Pseudospectral roaming contour integral methods for convection-diffusion equations

Mattia Manucci
mattia.manucci@gssi.it

Gran Sasso Science Institute
2gglan 14th February, 2022.

With Nicola Guglielmi, Giancarlo Nino (GSSI L'Aquila), María López-Fernández (U. Málaga)

Problem formulation

$$
\frac{\partial u}{\partial t}(x, t)=\mathcal{A}(x)[u(x, t)]+f(x, t)
$$

Discretization in Space:

$$
\begin{equation*}
u^{\prime}(t)=A u(t)+b(t), \quad u(0)=u_{0} \tag{1}
\end{equation*}
$$

How do we solve (1) when we are only interested in the solution at a given time t?
Time-Steps methods \longrightarrow expensive for high accuracy (small Δt) and/ or large t.

- Alternative approach: solve with Laplace transform

$$
\mathcal{L}\left[u^{\prime}(t)\right]=z \hat{u}-u_{0}=A \hat{u}+\hat{b}(z) \longrightarrow \hat{u}(z)=(z I-A)^{-1}\left(u_{0}+\hat{b}(z)\right)
$$

Go back to time domain by Inverse Laplace transform:

$$
\begin{equation*}
u(t)=\frac{1}{2 \pi i} \iint_{\Gamma}^{z t} \hat{u}(z) d z \tag{2}
\end{equation*}
$$

Problem formulation

$$
\frac{\partial u}{\partial t}(x, t)=\mathcal{A}(x)[u(x, t)]+f(x, t)
$$

Discretization in Space:

$$
\begin{equation*}
u^{\prime}(t)=A u(t)+b(t), \quad u(0)=u_{0} \tag{1}
\end{equation*}
$$

-How do we solve (1) when we are only interested in the solution at a given time t ?
Time-Steps methods \longrightarrow expensive for high accuracy (small Δt) and/or large t.

- Alternative approach: solve with Laplace transform

$$
\mathcal{L}\left[u^{\prime}(t)\right]=z \hat{u}-u_{0}=A \hat{u}+\hat{b}(z) \longrightarrow \hat{u}(z)=(z I-A)^{-1}\left(u_{0}+\hat{b}(z)\right)
$$

Go back to time domain by Inverse Laplace transform:

$$
\begin{equation*}
u(t)=\frac{1}{2 \pi \mathrm{i}} \int \mathrm{e}^{z t} \hat{u}(z) d z \tag{2}
\end{equation*}
$$

Problem formulation

$$
\frac{\partial u}{\partial t}(x, t)=\mathcal{A}(x)[u(x, t)]+f(x, t)
$$

Discretization in Space:

$$
\begin{equation*}
u^{\prime}(t)=A u(t)+b(t), \quad u(0)=u_{0} \tag{1}
\end{equation*}
$$

- How do we solve (1) when we are only interested in the solution at a given time t ?
large t.
- Alternative approach: solve with Laplace transform

$$
\mathcal{L}\left[u^{\prime}(t)\right]=z \hat{u}-u_{0}=A \hat{u}+\hat{b}(z) \longrightarrow \hat{u}(z)=(z \mathrm{I}-A)^{-1}\left(u_{0}+\hat{b}(z)\right)
$$

Go back to time domain by Inverse Laplace transform:

$$
u(t)=\frac{1}{2 \pi i} \int e^{z t} \hat{u}(z) d z
$$

Problem formulation

$$
\frac{\partial u}{\partial t}(x, t)=\mathcal{A}(x)[u(x, t)]+f(x, t)
$$

Discretization in Space:

$$
\begin{equation*}
u^{\prime}(t)=A u(t)+b(t), \quad u(0)=u_{0} \tag{1}
\end{equation*}
$$

- How do we solve (1) when we are only interested in the solution at a given time t ?
Time-Steps methods \longrightarrow expensive for high accuracy (small Δt) and/or large t.
- Alternative approach: solve with Laplace transform $\mathcal{L}\left[u^{\prime}(t)\right]=z \hat{u}-u_{0}=A \hat{u}+\hat{b}(z) \longrightarrow \hat{u}(z)=(z \mathrm{I}-A)^{-1}\left(u_{0}+\hat{b}(z)\right)$

Go back to time domain by Inverse I anlace transform: $u(t)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \mathrm{e}^{z t} \hat{u}(z) d z$

Problem formulation

$$
\frac{\partial u}{\partial t}(x, t)=\mathcal{A}(x)[u(x, t)]+f(x, t)
$$

Discretization in Space:

$$
\begin{equation*}
u^{\prime}(t)=A u(t)+b(t), \quad u(0)=u_{0} \tag{1}
\end{equation*}
$$

- How do we solve (1) when we are only interested in the solution at a given time t ?
Time-Steps methods \longrightarrow expensive for high accuracy (small Δt) and/or large t.
- Alternative approach: solve with Laplace transform

$$
\mathcal{L}\left[u^{\prime}(t)\right]=z \hat{u}-u_{0}=A \hat{u}+\hat{b}(z) \longrightarrow \hat{u}(z)=(z \mathrm{I}-A)^{-1}\left(u_{0}+\hat{b}(z)\right)
$$

Go back to time domain by Inverse Laplace transfo

$$
u(t)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \mathrm{e}^{z t} \hat{u}(z) d z
$$

Problem formulation

$$
\frac{\partial u}{\partial t}(x, t)=\mathcal{A}(x)[u(x, t)]+f(x, t)
$$

Discretization in Space:

$$
\begin{equation*}
u^{\prime}(t)=A u(t)+b(t), \quad u(0)=u_{0} \tag{1}
\end{equation*}
$$

- How do we solve (1) when we are only interested in the solution at a given time t ?
Time-Steps methods \longrightarrow expensive for high accuracy (small Δt) and/or large t.
- Alternative approach: solve with Laplace transform

$$
\mathcal{L}\left[u^{\prime}(t)\right]=z \hat{u}-u_{0}=A \hat{u}+\hat{b}(z) \longrightarrow \hat{u}(z)=(z \mathrm{I}-A)^{-1}\left(u_{0}+\hat{b}(z)\right)
$$

Go back to time domain by Inverse Laplace transform:

$$
\begin{equation*}
u(t)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \mathrm{e}^{z t} \hat{u}(z) d z \tag{2}
\end{equation*}
$$

The integration contour

We need to identify an opportune contour Γ and then to construct a map $z: \mathbb{R} \longrightarrow \Gamma$ such as:

- Elliptic: [N. Guglielmi, M. López-Fernández, G. Nino]

$\ell_{1,2}(x)$
upper and lower half-lines

[N. Guglielmi, M. López-Fernández, M. M.]

$$
z(x)=-x^{2}-2 i x a_{1}+a_{2},
$$

[N. Guglielmi, M. López-Fernández, M. M.] $z(x)=a_{3}-a_{2} \sin \left(a_{1}\right) \cosh x-i a_{2} \cos \left(a_{1}\right) \sinh x$.

