{y}}=\left(y_{1}, y_{2},-t / 2\right)=\left(\rho_{y}, \theta_{y}, \omega_{y}\right)$.

$$
\begin{aligned}
\mathscr{G}(\overline{\mathbf{x}} ; \overline{\mathbf{y}})= & \sum_{n=0}^{\infty} \sum_{m=0}^{n} \epsilon_{m} \frac{(n-m)!}{(n+m)!} P_{n}^{m}\left(\cos \left(\theta_{y}\right)\right) P_{n}^{m}\left(\cos \left(\theta_{x}\right)\right) \cdot \\
& \cdot \cos \left(m\left(\omega_{x}-\omega_{y}\right)\right) \begin{cases}\rho_{x}^{n} / \rho_{y}^{n+1}, & \text { if } \rho_{y}>\rho_{x} \\
\rho_{y}^{n} / \rho_{x}^{n+1}, & \text { if } \rho_{x}>\rho_{y}\end{cases}
\end{aligned}
$$

where ϵ_{m} is the Neumann factor, $\epsilon_{0}=1, \epsilon_{m}=2, m>0$, and P_{n}^{m} is the Legendre function of order m and degree n associated to the Legendre polynomial P_{n} of degree n^{1}.

For points outside the convergence radius, we use some ideas of the Rokhlin's translation technique ${ }^{2}$. In fact, let $\mathbf{z} \in \mathbb{R}^{3}$, then

$$
\mathscr{G}(\mathbf{x} ; \mathbf{y})=\frac{1}{\|\mathbf{x}-\mathbf{y}\|}=\frac{1}{\|(\mathbf{x}-\mathbf{z})-(\mathbf{y}-\mathbf{z})\|}=\mathscr{G}(\mathbf{x}-\mathbf{z} ; \mathbf{y}-\mathbf{z})
$$

[^1]
Fast action of the matrix on a vector

The translation technique

The translation technique on a square domain:

(a) Level 1

(b) Level 2

Results on a regular grid

N	Standard			Translation $(L=5)$			Translation $(L=10)$		
	T	$[\mathrm{s}]$	T	$[\mathrm{s}]$	err	Lev	T	$[\mathrm{s}]$	
err	Lev								
4096	$7.59(-1)$	$1.36(-1)$	$1.23(-4)$	1	$2.40(-1)$	$8.26(-10)$	1		
16384	$1.07(1)$	$1.61(0)$	$4.88(-4)$	2	$2.93(0)$	$2.52(-9)$	2		
65536	$1.82(2)$	$2.16(1)$	$1.88(-3)$	3	$3.71(1)$	$1.04(-8)$	3		
262144	-	$7.49(1)$	-	4	$2.38(2)$	-	4		

Table: Execution times T and error err varying the number of interpolation points N.

Perturbation of A

Right preconditioner: $A P^{-1} \mathbf{c}=\mathbf{b}$.
Preconditioning system:

$$
P \tilde{\mathbf{x}}=\tilde{\mathbf{b}},
$$

where $P=A+E$ perturbed matrix.

$$
(A+E)\left(\mathbf{x}_{0}+\sum_{k=1}^{K} \mathbf{x}_{k}\right)=\tilde{\mathbf{b}}
$$

Procedure to solve the preconditioning system:
(1) Solve $(A+\lambda I) \mathbf{x}_{0}=\tilde{\mathbf{b}}$
(2) Compute the residual r_{1}
(3) for $\mathrm{k}=1,2, \ldots, \mathrm{~K}$
i. Solve $(A+\lambda I) \mathbf{x}_{k}=r_{k}-E \mathbf{x}_{k-1}$
ii. Compute the residual r_{k+1}
(4) $\tilde{\mathbf{x}}=\mathrm{x}_{0}+\sum_{k=1}^{K} \mathbf{x}_{k}$

MLS Preconditioner

Right preconditioner: $A P^{-1} \mathbf{c}=\mathbf{b}$.
Preconditioning system:

$$
P \tilde{\mathbf{x}}=\tilde{\mathbf{b}} \quad \Rightarrow \quad \tilde{\mathbf{x}}=P^{-1} \tilde{\mathbf{b}}
$$

where

$$
P^{-1}=\sum_{k=0}^{K}(I-A)^{k} \approx A^{-1} \quad \text { for K sufficiently large. }
$$

Preliminary results on the perturbed matrix

Perturbed matrix P :

$$
P_{i j}=\varphi\left(\left\|\left(\mathbf{x}_{i}+\mathbf{p}_{i}\right)-\left(\mathbf{x}_{j}+\mathbf{p}_{j}\right)\right\|\right)
$$

where $\mathbf{p}_{i}=\left(p_{i 1}, p_{i 2}\right), i=1, \ldots, N$ is the random perturbation vector with $\left|p_{i 1}\right| \leq h_{1} p$, $\left|p_{i 2}\right| \leq h_{2} p$ with h_{1}, h_{2} the two-dimensional grid steps and p a scaling factor.

Test case: $f(\mathbf{x})=\exp \left(-\|\mathbf{x}\|^{2}\right)$
$t=1$ (shape parameter of IM-RBF), $N=256, \operatorname{cond}(A)=10^{20}$.

p, K	iterations	residual	E_{r}
1,0	2	$9.7(-7)$	$2.6(-5)$
$1(-8), 4$	2	$2.0(-7)$	$3.7(-6)$

Table: BicG-Stab convergence evaluation.

$$
E_{r}=\max _{i=1, \ldots, N}\left|\frac{f\left(\mathbf{y}_{i}\right)-(B \mathbf{c})_{i}}{f\left(\mathbf{y}_{i}\right)}\right|,
$$

where $B_{i j}=\varphi\left(\left\|\mathbf{y}_{i}-\mathbf{x}_{j}\right\|\right),\left\{\mathbf{y}_{i}\right\}_{i=1, \ldots, N}$ evaluation points.

Preliminary results on MLS

Test case: $f(\mathbf{x})=\exp \left(-\|\mathbf{x}\|^{2}\right)$,
$t=1$ (shape parameter of IM-RBF), $N=256, \operatorname{cond}(A)=10^{20}$.

K	iterations	residual	E_{r}
3	3607	$1.2(-8)$	$5.3(-5)$
4	2812	$1.4(-8)$	$2.6(-5)$
5	2395	$1.1(-8)$	$3.6(-5)$
10	2073	$1.4(-8)$	$6.9(-5)$
12	1967	$1.6(-8)$	$9.0(-5)$

Table: BicG-Stab convergence evaluation.

Further developments

- Refining of the preconditioning strategies and comparison with classical preconditioners.
- Composition of the various blocks in order to obtain an effective solving method for the interpolation problem.
- Generalisation of the whole method to a generic interpolation point set and different types of RBFs.
- Extension and adaptation of the method to discretisation schemes for differential problems.

[^0]: ${ }^{a}$ Fasshauer, G. E., \& Zhang, J. G. (2009). Preconditioning of radial basis function interpolation systems via accelerated iterated approximate moving least squares approximation. In Progress on Meshless Methods.

[^1]: ${ }^{1}$ Morse P. M., Feshbach H., (1953). Methods of theoretical Physics, p. 1274.
 ${ }^{2}$ Greengard, L., Rokhlin, V., (1987), A fast algorithm for particle simulations. In Journal of Computational Physics.

