Distance to singularity for (quadratic) matrix polynomials

Speaker: Miryam Gnazzo
Joint work with: Nicola Guglielmi, GSSI
14 February 2022

Distance to singularity

A quadratic matrix polynomial $Q(\lambda)$ is a polynomial in the form:

$$
Q(\lambda)=\lambda^{2} A+\lambda B+C,
$$

where $A, B, C \in \mathbb{C}^{n \times n}$. The matrix polynomial $Q(\lambda)$ is called regular if $\operatorname{det}(Q(\lambda)) \not \equiv 0$. Otherwise $Q(\lambda)$ is called singular.

Distance to singularity

A quadratic matrix polynomial $Q(\lambda)$ is a polynomial in the form:

$$
Q(\lambda)=\lambda^{2} A+\lambda B+C,
$$

where $A, B, C \in \mathbb{C}^{n \times n}$. The matrix polynomial $Q(\lambda)$ is called regular if $\operatorname{det}(Q(\lambda)) \not \equiv 0$. Otherwise $Q(\lambda)$ is called singular.

Distance to singularity

Given a regular quadratic matrix polynomial $\lambda^{2} A+\lambda B+C$, we look for the distance to singularity:
$d(A, B, C)=\min \{\|[\Delta A, \Delta B, \Delta C]\|$ such that

$$
\left.\lambda^{2}(A+\Delta A)+\lambda(B+\Delta B)+(C+\Delta C) \text { singular }\right\} .
$$

Motivation

Second-order control system (Nichols, Kautsky, 2001):

$$
J \ddot{\mathbf{z}}-D \dot{\mathbf{z}}-C \mathbf{z}=B \mathbf{u}, \quad \mathbf{z}(0), \dot{\mathbf{z}}(0) \text { given }
$$

where $\mathbf{z}(t) \in \mathbb{R}^{n}, \mathbf{u}(t) \in \mathbb{R}^{m}, J, D, C \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$.
Control problem: design a controller $\mathbf{u}=K_{1} \mathbf{z}+K_{2} \dot{\mathbf{z}}+\mathbf{r}$, where $K_{1}, K_{2} \in \mathbb{R}^{m \times n}, \mathbf{r}(t) \in \mathbb{R}^{m}$ such that

$$
J \ddot{\mathbf{z}}-\left(D+B K_{2}\right) \dot{\mathbf{z}}-\left(C+B K_{1}\right) \mathbf{z}=B \mathbf{r}
$$

has desired properties.
Its behavior is governed by the eigenstructure of

$$
Q(\lambda)=\lambda^{2} J-\lambda\left(D+B K_{2}\right)-\left(C+B K_{1}\right)
$$

Motivation

Motivation: Ill conditioning of eigenvalues.
Example: consider the quadratic matrix polynomial, with α, β, γ small:

$$
Q(\lambda)=\lambda^{2}\left[\begin{array}{ll}
1 & \alpha \\
\beta & \gamma
\end{array}\right]+\lambda\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
\gamma & 1
\end{array}\right]
$$

For $\alpha, \beta=0$ and $\gamma \neq 0$, the eigenvalues are:
$\lambda=0,1,-\frac{1}{2}+\frac{\sqrt{3}}{2},-\frac{1}{2}-\frac{\sqrt{3}}{2}$.

For $\gamma=0$ and $\alpha, \beta \neq 0$, the eigenvalues are: $\lambda=0,-\frac{\alpha+\beta}{\alpha \beta}$.

Motivation

Motivation: Ill conditioning of eigenvalues.
Example: consider the quadratic matrix polynomial, with α, β, γ small:

$$
Q(\lambda)=\lambda^{2}\left[\begin{array}{ll}
1 & \alpha \\
\beta & \gamma
\end{array}\right]+\lambda\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
\gamma & 1
\end{array}\right]
$$

For $\alpha, \beta=0$ and $\gamma \neq 0$, the eigenvalues are:
$\lambda=0,1,-\frac{1}{2}+\frac{\sqrt{3}}{2},-\frac{1}{2}-\frac{\sqrt{3}}{2}$.
For $\gamma=0$ and $\alpha, \beta \neq 0$, the eigenvalues are: $\lambda=0,-\frac{\alpha+\beta}{\alpha \beta}$.
$Q(\lambda)$ is in a neighborhood of the singular matrix polynomial

$$
\lambda^{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\lambda\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

