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Problem formulation

ou
5 % 1) = AX)lulx, )] + f(x, t)
Discretization in Space:
U (t) = Au(t) + b(t), u(0) = uo (1)

»How do we solve (1) when we are only interested in the solution at a
given time t?

Time-Steps methods — expensive for high accuracy (small At) and/or
large t.

» Alternative approach: solve with Laplace transform
LIU(t)] = 20 — uo = Al + b(z) —> 0(z) = (21 — A)" (uo n B(z))

Go back to time domain by Inverse Laplace transform:

u(t) = ! /l_eZtﬁ(z) dz (2)

T 2mi
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The integration contour
We need to identify an opportune contour I and then to construct a map
z: R — [ such as:

e Elliptic: [N. Guglielmi, M. Lépez-Fernandez, G. Nino]

(%), € [-00,-3]:
z(x) =< (a1 + a2)cosx + i(az — a1) sin x + as, x € [ g ]

la(x), x €[5, 400 ;
l12(x) upper and lower half-lines

e Parabolic: [N. Guglielmi, M. Lépez-Ferndndez, M. M|

z(x) = —x? — 2ixa; + ap,

e Hyperbolic: [N. Guglielmi, M. Lépez-Ferndndez, M. M.]

z(x) = a3 — azsin(a1) cosh x — iap cos(ay) sinh x.
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Trapezoidal rule for analytic functions
After parametrization, contour integration gives

1 cT

—CcT

with F(z(x)) = e2®ti(z(x))Z(x).
Integral approximation:

2

1
2
Iv= 5 > Flzlg) with x5 = —em+j gt j=1.. N1

.
[l
-

P
ty— Iy S ——— + Mctol +maxdF(x;).
lu(e) =l & =y + Mctel +maxiF(x)

———’ truncation err.  N— —u’
quadrature err. noise err.

Note: each quadrature node z(x;) corresponds to the solution of the linear
system (z(x;)1 — A)d = ug + b(z(x;)).



The three integration contours
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The weighted e-Pseudospectrum

The e—pseudospectrum is the set defined as:
oe(A) = {z eC: H(ZI — A)_IH > %}
We define the “weighted” —pseudospectrum as:

(zI—A)—1H > 11

The boundary of this set, denoted as do, +(A), is crucial in the
construction of the integration contour.

o t(A) = {z € C : eRel)t

-1
Recall that H(zI - A)71H = Omin (2zI — A), omin smallest singular value.



Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:



Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:
® Eigtool (Wright, 2002)



Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:
® Eigtool (Wright, 2002)— Too expensive;



Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:
® Eigtool (Wright, 2002)— Too expensive;
* Contour tracing methods (Briihl, 1996)



Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:
® Eigtool (Wright, 2002)— Too expensive;

* Contour tracing methods (Briihl, 1996)— Problems with
disconnected components;



Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:
® Eigtool (Wright, 2002)— Too expensive;

* Contour tracing methods (Briihl, 1996)— Problems with
disconnected components;

® Approximation of pseudospectral abscissa (Guglielmi, Overton 2011,
Kressner, Vandereycken 2014)



Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:
® Eigtool (Wright, 2002)— Too expensive;

¢ Contour tracing methods (Briihl, 1996)— Problems with
disconnected components;

® Approximation of pseudospectral abscissa (Guglielmi, Overton 2011,
Kressner, Vandereycken 2014)— difficulties with ill conditioned
eigenvalues Problems with eigs (ARPACK)

A computationally cheaper strategy:



Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:
® Eigtool (Wright, 2002)— Too expensive;

* Contour tracing methods (Briihl, 1996)— Problems with
disconnected components;

® Approximation of pseudospectral abscissa (Guglielmi, Overton 2011,
Kressner, Vandereycken 2014)— difficulties with ill conditioned
eigenvalues Problems with eigs (ARPACK)

A computationally cheaper strategy:

e Section the complex plane with vertical lines;



Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:
® Eigtool (Wright, 2002)— Too expensive;

* Contour tracing methods (Briihl, 1996)— Problems with
disconnected components;

® Approximation of pseudospectral abscissa (Guglielmi, Overton 2011,
Kressner, Vandereycken 2014)— difficulties with ill conditioned
eigenvalues Problems with eigs (ARPACK)

A computationally cheaper strategy:
e Section the complex plane with vertical lines;
® Search on each line with a fixed ¢ the highest intersection with o.(A)

e*¢famin((¢ +1i)I — A) —e — 0; (3)

o




Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:
® Eigtool (Wright, 2002)— Too expensive;

* Contour tracing methods (Briihl, 1996)— Problems with
disconnected components;

® Approximation of pseudospectral abscissa (Guglielmi, Overton 2011,
Kressner, Vandereycken 2014)— difficulties with ill conditioned
eigenvalues Problems with eigs (ARPACK)

