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Distance to singularity

A quadratic matrix polynomial @ (A) is a polynomial in the
form:

Q(\) =XA+)\B+C,

where A, B,C € C"*". The matrix polynomial Q()) is called
regular if det (Q (X)) # 0. Otherwise @ () is called singular.



Distance to singularity

A @ (N) is a polynomial in the
form:

Q(\) =XA+)\B+C,

where A, B,C € C"*". The matrix polynomial Q()) is called
if det (Q (X)) # 0. Otherwise @ ()) is called

Given a regular quadratic matrix polynomial A\2A + A\B + C, we
look for the :

d(A,B,C) =min{|| [AA,AB, AC] || such that
A (A+AA)+ A (B+AB) + (C+ AC) singular} .



Second-order control system (Nichols, Kautsky, 2001):

Jz — Dz — Cz = Bu, z(0),z(0) given
where z(t) € R, u(t) e R™, J,D,C € R™*"™ and B € R"*™.
Control problem: design a controller u = K1z + K9z + r, where
Ky, Ky € R™™ r(t) € R™ such that

Jé — (D + BKy) % — (C + BKy)z = Br

has desired properties.
Its behavior is governed by the eigenstructure of

Q(\) = X\J —X(D + BK,) — (C + BK;).



Motivation: Tl conditioning of eigenvalues.

Example: consider the quadratic matrix polynomial, with
a, B, small:

1 « 0 1 0 0
Q()\):V[B 7]+A[1 0]+[7 1].

For a, 8 =0 and v # 0, the
eigenvalues are:

_ 1, V3 _ 1
A=0,1, -5+, 3~

For v =0 and «, 8 # 0, the

/3 eigenvalues are: \ = 0, —%%B.



Motivation: Tl conditioning of eigenvalues.

Example: consider the quadratic matrix polynomial, with
a, B, small:

1 « 0 1 0 0
Q()\):V[B 7]+A[1 0]+[7 1].

F = h
.OI'Oé,ﬁI OaHdW#Oyte Forfy:[)andog”@#o,the
eigenvalues are: : s N\ = atf
5 s 1 v eigenvalues are: A = 0, —=7=.
)\—0,1,*§+757§77' i

Q(A) is in a neighborhood of the singular matrix polynomial
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Reformulation of the problem

M (A+ AA)+ X (B+ AB) + (C + AC) is singular <
det (1 (A + AA) + p; (B+ AB) + (C + AC)) =0,

with distinct points pu; € C, fort=1,...,d and d > 2n + 1.



Reformulation of the problem

M (A+ AA)+ X (B+ AB) + (C + AC) is singular <
det (1 (A + AA) + p; (B+ AB) + (C + AC)) =0,
with distinct points pu; € C, fort=1,...,d and d > 2n + 1.

(AA,, AB,, AC,) = arg min | [AA, AB,AC]||F
AA,AB,ACECRXn

subj to det (47 (A+ AA) + pi(B+ AB) + (C + AC)) =0
fori=1,....d.



Idea of the method

Consider [AA, AB,AC| =¢[A,0,T'] of norm e. Define the

functional

G- (A,0,T) Za A,0,T),
where 0; (A, ©,T) is the smallest singular value of the matrix
p2(A+ eA) + pi(B +€0) + (C + £l).

e Compute G(¢) = minp o1 Ge (A, 0,T1).
e Compute e* = min {e € RT : G(g) = 0}.



Idea of the method

G(




Idea of the method

G(

e Fix the norm € and solve G(¢) = mina o G- (A, 0,T);
e Tune the value of € in order to find the smallest zero of

G(e).



Idea of the method

G

e Fix the norm ¢ and solve G(¢) = mina o 1 G¢ (A, 0,1);
—

e Tune the value of € in order to find the smallest zero of
G(e). —



Inner iteration

Lemma: Let A(t),0(t),['(t) € C"™™ be a smooth path of
matrices, with derivatives A(t), ©(t),I'(t). Then
Ge (A(t),0(t),I'(t)) is differentiable with

%GE(A, O,T) =cRe <[Z\427 My, My], [A, @7F]> :

where (X,Y) = trace (XY and

d d d

§ : =2 H 2 : = H § : H

Mg = Oil; Wiv; M1 = Ol U;v; MO = OiU;v;
i=1 i=1 i=1

with wu;, v; left and right singular vectors associated with o;.