A few references

- R. Byers, C. He, V. Mehrmann, (1998), Where is the nearest non-regular pencil?, Linear Algebra and its Applications.
- C. Mehl,V. Mehrmann, M. Wojtylak.(2015). On the distance to singularity via low rank perturbations.
Operators and Matrices.
- N. Guglielmi, C. Lubich, V.Mehrmann, (2017) On the nearest singular matrix pencil, SIAM Journal on Matrix Analysis and Applications.
- M. Giesbrecht, J. Haraldson, G. Labahn, (2017). Computing the nearest rank-deficient matrix polynomial. In: Proc. International Symposium on Symbolic and Algebraic Computation (ISSAC). ACM Press.

Reformulation of the problem

$$
\begin{aligned}
& \lambda^{2}(A+\Delta A)+\lambda(B+\Delta B)+(C+\Delta C) \text { is singular } \Leftrightarrow \\
& \quad \operatorname{det}\left(\mu_{i}^{2}(A+\Delta A)+\mu_{i}(B+\Delta B)+(C+\Delta C)\right)=0
\end{aligned}
$$

with distinct points $\mu_{i} \in \mathbb{C}$, for $i=1, \ldots, d$ and $d \geq 2 n+1$.

Reformulation of the problem

$\lambda^{2}(A+\Delta A)+\lambda(B+\Delta B)+(C+\Delta C)$ is singular \Leftrightarrow

$$
\operatorname{det}\left(\mu_{i}^{2}(A+\Delta A)+\mu_{i}(B+\Delta B)+(C+\Delta C)\right)=0
$$

with distinct points $\mu_{i} \in \mathbb{C}$, for $i=1, \ldots, d$ and $d \geq 2 n+1$.

Underlying optimization problem

$$
\begin{aligned}
& \left(\Delta A_{*}, \Delta B_{*}, \Delta C_{*}\right)=\arg \min _{\Delta A, \Delta B, \Delta C \in \mathbb{C}^{n \times n}}\|[\Delta A, \Delta B, \Delta C]\|_{F} \\
& \quad \text { subj to } \operatorname{det}\left(\mu_{i}^{2}(A+\Delta A)+\mu_{i}(B+\Delta B)+(C+\Delta C)\right)=0 \\
& \quad \text { for } i=1, \ldots, d .
\end{aligned}
$$

Idea of the method

Consider $[\Delta A, \Delta B, \Delta C]=\varepsilon[\Delta, \Theta, \Gamma]$ of norm ε. Define the functional

$$
G_{\varepsilon}(\Delta, \Theta, \Gamma):=\frac{1}{2} \sum_{i=1}^{d} \sigma_{i}^{2}(\Delta, \Theta, \Gamma)
$$

where $\sigma_{i}(\Delta, \Theta, \Gamma)$ is the smallest singular value of the matrix $\mu_{i}^{2}(A+\varepsilon \Delta)+\mu_{i}(B+\varepsilon \Theta)+(C+\varepsilon \Gamma)$.

- Compute $G(\varepsilon)=\min _{\Delta, \Theta, \Gamma} G_{\varepsilon}(\Delta, \Theta, \Gamma)$.
- Compute $\varepsilon^{\star}=\min \left\{\varepsilon \in \mathbb{R}^{+}: G(\varepsilon)=0\right\}$.

Idea of the method

Idea of the method

- Fix the norm ε and solve $G(\varepsilon)=\min _{\Delta, \Theta, \Gamma} G_{\varepsilon}(\Delta, \Theta, \Gamma)$;
- Tune the value of ε in order to find the smallest zero of $G(\varepsilon)$.

Idea of the method

- Fix the norm ε and solve $G(\varepsilon)=\min _{\Delta, \Theta, \Gamma} G_{\varepsilon}(\Delta, \Theta, \Gamma)$; \longrightarrow Inner iteration
- Tune the value of ε in order to find the smallest zero of $G(\varepsilon) . \longrightarrow$ Outer iteration

