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Motivation

AMG is a very popular solution algorithm which is used in several applications:

it is very flexible as it only requires little information beyond the matrix itself;

it can be parallelized up to millions of cores;

as preconditioner for a Krylov method often guarantees performance independent
of the grid size;

AMG works almost perfectly for Poisson problems, however, it is less effective in more
difficult problems such as those arising in structural mechanics:

classical or extended interpolation usually give poor results;

aggregation-based AMG is generally preferred over Classical AMG;

the near kernel space is larger than the standard constant vector (which is fine for
Poisson);
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Motivation

In the context of structural problems (or other difficult problems):

more powerful smoothers than Jacobi or Gauss-Seidel are needed;

the near kernel is constructed starting from the Rigid Body Modes (RBM);

it is often necessary to improve the near kernel through smoothing or an
eigensolution;

prolongation is constructed through a least square fit of the test space;

Main issues:

coarse basis functions with local support are not orthogonal to high frequency
modes;

the prolongation has to be smoothed to allow for fast convergence (helpful in
calssical AMG as well);

smoothed prolongation however leads to high complexities;
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Energy minimization in prolongation set-up

The main idea is, for a given prolongation pattern P, to compute:

P = argmin
P∈P

(
tr(PT AP)

)
or, equivalently, to minimize the energy of every prolongation column:

pTi Api → min ∀i ∈ C

We consider a Classical AMG framework, so that:

A =
[
Af f Af c

AT
f c Acc

]
P =

[
W
I

]
R =

[
0 I

]
S =

[
I
0

]
1 Olson, L. N., Schroder, J. B. & Tuminaro, R. S., A General Interpolation Strategy for Algebraic Multigrid

Using Energy Minimization, SIAM Journal on Scientific Computing 33, pp. 966–991 (2011).

2 Manteuffel, T. A., Olson, L. N., Schroder, J. B. & Southworth, B. S., A Root-Node-Based Algebraic
Multigrid Method, SIAM Journal on Scientific Computing 39, S723–S756 (2017).
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Why Energy minimization is important

Suppose we have a C/F partition of the unknowns and an SPD X matrix which is
spectrally equivalent to the symmetrized smoother M̃ = MT (M + MT − A)−1M.

Defining As = ST AS and Xs = ST XS and:

kS ≤ λmin(X−1S AS) ≤ λmax(X−1S AS) ≤ c2

then, if ‖PR‖A is bounded:

KTG ≤
c2
kS
‖PR‖2A where KTG is such that‖ETG ‖A ≤ 1 −

1

KTG

In practice, the smaller ‖PR‖A, the faster convergence!

Falgout R.D. and Vassilevski P. S., On Generalizing the Algebraic Multigrid Framework, SIAM Journal on

Numerical Analysis 42, pp. 1669–1693 (2004).
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Energy minimization

The minimum in energy can be simply found by deriving with respect to W and setting
to zero:

∂

∂W

(
tr(PT AP)

)
= 0⇒ Af fW = −Af c

which is exactly what is defined ideal prolongation Wid = −A−1f f Af c.

Note that it is also the target that is sought with a 2x2 block FSAI approximation:

A =
[
A11 A12

AT
12 A22

]
, G =

[
I 0
F I

]
, GAGT ' I ⇒ F = −A11A12

Janna, C., Ferronato, M. & Gambolati, G., A Block FSAI-ILU Parallel Preconditioner for Symmetric Positive

Definite Linear Systems, SIAM Journal on Scientific Computing 32, pp. 2468–2484 (2010).
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Adding constraints to energy minimization

First of all, a dense prolongation is impractical, so we enforce a given non-zero pattern.
We consider the pattern P0 of a tentative prolongation P0, and we extend it using the
strength of connection matrix S:

P = SkP0

for a small power k.

