

Università DiCAmerino

Preconditioning in collocation and interpolation with radial basis functions

Josephin Giacomini

Joint work with: Nadaniela Egidi, Pierluigi Maponi, Alessia Perticarini

Università degli Studi di Camerino

School of Science and Technology - Mathematics Division

josephin.giacomini@unicam.it

Due Giorni di Algebra Lineare Numerica e Applicazioni - February 15th, 2022

(□) (@) (E) (E) =

Overview

Overall objective:

To solve a physico-chemical problem with the RBFs approximation \rightarrow water percolation into a porous medium made of coffee powder.

Specific objectives:

Large linear system solved by iterative methods:

- need of an efficient computation of the action of the interpolation matrix on a vector
- need of a preconditioning strategy

(日) (同) (日) (日)

Let $N \in \mathbb{N}$ be the number of interpolation points. Let f be the function $f : \mathscr{D} \subset \mathbb{R}^2 \to \mathbb{R}$. Considering the *inverse multiquadric* RBFs $\{\varphi_j\}_{\{j=1,\ldots,N\}}$,

$$\varphi_j(\mathbf{x}) = \varphi(\|\mathbf{x} - \mathbf{x}_j\|) = \frac{1}{\sqrt{t^2 + \|\mathbf{x} - \mathbf{x}_j\|^2}},$$

where $\mathbf{x}, \mathbf{x}_j \in \mathcal{D}, j = 1, 2, ..., N, t \in \mathbb{R}$ and $\|\cdot\| = \|\cdot\|_2$, the interpolation system is

$$\sum_{j=1}^{N} \varphi(\|\mathbf{x}_{i} - \mathbf{x}_{j}\|) c_{j} = b_{i}, \ i = 1, 2, \dots, N,$$

or, in matrix form,

$$A\mathbf{c} = \mathbf{b},$$

where $A \in \mathbb{R}^{N \times N}$, $A_{ij} = \varphi_j(\mathbf{x}_i)$, $\mathbf{c}, \mathbf{b} \in \mathbb{R}^N$, $b_i = f(\mathbf{x}_i)$.

(日) (同) (日) (日)

Outline of the work

Fast matrix action

Iterative method \rightarrow row-column product of A with tentative solutions: computational cost $\approx N^2.$

An efficient technique to compute the action of A on a vector.

Preconditioning

A is ill-conditioned (depending on the shape parameter t).

Stabilisation techniques:

- $\bullet\,$ Perturbation of A
- MLS preconditioner^a

^aFasshauer, G. E., & Zhang, J. G. (2009). Preconditioning of radial basis function interpolation systems via accelerated iterated approximate moving least squares approximation. In Progress on Meshless Methods.

(I) < (I)

Fast action of the matrix on a vector A decomposition

 ${\cal A}$ decomposition:

A = UDV,

where $U \in \mathbb{R}^{N \times s}$, $D \in \mathbb{R}^{s \times s}$, $D = \text{diag}(d_1, d_2, \dots, d_s)$, $V \in \mathbb{R}^{s \times N}$, and s < N. Thus

$$A_{ij} = \sum_{l=1}^{s} U_{il} d_l V_{lj}, \quad i, j = 1, 2, \dots, N.$$

Inspired by Green function of the Laplacian operator in \mathbb{R}^3 :

$$\Delta \mathscr{G}(\mathbf{x}; \mathbf{y}) = \delta(\mathbf{x} - \mathbf{y}),$$
$$\mathscr{G}(\mathbf{x}; \mathbf{y}) = \frac{1}{\|\mathbf{x} - \mathbf{y}\|}.$$

Considering $\overline{\mathbf{x}} = (x_1, x_2, t/2), \overline{\mathbf{y}} = (y_1, y_2, -t/2) \in \mathbb{R}^3$ and $\mathbf{x} = (x_1, x_2), \mathbf{y} = (y_1, y_2) \in \mathbb{R}^2$,

$$\mathscr{G}(\overline{\mathbf{x}};\overline{\mathbf{y}}) = \frac{1}{\|\overline{\mathbf{x}} - \overline{\mathbf{y}}\|} = \frac{1}{\sqrt{\|\mathbf{x} - \mathbf{y}\|^2 + t^2}} = \varphi(\|\mathbf{x} - \mathbf{y}\|).$$

5/13

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Fast action of the matrix on a vector Spectral decomposition of \mathscr{G}

Let
$$\overline{\mathbf{x}} = (x_1, x_2, t/2) = (\rho_x, \theta_x, \omega_x), \overline{\mathbf{y}} = (y_1, y_2, -t/2) = (\rho_y, \theta_y, \omega_y).$$

$$\mathscr{G}(\overline{\mathbf{x}};\overline{\mathbf{y}}) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} \epsilon_m \frac{(n-m)!}{(n+m)!} P_n^m \left(\cos(\theta_y)\right) P_n^m \left(\cos(\theta_x)\right) \cdot \\ \cdot \cos\left(m(\omega_x - \omega_y)\right) \begin{cases} \rho_x^n / \rho_y^{n+1}, & \text{if } \rho_y > \rho_x \\ \rho_y^n / \rho_x^{n+1}, & \text{if } \rho_x > \rho_y \end{cases},$$

where ϵ_m is the Neumann factor, $\epsilon_0 = 1, \epsilon_m = 2, m > 0$, and P_n^m is the Legendre function of order m and degree n associated to the Legendre polynomial P_n of degree n^1 .