Inner iteration

Lemma: Let $\Delta(t), \Theta(t), \Gamma(t) \in \mathbb{C}^{n \times n}$ be a smooth path of matrices, with derivatives $\dot{\Delta}(t), \dot{\Theta}(t), \dot{\Gamma}(t)$. Then
$G_{\varepsilon}(\Delta(t), \Theta(t), \Gamma(t))$ is differentiable with

$$
\frac{d}{d t} G_{\varepsilon}(\Delta, \Theta, \Gamma)=\varepsilon \operatorname{Re}\left\langle\left[M_{2}, M_{1}, M_{0}\right],[\dot{\Delta}, \dot{\Theta}, \dot{\Gamma}]\right\rangle
$$

where $\langle X, Y\rangle=\operatorname{trace}\left(X^{H} Y\right)$ and

$$
M_{2}=\sum_{i=1}^{d} \sigma_{i} \bar{\mu}_{i}^{2} u_{i} v_{i}^{H}, M_{1}=\sum_{i=1}^{d} \sigma_{i} \bar{\mu}_{i} u_{i} v_{i}^{H}, M_{0}=\sum_{i=1}^{d} \sigma_{i} u_{i} v_{i}^{H}
$$

with u_{i}, v_{i} left and right singular vectors associated with σ_{i}.

Inner iteration

Along the solutions of the system of ODEs

$$
\left\{\begin{array}{l}
\dot{\Delta}=-M_{2}+\eta \Delta \\
\dot{\Theta}=-M_{1}+\eta \Theta \\
\dot{\Gamma}=-M_{0}+\eta \Gamma
\end{array}\right.
$$

where $\eta:=\operatorname{Re}\left\langle\left[M_{2}, M_{1}, M_{0}\right],[\Delta, \Theta, \Gamma]\right\rangle$, we have that:

1. $\|[\Delta(t), \Theta(t), \Gamma(t)]\|_{F}=1$ is conserved;
2. $\frac{d}{d t} G_{\varepsilon}(\Delta(t), \Theta(t), \Gamma(t)) \leq 0$.

This is a constrained gradient system.

Our goal

Computing the stationary points of the gradient system.

Outer iteration

Outer iteration: update the parameter ε up to the smallest root ε^{\star} of $G(\varepsilon)=0$.

Newton-like method

We approach the root ε^{\star} from the left-hand side using

$$
\varepsilon_{k+1}=\varepsilon_{k}-\frac{G\left(\varepsilon_{k}\right)}{G^{\prime}\left(\varepsilon_{k}\right)}
$$

where $G^{\prime}(\varepsilon)=\frac{d}{d \varepsilon} G(\varepsilon)=-\left\|\left[M_{2}(\varepsilon), M_{1}(\varepsilon), M_{0}(\varepsilon)\right]\right\|_{F}$.

Example

Consider

$$
P(\lambda)=\lambda^{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\lambda\left[\begin{array}{cc}
0 & 1 \\
0.5 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Example

Consider

$$
P(\lambda)=\lambda^{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\lambda\left[\begin{array}{cc}
0 & 1 \\
0.5 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

The computed distance to singularity is $d \approx 0.2794$ and the nearest singular polynomial is
$\widetilde{P}(\lambda)=\lambda^{2}\left[\begin{array}{cc}0.8645 & 0 \\ 0 & 0\end{array}\right]+\lambda\left[\begin{array}{cc}0 & 1.1058 \\ 0.6736 & 0\end{array}\right]+\left[\begin{array}{cc}0 & 0 \\ 0 & 0.8645\end{array}\right]$.

Palindromic quadratic matrix polynomials

A palindromic quadratic matrix polynomials is a polynomial in the form

$$
P(\lambda):=\lambda^{2} A+\lambda B+A^{H}
$$

where $B=B^{H}$ and $A, B \in \mathbb{C}^{n \times n}$.
We allow perturbations which respect the structure

$$
\lambda^{2}(A+\varepsilon \Delta)+\lambda(B+\varepsilon \Theta)+(A+\varepsilon \Delta)^{H}, \quad \Delta, \Theta \in \mathbb{C}^{n \times n}
$$

Given a regular quadratic matrix polynomial $\lambda^{2} A+\lambda B+C$, we look for:

$$
\begin{aligned}
& d_{P}(A, B, C)=\min \left\{\|[\Delta A, \Delta B, \Delta C]\|_{F}: \lambda^{2}(A+\Delta A)+\right. \\
& +\lambda(B+\Delta B)+(C+\Delta C) \text { singular and palindromic }\} .
\end{aligned}
$$