The integration contour

We need to identify an opportune contour Γ and then to construct a map $z: \mathbb{R} \longrightarrow \Gamma$ such as:

- Elliptic: [N. Guglielmi, M. López-Fernández, G. Nino]

$$
z(x)=\left\{\begin{array}{lr}
\ell_{1}(x), & x \in\left[-\infty,-\frac{\pi}{2}\right] \\
\left(a_{1}+a_{2}\right) \cos x+i\left(a_{2}-a_{1}\right) \sin x+a_{3}, & x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
\ell_{2}(x), & x \in\left[\frac{\pi}{2},+\infty\right]
\end{array}\right.
$$

$\ell_{1,2}(x) \quad$ upper and lower half-lines
[N. Guglielmi, M. López-Fernández, M. M.]

The integration contour

We need to identify an opportune contour Γ and then to construct a map $z: \mathbb{R} \longrightarrow \Gamma$ such as:

- Elliptic: [N. Guglielmi, M. López-Fernández, G. Nino]

$$
z(x)=\left\{\begin{array}{lr}
\ell_{1}(x), & x \in\left[-\infty,-\frac{\pi}{2}\right] \\
\left(a_{1}+a_{2}\right) \cos x+i\left(a_{2}-a_{1}\right) \sin x+a_{3}, & x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
\ell_{2}(x), & x \in\left[\frac{\pi}{2},+\infty\right]
\end{array}\right.
$$

$\ell_{1,2}(x) \quad$ upper and lower half-lines

- Parabolic: [N. Guglielmi, M. López-Fernández, M. M.]

$$
z(x)=-x^{2}-2 \mathrm{i} x a_{1}+a_{2},
$$

- Hyperbolic: [N. Guglielmi, M. López-Fernández, M. M.]

The integration contour

We need to identify an opportune contour Γ and then to construct a map $z: \mathbb{R} \longrightarrow \Gamma$ such as:

- Elliptic: [N. Guglielmi, M. López-Fernández, G. Nino]

$$
z(x)=\left\{\begin{array}{lr}
\ell_{1}(x), & x \in\left[-\infty,-\frac{\pi}{2}\right] \\
\left(a_{1}+a_{2}\right) \cos x+i\left(a_{2}-a_{1}\right) \sin x+a_{3}, & x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
\ell_{2}(x), & x \in\left[\frac{\pi}{2},+\infty\right]
\end{array}\right.
$$

$\ell_{1,2}(x) \quad$ upper and lower half-lines

- Parabolic: [N. Guglielmi, M. López-Fernández, M. M.]

$$
z(x)=-x^{2}-2 \mathrm{i} x a_{1}+a_{2},
$$

- Hyperbolic: [N. Guglielmi, M. López-Fernández, M. M.]

$$
z(x)=a_{3}-a_{2} \sin \left(a_{1}\right) \cosh x-\mathrm{i} a_{2} \cos \left(a_{1}\right) \sinh x .
$$

Trapezoidal rule for analytic functions

After parametrization, contour integration gives

$$
u(t)=I \approx \frac{1}{2 \pi \mathrm{i}} \int_{-c \pi}^{c \pi} F(z(x)) d x, \quad 0<c<c_{\max }
$$

with $F(z(x))=\mathrm{e}^{z(x) t} \hat{u}(z(x)) z^{\prime}(x)$.

quadrature err.

Note: each quadrature node $z\left(x_{j}\right)$ corresponds to the solution of the linear system

Trapezoidal rule for analytic functions

After parametrization, contour integration gives

$$
u(t)=I \approx \frac{1}{2 \pi \mathrm{i}} \int_{-c \pi}^{c \pi} F(z(x)) d x, \quad 0<c<c_{\max }
$$

with $F(z(x))=\mathrm{e}^{z(x) t} \hat{u}(z(x)) z^{\prime}(x)$.
Integral approximation:

$$
I_{N}=\frac{c}{\mathrm{i} N} \sum_{j=1}^{N-1} F\left(z\left(x_{j}\right)\right) \quad \text { with } \quad x_{j}=-c \pi+j \frac{2 c \pi}{N}, \quad j=1, \ldots, N-1 .
$$

Trapezoidal rule for analytic functions

After parametrization, contour integration gives

$$
u(t)=I \approx \frac{1}{2 \pi \mathrm{i}} \int_{-c \pi}^{c \pi} F(z(x)) d x, \quad 0<c<c_{\max }
$$

with $F(z(x))=\mathrm{e}^{z(x) t} \hat{u}(z(x)) z^{\prime}(x)$.
Integral approximation:

$$
I_{N}=\frac{c}{\mathrm{i} N} \sum_{j=1}^{N-1} F\left(z\left(x_{j}\right)\right) \quad \text { with } \quad x_{j}=-c \pi+j \frac{2 c \pi}{N}, \quad j=1, \ldots, N-1
$$

Error:

$$
\left\|u(t)-I_{N}\right\| \lesssim \underbrace{\frac{P}{e^{\frac{a}{c} N}-1}}_{\text {quadrature err. }}+\underbrace{M c t o l}_{\text {truncation err. }}+\underbrace{\max _{j} \delta F\left(x_{j}\right)}_{\text {noise err. }}
$$