Inner iteration

Along the solutions of the system of ODEs

A =—M,+nA
© = —M; +n©
I'=—My+nl

where 7 := Re ([Ma, M1, My], [A, ©,T]), we have that:

1. || [A(t),O(t),T(t)] ||F = 1 is conserved;
2. 4G, (A(t),0(t),T(t) < 0.

This is a constrained gradient system.

Computing the stationary points of the gradient system.



Outer iteration

: update the parameter € up to the smallest root
e* of G(e) = 0.

We approach the root * from the left-hand side using

B G(ek)
€k+1 = €k — G'(en)’
where G'(g) = d%G(s) = —|| [M2(g), M1(g), Mo(e)] || F-
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Consider

10 0 1 0 0
P(A):V[o 0]+A[0.5 0]+[0 1]'
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Consider

10 0 1 00
P()) =\ + A + :
) [ 0 0 ] [ 0.5 0 ] 0 1
The computed distance to singularity is d ~ 0.2794 and the

nearest singular polynomial is

~ 0.8645 1.1058
P\ =\ A )
() [ ]+ [O.6736 ]+[ 0.8645]
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Palindromic quadratic matrix polynomials

A quadratic matrix polynomials is a polynomial in
the form
P()\) := XA+ AB + AH,

where B = B and A, B € C™*",

We allow perturbations which respect the structure

M (A+eA)+A(B+eO)+ (A+eA)T, A0 eC™

Given a regular quadratic matrix polynomial A24 + AB + C, we
look for:

dp (A, B,C) =min {|| [AA,AB,AC]||p : A (A + AA)+

+A (B + AB) + (C + AC) singular and palindromic} .
12



Palindromic quadratic matrix polynomials

Mrc: CV3" — M= {[A,0,T] e CV?": © =0", T =AH)}
A+TH 04064 AH+F]

A6,T— |25, S5 2

The system of ODEs becomes

. My + MH
A:—%Hm,
) My, + MH
@:—% +10,

where n = Re < [MQZM"H, MIZM{J} A, @]>
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Consider the palindromic polynomial

-1 -15 N 0 1
1.5 -1 0 0|

The nearest palindromic singular polynomial is

0 0

A
10+

P()\) = )2 [

5 | 0.2335 0.1866 —-1.3095 —1.3077 0.2335 0.2807
0.2807 0.2335 —1.3077 —1.3095 0.1866 0.2335 |

14



Open issues and future work

Choice of the set of complex points p;:

Number of points d > 2n + 1;
Optimal choice of p;;

Influence on the numerical results;
Adding a set of test points fi;.

Efficient integration of the gradient system;
Different additional structures on the matrix polynomials;

Computational challenges of matrix polynomials of higher

degree.
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Numerical experiments

1 0 0 1 0 0
P()\) = \? A .
) [0 01+ [0.5 01+[0 1]
10° 7\ o2 \\
107 \ \\
" | 10° \\
10 \ \
10 \ . \
\ 10° .
10°® \, \
-10 \ 10° \\\" =—.———
10 X

Figure 1: |5up

- 510W’

Figure 2: G(¢)

Iterations = 12; Tol=5 x 1075%; d =2n+1 = 5.
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Numerical experiments

0 O 0 0 -2 0
P()\) = \2 + A + .
w=-20 5]el0 0]+ 20
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Figure 3: |8up — EIOW’ Figure 4: G(¢)

Iterations = 13; Tol=5 x 107%; d = 2n 4+ 1 = 5.
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Numerical experiments n = 2 randn

10!

10° b

Figure 5: G(¢)

Three choices of d: d =5 (blue), d =10 (red) and d =3n =6

(green). Always 13 iterations. 16



Numerical experiments n =5 randn
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Figure 6: |€up 7510W|, d=11

Figure 7: G(¢)

Iterations = 13; Tol=d x 1075; d = 11(blue), d = 15(red) and
d = 20(green).
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Numerical experiments n = 10 real

0 2 4 6 8 10

Figure 8: |eup — €]oy | Figure 9: G(¢)

Tol=d x 107%; d = 21(blue), d = 30(red) and d = 40(green).
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Numerical experiments n = 10 real
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Figure 10: |€up - 510w’

Tol=d x 1076, d = 21, Points on

Figure 11: G(¢)

unit disk and Chebyshev.
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Numerical experiments n = 10 complex
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Figure 12: |eyp — ¢ Figure 13: G(e
p low

Tol=d x 1079, d = 21, Points on unit disk and Chebyshev.
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