Palindromic quadratic matrix polynomials

Projection onto the manifold w.r.t. Frobenius inner product
$\Pi_{\mathcal{M}}: \mathbb{C}^{n \times 3 n} \longmapsto \mathcal{M}:=\left\{[\Delta, \Theta, \Gamma] \in \mathbb{C}^{n \times 3 n}: \Theta=\Theta^{H}, \Gamma=\Delta^{H}\right\}$

$$
[\Delta, \Theta, \Gamma] \longmapsto\left[\frac{\Delta+\Gamma^{H}}{2}, \frac{\Theta+\Theta^{H}}{2}, \frac{\Delta^{H}+\Gamma}{2}\right] .
$$

The system of ODEs becomes

$$
\left\{\begin{array}{l}
\dot{\Delta}=-\frac{M_{2}+M_{0}^{H}}{2}+\eta \Delta, \\
\dot{\Theta}=-\frac{M_{1}+M_{1}^{H}}{2}+\eta \Theta,
\end{array}\right.
$$

where $\eta=\operatorname{Re}\left\langle\left[\frac{M_{2}+M_{0}^{H}}{2}, \frac{M_{1}+M_{1}^{H}}{2}\right],[\Delta, \Theta]\right\rangle$.

Example

Consider the palindromic polynomial

$$
P(\lambda)=\lambda^{2}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+\lambda\left[\begin{array}{cc}
-1 & -1.5 \\
-1.5 & -1
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

The nearest palindromic singular polynomial is
$\lambda^{2}\left[\begin{array}{ll}0.2335 & 0.1866 \\ 0.2807 & 0.2335\end{array}\right]+\lambda\left[\begin{array}{ll}-1.3095 & -1.3077 \\ -1.3077 & -1.3095\end{array}\right]+\left[\begin{array}{ll}0.2335 & 0.2807 \\ 0.1866 & 0.2335\end{array}\right]$.

Open issues and future work

- Choice of the set of complex points μ_{i} :
- Number of points $d \geq 2 n+1$;
- Optimal choice of μ_{i};
- Influence on the numerical results;
- Adding a set of test points $\widetilde{\mu}_{i}$.
- Efficient integration of the gradient system;
- Different additional structures on the matrix polynomials;
- Computational challenges of matrix polynomials of higher degree.

Numerical experiments

$$
P(\lambda)=\lambda^{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\lambda\left[\begin{array}{cc}
0 & 1 \\
0.5 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

Figure 1: $\left|\varepsilon_{\text {up }}-\varepsilon_{\text {low }}\right|$

Figure 2: $G(\varepsilon)$

Iterations $=12 ; \mathrm{Tol}=5 \times 10^{-6} ; d=2 n+1=5$.

Numerical experiments

$$
P(\lambda)=\lambda^{2}\left[\begin{array}{cc}
0 & 0 \\
0 & -2
\end{array}\right]+\lambda\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
-2 & 0 \\
-3 & 1
\end{array}\right] .
$$

Figure 3: $\left|\varepsilon_{\text {up }}-\varepsilon_{\text {low }}\right|$

Figure 4: $G(\varepsilon)$

Iterations $=13 ;$ Tol $=5 \times 10^{-6} ; d=2 n+1=5$.

Numerical experiments $n=2$ randn

Figure 5: $G(\varepsilon)$
Three choices of $d: d=5$ (blue), $d=10$ (red) and $d=3 n=6$ (green). Always 13 iterations.

Numerical experiments $n=5$ randn

Figure 6: $\left|\varepsilon_{\text {up }}-\varepsilon_{\text {low }}\right|, d=11$

Figure 7: $G(\varepsilon)$

Iterations $=13 ; \mathrm{Tol}=d \times 10^{-6} ; d=11$ (blue), $d=15$ (red) and $d=20$ (green).

Numerical experiments $n=10$ real

Figure 8: $\left|\varepsilon_{\text {up }}-\varepsilon_{\text {low }}\right|$

Figure 9: $G(\varepsilon)$

Tol $=d \times 10^{-6} ; d=21$ (blue), $d=30$ (red) and $d=40$ (green).

Numerical experiments $n=10$ real

Figure 10: $\left|\varepsilon_{\text {up }}-\varepsilon_{\text {low }}\right|$

Figure 11: $G(\varepsilon)$

Tol $=d \times 10^{-6}, d=21$, Points on unit disk and Chebyshev.

Numerical experiments $n=10$ complex

Figure 12: $\left|\varepsilon_{\text {up }}-\varepsilon_{\text {low }}\right|$

Figure 13: $G(\varepsilon)$

Tol $=d \times 10^{-6}, d=21$, Points on unit disk and Chebyshev.