Trapezoidal rule for analytic functions

After parametrization, contour integration gives

$$
u(t)=I \approx \frac{1}{2 \pi \mathrm{i}} \int_{-c \pi}^{c \pi} F(z(x)) d x, \quad 0<c<c_{\max }
$$

with $F(z(x))=\mathrm{e}^{z(x) t} \hat{u}(z(x)) z^{\prime}(x)$.
Integral approximation:

$$
I_{N}=\frac{c}{\mathrm{i} N} \sum_{j=1}^{N-1} F\left(z\left(x_{j}\right)\right) \quad \text { with } \quad x_{j}=-c \pi+j \frac{2 c \pi}{N}, \quad j=1, \ldots, N-1
$$

Error:

$$
\left\|u(t)-I_{N}\right\| \lesssim \underbrace{\frac{P}{e^{\frac{a}{c} N}-1}}_{\text {quadrature err. }}+\underbrace{M c t o l}_{\text {truncation err. }}+\underbrace{\max _{j} \delta F\left(x_{j}\right)}_{\text {noise err. }} .
$$

Note: each quadrature node $z\left(x_{j}\right)$ corresponds to the solution of the linear $\operatorname{system}\left(z\left(x_{j}\right) I-A\right) \hat{u}=u_{0}+\hat{b}\left(z\left(x_{j}\right)\right)$.

The three integration contours

Three ellipses:

$\Gamma_{\text {right }} \rightarrow$ bound on $D=\left|\mathrm{e}^{z t}\right|, \quad \Gamma_{\text {left }} \rightarrow$ bound on $\mathrm{e}^{\mathrm{Re}(z) t}\left\|(z \mathrm{I}-A)^{-1}\right\|$
$\Gamma \rightarrow$ Integration profile

The weighted ϵ-Pseudospectrum

The ε-pseudospectrum is the set defined as:

$$
\sigma_{\varepsilon}(A):=\left\{z \in \mathbb{C}:\left\|(z \mathrm{I}-A)^{-1}\right\|>\frac{1}{\varepsilon}\right\}
$$

We define the "weighted" ε-pseudospectrum as:

$$
\sigma_{\varepsilon, t}(A):=\left\{z \in \mathbb{C}: \mathrm{e}^{\operatorname{Re}(z) t}\left\|(z \mathrm{I}-A)^{-1}\right\|>\frac{1}{\varepsilon}\right\}
$$

The boundary of this set, denoted as $\partial \sigma_{\varepsilon, t}(A)$, is crucial in the construction of the integration contour.

Recall that $\left\|(z \mathrm{I}-A)^{-1}\right\|^{-1}=\sigma_{\min }(z \mathrm{I}-A), \sigma_{\text {min }}$ smallest singular value.

The weighted ϵ-Pseudospectrum

The ε-pseudospectrum is the set defined as:

$$
\sigma_{\varepsilon}(A):=\left\{z \in \mathbb{C}:\left\|(z \mathrm{I}-A)^{-1}\right\|>\frac{1}{\varepsilon}\right\}
$$

We define the "weighted" ε-pseudospectrum as:

$$
\sigma_{\varepsilon, t}(A):=\left\{z \in \mathbb{C}: \mathrm{e}^{\operatorname{Re}(z) t}\left\|(z \mathrm{I}-A)^{-1}\right\|>\frac{1}{\varepsilon}\right\}
$$

The boundary of this set, denoted as $\partial \sigma_{\varepsilon, t}(A)$, is crucial in the construction of the integration contour.

Recall that $\left\|(z \mathrm{I}-A)^{-1}\right\|^{-1}=\sigma_{\min }(z \mathrm{I}-A), \sigma_{\text {min }}$ smallest singular value.

Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:

- Eigtool (Wright, 2002) \rightarrow Too expensive;
- Contour tracing methods (Brühl, 1996) \rightarrow Problems with disconnected components;
- Approximation of pseudospectral abscissa (Guglielmi, Overton 2011, Kressner, Vandereycken 2014) \rightarrow difficulties with ill conditioned eigenvalues Problems with eigs (ARPACK)
A computationally cheaper strategy:

Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:

- Eigtool (Wright, 2002) \rightarrow Too expensive;
- Contour tracing methods (Brühl, 1996) \rightarrow Problems with disconnected components;
- Approximation of pseudospectral abscissa (Guglielmi, Overton 2011, Kressner, Vandereycken 2014) \rightarrow difficulties with ill conditioned eigenvalues Problems with eigs (ARPACK)

[^0]
Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:

- Eigtool (Wright, 2002) \rightarrow Too expensive;
- Contour tracing methods (Brühl, 1996) \rightarrow Problems with disconnected components;
- Approximation of pseudospectral abscissa (Guglielmi, Overton 2011, Kressner, Vandereycken 2014) \rightarrow difficulties with ill conditioned eigenvalues Problems with eigs (ARPACK)

[^1]
Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:

- Eigtool (Wright, 2002) \rightarrow Too expensive;
- Contour tracing methods (Brühl, 1996) \rightarrow Problems with disconnected components;
- Approximation of pseudospectral abscissa (Guglielmi, Overton 2011, Kressner, Vandereycken 2014) \rightarrow difficulties with ill conditioned eigenvalues Problems with eigs (ARPACK)

Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:

- Eigtool (Wright, 2002) \rightarrow Too expensive;
- Contour tracing methods (Brühl, 1996) \rightarrow Problems with disconnected components;
- Approximation of pseudospectral abscissa (Guglielmi, Overton 2011, Kressner, Vandereycken 2014) \rightarrow difficulties with ill conditioned eigenvalues Problems with eigs (ARPACK)

Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:

- Eigtool (Wright, 2002) \rightarrow Too expensive;
- Contour tracing methods (Brühl, 1996) \rightarrow Problems with disconnected components;
- Approximation of pseudospectral abscissa (Guglielmi, Overton 2011, Kressner, Vandereycken 2014)

Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:

- Eigtool (Wright, 2002) \rightarrow Too expensive;
- Contour tracing methods (Brühl, 1996) \rightarrow Problems with disconnected components;
- Approximation of pseudospectral abscissa (Guglielmi, Overton 2011, Kressner, Vandereycken 2014) \rightarrow difficulties with ill conditioned eigenvalues Problems with eigs (ARPACK)
A computationally cheaper strategy:

Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:

- Eigtool (Wright, 2002) \rightarrow Too expensive;
- Contour tracing methods (Brühl, 1996) \rightarrow Problems with disconnected components;
- Approximation of pseudospectral abscissa (Guglielmi, Overton 2011, Kressner, Vandereycken 2014) \rightarrow difficulties with ill conditioned eigenvalues Problems with eigs (ARPACK)
A computationally cheaper strategy:
- Section the complex plane with vertical lines;
- Search on each line with a fixed ϕ the highest intersection with $\sigma_{\varepsilon}(A)$

- Apply values (see for or instance K

Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:

- Eigtool (Wright, 2002) \rightarrow Too expensive;
- Contour tracing methods (Brühl, 1996) \rightarrow Problems with disconnected components;
- Approximation of pseudospectral abscissa (Guglielmi, Overton 2011, Kressner, Vandereycken 2014) \rightarrow difficulties with ill conditioned eigenvalues Problems with eigs (ARPACK)
A computationally cheaper strategy:
- Section the complex plane with vertical lines;
- Search on each line with a fixed ϕ the highest intersection with $\sigma_{\varepsilon}(A)$

$$
\begin{equation*}
\underbrace{\mathrm{e}^{-\phi t} \sigma_{\min }((\phi+\mathrm{i} \psi) \mathrm{I}-A)}_{\tilde{\sigma}}-\varepsilon \rightarrow 0 \tag{3}
\end{equation*}
$$

- Apply Newton's method exploiting a derivative formula for singular values (see for instance Kato, 1995) to find the zero of (3) moving

Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:

- Eigtool (Wright, 2002) \rightarrow Too expensive;
- Contour tracing methods (Brühl, 1996) \rightarrow Problems with disconnected components;
- Approximation of pseudospectral abscissa (Guglielmi, Overton 2011, Kressner, Vandereycken 2014) \rightarrow difficulties with ill conditioned eigenvalues Problems with eigs (ARPACK)
A computationally cheaper strategy:
- Section the complex plane with vertical lines;
- Search on each line with a fixed ϕ the highest intersection with $\sigma_{\varepsilon}(A)$

$$
\begin{equation*}
\underbrace{\mathrm{e}^{-\phi t} \sigma_{\min }((\phi+\mathrm{i} \psi) \mathrm{I}-A)}_{\tilde{\sigma}}-\varepsilon \rightarrow 0 \tag{3}
\end{equation*}
$$

- Apply Newton's method exploiting a derivative formula for singular values (see for instance Kato, 1995) to find the zero of (3) moving ψ.

Summary of the method

Advantages:

Summary of the method

- set initial data $\left(A, b, u_{0}\right)$. Fix $t, t o l$;
- compute 「 left (based on pseudospectral computation);- compute 「 (minimizing the number of quadrature nodes N to reach the target accuracy tol);
- compute the truncation parameter c;
- apply the quadrature formula.

Advantages:

- no a priori knowledge about the resolvent norm of A is needed;
- the profile of integration does not depend on N;
- the method is stable w.r.t. N;
- the method can be extended to time intervals $t \in\left[t_{0}, t_{1}\right]$;
- the main computational effort, i.e. the computation of the $\hat{u}\left(z_{j}\right)$, can be parallelized in a straightforward way;
- the method is designed to achieve a given target accuracy tol and check whether this is possible.

Summary of the method

- set initial data $\left(A, b, u_{0}\right)$. Fix $t, t o l$;
- compute $\Gamma_{\text {left }}$ (based on pseudospectral computation);
- compute 「 (minimizing the number of quadrature nodes N to reach the target accuracy tol);
- compute the truncation parameter c;
- apply the quadrature formula.

Advantages:

- no a priori knowledge about the resolvent norm of A is needed;
- the profile of integration does not depend on N;
- the method is stable w.r.t. N;
- the method can be extended to time intervals $t \in\left[t_{0}, t_{1}\right]$;
- the main computational effort, i.e. the computation of the $\hat{u}\left(z_{j}\right)$, can be parallelized in a straightforward way;
- the method is designed to achieve a given target accuracy tol and check whether this is possible.

Summary of the method

- set initial data $\left(A, b, u_{0}\right)$. Fix $t, t o l ;$
- compute $\Gamma_{\text {left }}$ (based on pseudospectral computation);
- compute Γ (minimizing the number of quadrature nodes N to reach the target accuracy tol);
- compute the truncation parameter c;
- apply the quadrature formula.

Advantages:

- no a priori knowledge about the resolvent norm of A is needed;
- the profile of integration does not depend on N;
- the method is stable w.r.t. N;
- the method can be extended to time intervals $t \in\left[t_{0}, t_{1}\right]$;
- the main computational effort, i.e. the computation of the $\hat{u}\left(z_{j}\right)$, can be parallelized in a straightforward way;
- the method is designed to achieve a given target accuracy tol and check whether this is possible.

Summary of the method

- set initial data $\left(A, b, u_{0}\right)$. Fix $t, t o l ;$
- compute $\Gamma_{\text {left }}$ (based on pseudospectral computation);
- compute Γ (minimizing the number of quadrature nodes N to reach the target accuracy tol);
- compute the truncation parameter c;
- apply the quadrature formula.

Advantages:

- no a priori knowledge about the resolvent norm of A is needed;
- the profile of integration does not depend on N
- the method is stable w.r.t. N;
- the method can be extended to time intervals $t \in\left[t_{0}, t_{1}\right]$;
- the main computational effort, i.e. the computation of the $\hat{u}\left(z_{j}\right)$, can be parallelized in a straightforward way;
- the method is designed to achieve a given target accuracy tol and check whether this is possible.

Summary of the method

- set initial data $\left(A, b, u_{0}\right)$. Fix t, tol;
- compute $\Gamma_{\text {left }}$ (based on pseudospectral computation);
- compute Γ (minimizing the number of quadrature nodes N to reach the target accuracy tol);
- compute the truncation parameter c;
- apply the quadrature formula.