For points outside the convergence radius, we use some ideas of the Rokhlin's translation technique². In fact, let $\mathbf{z} \in \mathbb{R}^3$, then

$$\mathscr{G}(\mathbf{x};\mathbf{y}) = \frac{1}{\|\mathbf{x} - \mathbf{y}\|} = \frac{1}{\|(\mathbf{x} - \mathbf{z}) - (\mathbf{y} - \mathbf{z})\|} = \mathscr{G}(\mathbf{x} - \mathbf{z};\mathbf{y} - \mathbf{z}).$$

¹Morse P. M., Feshbach H., (1953). *Methods of theoretical Physics*, p. 1274.

J. Giacomini (UNICAM)

Interpolation with RBFs

February 15th, 2022

6/13

²Greengard, L., Rokhlin, V., (1987), A fast algorithm for particle simulations. In Journal of Computational Physics.

Fast action of the matrix on a vector

The **translation technique** on a square domain:

æ

7/13

Results on a regular grid

N	Standard	Translation $(L = 5)$			Translation $(L = 10)$		
	T [s]	T [s]	err	Lev	T [s]	err	Lev
4096	7.59(-1)	1.36(-1)	1.23(-4)	1	2.40(-1)	8.26(-10)	1
16384	1.07(1)	1.61(0)	4.88(-4)	2	2.93(0)	2.52(-9)	2
65536	1.82(2)	2.16(1)	1.88(-3)	3	3.71(1)	1.04(-8)	3
262144	-	7.49(1)	-	4	2.38(2)	-	4

Table: Execution times T and error err varying the number of interpolation points N.

æ

・ロト ・回ト ・ヨト ・ヨト

Perturbation of A

Right preconditioner: $AP^{-1}\mathbf{c} = \mathbf{b}$.

Preconditioning system:

$$P\tilde{\mathbf{x}} = \tilde{\mathbf{b}},$$

where P = A + E perturbed matrix.

$$(A+E)\left(\mathbf{x}_0+\sum_{k=1}^K\mathbf{x}_k\right)=\tilde{\mathbf{b}},$$

Procedure to solve the preconditioning system:

- $O Solve (A + \lambda I) \mathbf{x}_0 = \tilde{\mathbf{b}}$
- **2** Compute the residual r_1
- **3** for $k=1,2,\ldots,K$
 - i. Solve $(A + \lambda I)\mathbf{x}_k = r_k E\mathbf{x}_{k-1}$
 - ii. Compute the residual r_{k+1}

$$\mathbf{\tilde{x}} = \mathbf{x}_0 + \sum_{k=1}^K \mathbf{x}_k$$

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

MLS Preconditioner

Right preconditioner: $AP^{-1}\mathbf{c} = \mathbf{b}$.

Preconditioning system:

$$P\tilde{\mathbf{x}} = \tilde{\mathbf{b}} \quad \Rightarrow \quad \tilde{\mathbf{x}} = P^{-1}\tilde{\mathbf{b}},$$

where

$$P^{-1} = \sum_{k=0}^{K} (I - A)^k \approx A^{-1} \quad \text{for K sufficiently large.}$$

æ

イロト イヨト イヨト イヨト

Preliminary results on the perturbed matrix

Perturbed matrix P:

$$P_{ij} = \varphi(\|(\mathbf{x}_i + \mathbf{p}_i) - (\mathbf{x}_j + \mathbf{p}_j)\|),$$

where $\mathbf{p}_i = (p_{i1}, p_{i2}), i = 1, ..., N$ is the random perturbation vector with $|p_{i1}| \le h_1 p$, $|p_{i2}| \le h_2 p$ with h_1, h_2 the two-dimensional grid steps and p a scaling factor.

Test case: $f(\mathbf{x}) = \exp\left(-\|\mathbf{x}\|^2\right)$

t = 1 (shape parameter of IM-RBF), N = 256, $cond(A) = 10^{20}$.

$_{p,K}$	iterations	residual	E_r
$1,\!0$	2	9.7(-7)	2.6(-5)
1(-8),4	2	2.0(-7)	3.7(-6)

Table: BicG-Stab convergence evaluation.

$$E_r = \max_{i=1,\dots,N} \left| \frac{f(\mathbf{y}_i) - (B\mathbf{c})_i}{f(\mathbf{y}_i)} \right|,$$

where $B_{ij} = \varphi(||\mathbf{y}_i - \mathbf{x}_j||), \{\mathbf{y}_i\}_{i=1,...,N}$ evaluation points.

Preliminary results on MLS

Test case: $f(\mathbf{x}) = \exp\left(-\|\mathbf{x}\|^2\right)$,

t = 1 (shape parameter of IM-RBF), N = 256, $cond(A) = 10^{20}$.

K	iterations	residual	E_r
3	3607	1.2(-8)	5.3(-5)
4	2812	1.4(-8)	2.6(-5)
5	2395	1.1(-8)	3.6(-5)
10	2073	1.4(-8)	6.9(-5)
12	1967	1.6(-8)	9.0(-5)

Table: BicG-Stab convergence evaluation.

12/13

イロト イヨト イヨト イヨト

Further developments

- Refining of the preconditioning strategies and comparison with classical preconditioners.
- Composition of the various blocks in order to obtain an effective solving method for the interpolation problem.
- Generalisation of the whole method to a generic interpolation point set and different types of RBFs.
- Extension and adaptation of the method to discretisation schemes for differential problems.