Then we minimize the energy of every column of P restricted to the non-zero pattern
P by solving the following sequence of nc dense linear systems:

A(Ii,Ii)p̃i = −A(Ii, i) ∀i ∈ C

with Ii the set of indices of the non-zeroes in the i-th column of P.
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Adding constraints to energy minimization

Another important condition to satisfy is to ensure that the prolongation is able to
accurately prepresent some prototypes of the near kernel of A. By denoting with V the
matrix collecting these prototypes, this condition reads:

V ⊆ range(P), with V =
[
Vf

Vc

]
This condition becomes:

W Vc = Vf ⇒ Vc(Ji, :)
T w̃i = vi ∀i ∈ F

where Ji is the set of column indices of the prescribed nonzeros of the i-th row of W .
Note that this is another sequence of n f small and dense, generally underdetermined,
linear systems.
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The constrained minimization problem

By collecting all the non-zero entries of W into the vector w and using Lagrange
multipliers, the problem can be stated as the solution of the following saddle-point
system: [

K B
BT 0

] [
w

λ

]
=

[
f
g

]
Observations:

The size of K is typically much larger than the size of A (about 20 times larger in
3D mechanics);

With a proper unknown ordering both K and B are block diagonal matrices;

If w is numbered following the columns of P then K is block diagonal;

If w is numbered following the rows of P then B is block diagonal;

Unfortunately, they cannot be block diagonal at the same time;
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The solution algorithm

As in the original paper, we solve the minimization problem through a restricted
conjugate gradient, which is a nullspace method.
Define the projection orthogonal to B, ΠB = I − B(BT B)−1BT , so that:

BT y = 0 ∀y = ΠBv

Then, starting from a tentative prolongation W0 already satisfying the constraint,
BTw0 = g, we apply the conjugate gradient method to the system:

ΠBKΠB∆w = ΠB( f − Kw0)

to find a correction ∆W to be applied to W0:

W = W0 + ∆W
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The solution algorithm

During CG iteration, it is possible to monitor the decrease in energy and stop when a
plateu is reached.

Some issues related to the proposed solution methd:

The energy minimization is just a piece of the AMG set-up, so we cannot spend
to much effort in it ⇒ it must converge quickly!

Memory occupation is a big issue. K and B require a significant amount of
memory and sometimes it is unavoidable to proceed in matrix-free mode;

Preconditioning is crucial:

projected Jacobi, ΠBDKΠB, is enough for many problems;
incomplete Cholesky with very low fill-in converges faster but it is more difficult to
apply, if K cannot be stored;
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Numerical results

Linear elasticity Benchmark:
Regular discretization of an elastic cube
with tetrahedral FE.

Matrix # of rows # of non-zeroes
C 4820 14,460 556,686
C 35199 105,597 4,079,357
C 246389 739,167 29,610,351
C 1772489 5,317,443 222,268,213

We compare the following prolongation
strategies:

EXTI Extended+i (hypre);

BAMG least squares fit;

SBAMG BAMG + smoothing;

EMIN energy minimization;
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Numerical results

Matrix P-type Cgd/Cop nit

C 4820

EXTI 1.062/1.200 91
BAMG 1.062/1.162 25

SBAMG 1.062/1.404 17
EMIN 1.062/1.383 12

C 35199

EXTI 1.068/1.254 209
BAMG 1.067/1.211 65

SBAMG 1.066/1.576 33
EMIN 1.066/1.540 15

C 246389

EXTI 1.066/1.214 510
BAMG 1.064/1.196 146

SBAMG 1.064/1.608 55
EMIN 1.064/1.517 22

C 1772481

EXTI 1.064/1.188 1286
BAMG 1.062/1.189 270

SBAMG 1.062/1.590 78
EMIN 1.062/1.460 33 Figure: # of PCG iterations vs. grid size
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Numerical results

Figure: Relative residual, rk
r0

, vs. iteration count, k
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Numerical results

Matrix # of rows # of non-zeroes
Pflow 742k 742,793 37,138,461
Gear 167k 167,460 9,861,437
S4A 700k 631,007 26,148,363
Mech 447k 447,703 18,243,793

Figure: # of PCG iterations. Figure: Total solution time [s].
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Conclusions

Energy minimizing prolongation is a well-known concept in AMG, which, however
has little application due to its cost and its difficult implementation;
Our main contribution was to make energy minimization feasible by means of
preconditioning and an effective implementation;
Our algorithm has proved very effective on linear systems arising from mechanical
problems and also in challenging problems arising from different applications.
Though requiring a slightly more expensive set-up, this additional cost is largerly
offset by a fast convergence.

Further work:

Further improve preconditioning of restricted CG;
Include energy minimization in the HPC AMG solver Chronos.

G. Isotton, M. Frigo, N. Spiezia and C. Janna, Chronos: A general purpose classical AMG solver for high

performance computing, SIAM Journal on Scientific Computing 43, C335-C357, 2021.

17 of 18



Thanks for your attention.

Questions?
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