Advantages:

- no a priori knowledge about the resolvent norm of A is needed;
- the profile of integration does not depend on N
- the method is stable w.r.t. N;
- the method can be extended to time intervals $t \in\left[t_{0}, t_{1}\right]$;
- the main computational effort, i.e. the computation of the $\hat{u}\left(z_{j}\right)$, can be parallelized in a straightforward way;
- the method is designed to achieve a given target accuracy tol and check whether this is possible.

Summary of the method

- set initial data $\left(A, b, u_{0}\right)$. Fix $t, t o l ;$
- compute $\Gamma_{\text {left }}$ (based on pseudospectral computation);
- compute Γ (minimizing the number of quadrature nodes N to reach the target accuracy tol);
- compute the truncation parameter c;
- apply the quadrature formula.

Advantages:

- no a priori knowledge about the resolvent norm of A is needed;
- the profile of integration does not depend on N;
- the method is stable w.r.t. N;
- the method can be extended to time intervals $t \in\left[t_{0}, t_{1}\right]$;
- the main computational effort, i.e. the computation of the $\hat{u}\left(z_{j}\right)$, can be parallelized in a straightforward way;
- the method is designed to achieve a given target accuracy tol and check whether this is possible.

Summary of the method

- set initial data $\left(A, b, u_{0}\right)$. Fix t, tol;
- compute $\Gamma_{\text {left }}$ (based on pseudospectral computation);
- compute Γ (minimizing the number of quadrature nodes N to reach the target accuracy tol);
- compute the truncation parameter c;
- apply the quadrature formula.

Advantages:

- no a priori knowledge about the resolvent norm of A is needed;
- the profile of integration does not depend on N;
- the method is stable w.r.t. N;
- the method can be extended to time intervals $t \in\left[t_{0}, t_{1}\right]$;
- the main computational effort, i.e. the computation of the $\hat{u}\left(z_{j}\right)$, can be parallelized in a straightforward way;
- the method is designed to achieve a given target accuracy tol and check whether this is possible.

Summary of the method

- set initial data $\left(A, b, u_{0}\right)$. Fix t, tol;
- compute $\Gamma_{\text {left }}$ (based on pseudospectral computation);
- compute Γ (minimizing the number of quadrature nodes N to reach the target accuracy tol);
- compute the truncation parameter c;
- apply the quadrature formula.

Advantages:

- no a priori knowledge about the resolvent norm of A is needed;
- the profile of integration does not depend on N;
- the method is stable w.r.t. N;
the method can be extended to time intervals $t \in\left[t_{0}, t_{1}\right]$;
the main computational effort, i.e. the computation of the $\hat{u}\left(z_{j}\right)$, can be parallelized in a straightforward way;
the method is designed to achieve a given target accuracy tol and check whether this is possible.

Summary of the method

- set initial data $\left(A, b, u_{0}\right)$. Fix t, tol;
- compute $\Gamma_{\text {left }}$ (based on pseudospectral computation);
- compute Γ (minimizing the number of quadrature nodes N to reach the target accuracy tol);
- compute the truncation parameter c;
- apply the quadrature formula.

Advantages:

- no a priori knowledge about the resolvent norm of A is needed;
- the profile of integration does not depend on N;
- the method is stable w.r.t. N;
- the method can be extended to time intervals $t \in\left[t_{0}, t_{1}\right]$;
- the main computational effort, i.e. the computation of the $\hat{u}\left(z_{j}\right)$, can be parallelized in a straightforward way;
the method is designed to achieve a given target accuracy tol and check whether this is possible.

Summary of the method

- set initial data $\left(A, b, u_{0}\right)$. Fix $t, t o l$;
- compute $\Gamma_{\text {left }}$ (based on pseudospectral computation);
- compute Γ (minimizing the number of quadrature nodes N to reach the target accuracy tol);
- compute the truncation parameter c;
- apply the quadrature formula.

Advantages:

- no a priori knowledge about the resolvent norm of A is needed;
- the profile of integration does not depend on N;
- the method is stable w.r.t. N;
- the method can be extended to time intervals $t \in\left[t_{0}, t_{1}\right]$;
- the main computational effort, i.e. the computation of the $\hat{u}\left(z_{j}\right)$, can be parallelized in a straightforward way;

Summary of the method

- set initial data $\left(A, b, u_{0}\right)$. Fix $t, t o l$;
- compute $\Gamma_{\text {left }}$ (based on pseudospectral computation);
- compute Γ (minimizing the number of quadrature nodes N to reach the target accuracy tol);
- compute the truncation parameter c;
- apply the quadrature formula.

Advantages:

- no a priori knowledge about the resolvent norm of A is needed;
- the profile of integration does not depend on N;
- the method is stable w.r.t. N;
- the method can be extended to time intervals $t \in\left[t_{0}, t_{1}\right]$;
- the main computational effort, i.e. the computation of the $\hat{u}\left(z_{j}\right)$, can be parallelized in a straightforward way;
- the method is designed to achieve a given target accuracy tol and check whether this is possible.

Black-Scholes equation

For $u=u(s, \tau)$,

$$
\frac{\partial u}{\partial \tau}=\frac{1}{2} \sigma^{2} s^{2} \frac{\partial^{2} u}{\partial s^{2}}+r s \frac{\partial u}{\partial s}-r u, \quad \tau \geq 0, L \leq s \leq S
$$

With initial and boundary conditions

$$
\begin{aligned}
u(s, 0) & =\max (0, s-K) \\
u(0, \tau) & =0, \quad \tau \geq 0 \\
u(S, \tau) & =S-e^{-r \tau} K, \quad \tau \geq 0
\end{aligned}
$$

Spatial discretization: centered finite differences

Comparison at $t=1$.

Heston equation

For $u=u(s, v, \tau)$,
$\frac{\partial u}{\partial \tau}=\frac{1}{2} s^{2} v \frac{\partial^{2} u}{\partial s^{2}}+\rho \sigma s v \frac{\partial^{2} u}{\partial s \partial v}+\frac{1}{2} \sigma^{2} v \frac{\partial^{2} u}{\partial v^{2}}+\left(r_{d}-r_{f}\right) s \frac{\partial u}{\partial s}+\kappa(\eta-v) \frac{\partial u}{\partial v}-r_{d} u$, for $\tau \geq 0, \quad 0 \leq s \leq S, \quad 0 \leq v \leq V$.

With initial and boundary conditions

$$
\begin{aligned}
u(s, 0) & =\max (0, s-K) & \\
u(0, v, \tau) & =0, \quad \frac{\partial u}{\partial s}(S, v, \tau)=1, & \tau \geq 0,0 \leq v \leq V \\
u(s, 0, \tau) & =0, \quad u(s, V, \tau)=s, & \tau \geq 0,0 \leq s \leq S .
\end{aligned}
$$

Spatial discretization: ADI difference scheme from in 'Hout \& Foulon 2010.

Results on time windows for Heston equation

Heston equation in time intervals $[0.1,1]$ (left) and $[5.5,10]$ (right), for $t o l=5 \cdot 10^{-4}$.

References

- N. Guglielmi, M. Lopéz-Fernández, M. Manucci, Pseudospectral roaming contour integral methods for convection-diffusion equations, Journal of Scientific Computing 89 (22), 2021.
- Manucci, M.: Accompanying codes published at GitHub (2020). https://github.com/MattiaManucci/Contour_Integral_Methods.git
- N. Guglielmi, M. Lopéz-Fernández, G. Nino, Numerical inverse Laplace transform for convection-diffusion equations in finance, Math. Comput., 2020.

Thanks for your attention!

Extension to time windows

$$
F\left(z\left(x_{j}\right)\right)=\mathrm{e}^{z\left(x_{j}\right) t} \hat{u}\left(z\left(x_{j}\right)\right) z^{\prime}\left(x_{j}\right)
$$

Note that:

- the main effort is due to the computation of

$$
\hat{u}\left(z\left(x_{j}\right)\right)=\left(z\left(x_{j}\right) I-A(\mu)\right)^{-1}\left(u_{0}+\hat{b}\left(z\left(x_{j}\right), \mu\right)\right) ;
$$

- the dependence on time is only in the scalar term $\mathrm{e}^{z\left(x_{j}\right) t}$.

Therefore: it is possible to construct a unique profile of integration for a time window
$\left[t_{0}, \wedge t_{0}\right], \Lambda>1$.
Once computed $\hat{u}(z(x))$ on the quadrature nodes the solution u can be quickly evaluated $\forall t \in\left[t_{0}, t_{1}\right]$.

Extension to time windows

$$
F\left(z\left(x_{j}\right)\right)=\mathrm{e}^{z\left(x_{j}\right) t} \hat{u}\left(z\left(x_{j}\right)\right) z^{\prime}\left(x_{j}\right)
$$

Note that:

- the main effort is due to the computation of

$$
\hat{u}\left(z\left(x_{j}\right)\right)=\left(z\left(x_{j}\right) I-A(\mu)\right)^{-1}\left(u_{0}+\hat{b}\left(z\left(x_{j}\right), \mu\right)\right) ;
$$

- the dependence on time is only in the scalar term $\mathrm{e}^{z\left(x_{j}\right) t}$.

Therefore: it is possible to construct a unique profile of integration for a time window

$$
\left[t_{0}, \Lambda t_{0}\right], \Lambda>1
$$

Once computed $\hat{u}(z(x))$ on the quadrature nodes the solution u can be quickly evaluated $\forall t \in\left[t_{0}, t_{1}\right]$.

Conformal mapping

$$
\frac{1}{2 \pi \mathrm{i}} \int_{-\pi / 2}^{\pi / 2} \mathrm{e}^{z(x) t}(z(x) \mathrm{I}-A)^{-1}\left(u_{0}+\hat{b}(z(x))\right) z^{\prime}(x) d x
$$

$$
z(x+\mathrm{i} y)=A_{1}(y) \cos x+\mathrm{i} A_{2}(y) \sin x+A_{3}(y)
$$

Conformal mapping

$$
\frac{1}{2 \pi \mathrm{i}} \int_{-\pi / 2}^{\pi / 2} \mathrm{e}^{z(x) t}(z(x) \mathrm{I}-A)^{-1}\left(u_{0}+\hat{b}(z(x))\right) z^{\prime}(x) d x
$$

$$
z(x+\mathrm{i} y)=A_{1}(y) \cos x+\mathrm{i} A_{2}(y) \sin x+A_{3}(y)
$$

Conformal mapping

$$
\frac{1}{2 \pi \mathrm{i}} \int_{-\pi / 2}^{\pi / 2} \mathrm{e}^{z(x) t}(z(x) \mathrm{I}-A)^{-1}\left(u_{0}+\hat{b}(z(x))\right) z^{\prime}(x) d x
$$

$$
z(x+\mathrm{i} y)=A_{1}(y) \cos x+\mathrm{i} A_{2}(y) \sin x+A_{3}(y)
$$

with suitable $A_{1}, A_{2}, A_{3} \in \mathbb{R}$ provides a parametrization of the ellipses.

Estimates of the resolvent of the BS operator

We generalize the analysis in Reddy \& Trefethen, 1994 for the canonical convection-diffusion equation and derive theoretical estimates for the resolvent of the BS operator.

Theoretical estimate of the resolvent norm (left) and computed resolvent norm (right). This also provides us a good guess for $\Gamma_{\text {left }}$.

A variational result for simple singular values

Lemma (Kato, 1995)

Let $D(t)$ be a differentiable matrix-valued function in a neighborhood of t_{0}. Let

$$
D(t)=U(t) \Sigma(t) V(t)^{*}=\sum_{i} u_{i}(t) \sigma_{i}(t) v_{i}(t)^{*}
$$

be a smooth (with respect to t) singular value decomposition of the matrix $D(t)$ and $\sigma(t)$ be a certain singular value of $D(t)$ converging to a simple singular value $\hat{\sigma}$ of $D_{0}=D\left(t_{0}\right)$.
If \hat{u}, \hat{v} are the associated left and right singular vectors, respectively, the function $\sigma(t)$ is differentiable near $t=t_{0}$ with

$$
\dot{\sigma}\left(t_{0}\right)=\Re\left(\hat{u}^{*} \dot{D}_{0} \hat{v}\right) \quad \text { with } \dot{D}_{0}=\dot{D}\left(t_{0}\right)
$$

Guglielmi, López-Fernández \& MM: construction of $\Gamma_{\text {left }}$ We fix:

- z^{R} intersection of $\Gamma_{\text {left }}$ with the real axis.
- z^{L} with $e^{z^{L} t}<e p s$, being eps the machine precision of the solver used.
- Choose a grid of M points z_{k}, with $k=1, \ldots, M, \operatorname{Im} z_{k}>0$,

$$
z^{R}>\operatorname{Re}_{\mathrm{z}}{ }_{1}>\operatorname{Re} z_{2}>\cdots>\operatorname{Re} z_{M}
$$

- A control point $d+\mathrm{ir}$ on $\Gamma_{\text {left }}$ with

$$
d=\frac{1}{M} \sum_{k=1}^{M} \operatorname{Re} z_{k} \quad \text { fixed }
$$

If any of the z_{k} lays in the wrong pseudospectral level set, we move the ordinate r of the control point by solving

$$
\tilde{\sigma}^{k}(d, r)-\epsilon=0, \quad \text { with respect to } r \text {, }
$$

Guglielmi, López-Fernández \& MM: construction of $\Gamma_{\text {left }}$ We fix:

- z^{R} intersection of $\Gamma_{\text {left }}$ with the real axis.
- z^{L} with $\mathrm{e}^{z^{L} t}<$ eps, being eps the machine precision of the solver used.
- Choose a grid of M points z_{k}, with $k=1, \ldots, M, \operatorname{Im} z_{k}>0$,

- A control point $d+$ ir on 「left with

$$
d=\frac{1}{M} \sum_{k=1}^{M} \operatorname{Re} z_{k} \quad \text { fixed. }
$$

If any of the z_{k} lays in the wrong pseudospectral level set, we move the ordinate r of the control point by solving

$$
\tilde{\sigma}^{k}(d, r)-\epsilon=0, \quad \text { with respect to } r
$$

\square

Guglielmi, López-Fernández \& MM: construction of $\Gamma_{\text {left }}$

 We fix:- z^{R} intersection of $\Gamma_{l e f t}$ with the real axis.
- z^{L} with $\mathrm{e}^{z^{L} t}<$ eps, being eps the machine precision of the solver used.
- Choose a grid of M points z_{k}, with $k=1, \ldots, M, \operatorname{Im} z_{k}>0$,

$$
z^{R}>\operatorname{Re} z_{1}>\operatorname{Re} z_{2}>\cdots>\operatorname{Re} z_{M} .
$$

- A control point $d+\mathrm{ir}$ on $\Gamma_{\text {left }}$ with

If any of the z_{k} lays in the wrong pseudospectral level set, we move the ordinate r of the control point by solving

$$
\tilde{\sigma}^{k}(d, r)-\epsilon=0, \quad \text { with respect to } r,
$$

Guglielmi, López-Fernández \& MM: construction of $\Gamma_{\text {left }}$

 We fix:- z^{R} intersection of $\Gamma_{l e f t}$ with the real axis.
- z^{L} with $\mathrm{e}^{z^{L} t}<$ eps, being eps the machine precision of the solver used.
- Choose a grid of M points z_{k}, with $k=1, \ldots, M, \operatorname{Im} z_{k}>0$,

$$
z^{R}>\operatorname{Re} z_{1}>\operatorname{Re} z_{2}>\cdots>\operatorname{Re} z_{M}
$$

- A control point $d+\mathrm{ir}$ on $\Gamma_{\text {left }}$ with

$$
d=\frac{1}{M} \sum_{k=1}^{M} \operatorname{Re} z_{k} \quad \text { fixed. }
$$

If any of the z_{k} lays in the wrong pseudospectral level set, we move the ordinate r of the control point by solving

$$
\tilde{\sigma}^{k}(d, r)-\epsilon=0, \quad \text { with respect to } r \text {, }
$$

Guglielmi, López-Fernández \& MM: construction of $\Gamma_{\text {left }}$

 We fix:- z^{R} intersection of $\Gamma_{\text {left }}$ with the real axis.
- z^{L} with $\mathrm{e}^{z^{L} t}<$ eps, being eps the machine precision of the solver used.
- Choose a grid of M points z_{k}, with $k=1, \ldots, M, \operatorname{Im} z_{k}>0$,

$$
z^{R}>\operatorname{Re} z_{1}>\operatorname{Re} z_{2}>\cdots>\operatorname{Re} z_{M}
$$

- A control point $d+\mathrm{ir}$ on $\Gamma_{\text {left }}$ with

$$
d=\frac{1}{M} \sum_{k=1}^{M} \operatorname{Re} z_{k} \quad \text { fixed. }
$$

If any of the z_{k} lays in the wrong pseudospectral level set, we move the ordinate r of the control point by solving

$$
\tilde{\sigma}^{k}(d, r)-\epsilon=0, \quad \text { with respect to } r,
$$

for $\tilde{\sigma}^{k}(d, r)$ the smallest weighted singular value of $A=z_{k}(d, r) I$.

An example: the parabolic profile

$$
\begin{equation*}
\Gamma_{\text {left }}(x)=-x^{2}+z^{R}+\frac{\mathrm{i} r x}{\sqrt{z^{R}-d}}, \quad x \in \mathbb{R} \tag{4}
\end{equation*}
$$

Setting $\Gamma_{\text {left }}(x)=\phi+\mathrm{i} \psi$ and fixing the abscissa $\phi=\operatorname{Re}\left(\Gamma_{\text {left }}\right)$ we obtain

$$
\psi=\frac{r x}{\sqrt{z^{R}-d}}
$$

which depends on r and d. We easily obtain

$$
\begin{aligned}
\frac{\partial \psi}{\partial d} & =\frac{x r}{2\left(z^{R}-d\right)^{3 / 2}} \\
\frac{\partial \psi}{\partial r} & =\frac{x}{\sqrt{z^{R}-d}}
\end{aligned}
$$

Applying Lemma 1 to $\tilde{\sigma}(d, r)$ - with u and v left and right associated singular vectors - we get

$$
\frac{d}{d r} \tilde{\sigma}(d, r)=-\mathrm{e}^{-\operatorname{Re}\left(z_{k}\right) t} \operatorname{Re}\left(\mathrm{i} u^{*} v\right) g
$$

with

$$
g=\frac{x_{k}}{\sqrt{z^{R}-d}} .
$$

In order to accurately compute r such that $\tilde{\sigma}(d, r)=\epsilon$ do a few (say m) Newton iterations

with u^{ℓ} and v^{ℓ} singular vectors associated to $\sigma_{\min }\left(A-z\left(d, r^{\ell}\right) I\right)$ and r^{ℓ} the actual ordinate of the control point.
Then we compute a new parabola, which interpolates $d+\mathrm{ir}^{m}$, reparametrize it and compute a new set of points.

Applying Lemma 1 to $\tilde{\sigma}(d, r)$ - with u and v left and right associated singular vectors - we get

$$
\frac{d}{d r} \tilde{\sigma}(d, r)=-\mathrm{e}^{-\operatorname{Re}\left(z_{k}\right) t} \operatorname{Re}\left(\mathrm{i} u^{*} v\right) g
$$

with

$$
g=\frac{x_{k}}{\sqrt{z^{R}-d}}
$$

In order to accurately compute r such that $\tilde{\sigma}(d, r)=\epsilon$ do a few (say m) Newton iterations

$$
\begin{equation*}
r^{\ell+1}=r^{\ell}+\frac{\mathrm{e}^{-\operatorname{Re}\left(z_{k}\right) t} \sigma_{\min }\left(A-z\left(d, r^{\ell}\right) \mathrm{I}\right)-\epsilon}{\mathrm{e}^{-\operatorname{Re}\left(z_{k}\right) t} \operatorname{Re}\left(\mathrm{i}\left(u^{\ell}\right)^{*} v^{\ell}\right) g}, \quad \ell=1, \ldots, m-1 \tag{5}
\end{equation*}
$$

with u^{ℓ} and v^{ℓ} singular vectors associated to $\sigma_{\min }\left(A-z\left(d, r^{\ell}\right) I\right)$ and r^{ℓ} the actual ordinate of the control point.
Then we compute a new parabola, which interpolates $d+\mathrm{i} r^{m}$, reparametrize it and compute a new set of points.

Parameters selection: computation of a and c

1. We first find a maximal value for c, from $\operatorname{Re}\left(z\left(c_{\max } \pi\right)\right)=z^{L}$, where $\mathrm{e}^{t z^{L}}=e p s$. It is $c_{\max }(a)$.
Compute a: For a given target accuracy tol we have

We minimize numerically the right hand side. The interval of minimization for a is chosen in such a way that stability of the method is ensured.

Compute c: From

Determine c by fixed point iterations.
4. Set N -
$|F(c \pi)|=$
iterations.

Parameters selection: computation of a and c

1. We first find a maximal value for c, from $\operatorname{Re}\left(z\left(c_{\max } \pi\right)\right)=z^{L}$, where $\mathrm{e}^{t z^{L}}=e p s$. It is $c_{\max }(a)$.
2. Compute a: For a given target accuracy tol we have

$$
N \leq \frac{c_{\max }(a)}{a}\left(\log \left(2 \pi c_{\max }(a) \tilde{M}_{\text {right }}+\pi \tilde{M}_{\text {left }}\right)-\log (t o l)\right)
$$

We minimize numerically the right hand side. The interval of minimization for a is chosen in such a way that stability of the method is ensured.
3. Compute c: From

Determine c by fixed point iterations. 4. Set $N=$

Parameters selection: computation of a and c

1. We first find a maximal value for c, from $\operatorname{Re}\left(z\left(c_{\max } \pi\right)\right)=z^{L}$, where $\mathrm{e}^{t z^{L}}=e p s$. It is $c_{\max }(a)$.
2. Compute a: For a given target accuracy tol we have

$$
N \leq \frac{c_{\max }(a)}{a}\left(\log \left(2 \pi c_{\max }(a) \tilde{M}_{\text {right }}+\pi \tilde{M}_{\text {left }}\right)-\log (t o l)\right)
$$

We minimize numerically the right hand side. The interval of minimization for a is chosen in such a way that stability of the method is ensured.
3. Compute c: From

$$
|F(c \pi)|=t o l
$$

Determine c by fixed point iterations.

Parameters selection: computation of a and c

1. We first find a maximal value for c, from $\operatorname{Re}\left(z\left(c_{\max } \pi\right)\right)=z^{L}$, where $\mathrm{e}^{t z^{L}}=e p s$. It is $c_{\max }(a)$.
2. Compute a: For a given target accuracy tol we have

$$
N \leq \frac{c_{\max }(a)}{a}\left(\log \left(2 \pi c_{\max }(a) \tilde{M}_{\text {right }}+\pi \tilde{M}_{\text {left }}\right)-\log (t o l)\right)
$$

We minimize numerically the right hand side. The interval of minimization for a is chosen in such a way that stability of the method is ensured.
3. Compute c: From

$$
|F(c \pi)|=t o l
$$

Determine c by fixed point iterations.
4. Set $N=\left\lceil\frac{c}{a}\left(\log \left(2 \pi c \tilde{M}_{\text {right }}+\pi \tilde{M}_{\text {left }}\right)-\log (t o l)\right)\right\rceil$.

Contours and nodes for BS

Example of integration profiles for the Black-Scholes problem for tolerance tol $=5 \cdot 10^{-6}$ at time $t=1$ (left) and $t=10$ (right).

Examples of constructed integration contours

Case 1: profile close to the pseudospectrum level curve

Case 2: profile far from the pseudospectrum level curve

Examples of constructed integration contours

[^0]: A computationally cheaper strategy

[^1]: A computationally cheaper strategy