A computationally cheaper strategy:
e Section the complex plane with vertical lines;
® Search on each line with a fixed ¢ the highest intersection with o.(A)

e Pt omin((¢ + i)l — A) — — 0; (3)

o

e Apply Newton's method exploiting a derivative formula for singular
values (see for instance Kato, 1995) to find the zero of (3) moving .
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Summary of the method
® set initial data (A, b, up). Fix t, tol,
e compute [ (based on pseudospectral computation);

e compute [ (minimizing the number of quadrature nodes /V to reach
the target accuracy tol);

® compute the truncation parameter c;
e apply the quadrature formula.
Advantages:
® no a priori knowledge about the resolvent norm of A is needed;
¢ the profile of integration does not depend on /V;
® the method is stable w.r.t. N;
¢ the method can be extended to time intervals t € [ty, t1];

® the main computational effort, i.e. the computation of the {i(z;), can
be parallelized in a straightforward way;

® the method is designed to achieve a given target accuracy to/ and
check whether this is possible.



Black—Scholes equation

For u = u(s, ),

du 1

or 27 %92 " Pos

With initial and boundary conditions
u(s,0) = max(0,s — K)
u(0,7)=0, T>0;
ulS,7)=S—-e""K, 7>0.

Spatial discretization: centered finite differences
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Heston equation

For u = u(s,v.7),

u_1, Pu 0y +1282
or 27 Yoz TPV osoy o2

forr>0, 0<s<S§, 0<v<V.

ou ou
+ (ra — ff)sg + K(n — V)E -

With initial and boundary conditions

u(s,0) = max(0,s — K)
ou
s
u(s,0,7) =0, u(s,V,7)=s5s, 7>0,0<s<S

(S,v,7)=1, 7>0,0<v<

Spatial discretization: ADI difference scheme from in "Hout & Foulon 2010.



Results on time windows for Heston equation

Hyperbolic contour, time interval [0.1,1]

Hyperbolic contour, time interval [5.5,10]
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Heston equation in time intervals [0.1, 1] (left) and [5.5,10] (right), for
tol =5-107*.



® N. Guglielmi, M. Lopéz-Fernandez, M. Manucci, Pseudospectral
roaming contour integral methods for convection-diffusion equations,
Journal of Scientific Computing 89 (22), 2021.

® Manucci, M.: Accompanying codes published at GitHub (2020).
https://github.com/MattiaManucci/Contour_Integral_Methods.git

e N. Guglielmi, M. Lopéz-Fernandez, G. Nino, Numerical inverse
Laplace transform for convection-diffusion equations in finance, Math.
Comput., 2020.
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Extension to time windows

F(2(9)) = "% i(2())2 ()
Note that:
® the main effort is due to the computation of
0(z09)) = (209)1 = A) ™ (w0 + b(z(x). 1))
* the dependence on time is only in the scalar term ¢Z()t,

Therefore: it is possible to construct a unique profile of integration for a
time window

[to,/\to], A>1.

Once computed {(z(x)) on the quadrature nodes the solution v can be
quickly evaluated Vt € [to, t1].
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Conformal mapping

1 ﬂ/2 z(x)t - T~ /
o )" (Ot (2(x)T — A) ! (uo—l—b(z(x)))z(x) dx

. | r
+la _H
/2 /2 > ]

z(x +1iy) = A1(y) cosx +iAx(y)sinx + As(y)

with suitable Aj, A, A3 € R provides a parametrization of the ellipses.



Estimates of the resolvent of the BS operator

We generalize the analysis in Reddy & Trefethen, 1994 for the canonical
convection-diffusion equation and derive theoretical estimates for the
resolvent of the BS operator.

Estimate of log,(||(A] — A)7!]) logyo([|(A — A)~')

3 25 2 15 -1 05 325 2 A5 -1 05
Re(\) Re(A)

Theoretical estimate of the resolvent norm (left) and computed resolvent
norm (right). This also provides us a good guess for Ijef.



A variational result for simple singular values

Lemma (Kato, 1995)

Let D(t) be a differentiable matrix-valued function in a neighborhood of
to. Let

D(t) = URZ(t)V(t)* = Y ui(t)oi(t)vi(t)*
be a smooth (with respect to t) singular value decomposition of the
matrix D(t) and o(t) be a certain singular value of D(t) converging to a
simple singular value & of Dy = D(ty).
If 0,V are the associated left and right singular vectors, respectively, the
function o(t) is differentiable near t = ty with

(.T(to) = %(ﬁ*Do\/)) with DO = D(to).
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Guglielmi, Lépez-Fernandez & MM: construction of [
We fix:

e R intersection of s with the real axis.
. L . . ..
e zL with e*'t < eps, being eps the machine precision of the solver used.

® Choose a grid of M points z, with k =1,..., M, Imz, > 0,

zR > Rez; >Rez > - - > Rezy.

® A control point d +ir on . with

1M
d= o ; Re z fixed.

If any of the zx lays in the wrong pseudospectral level set, we move the ordinate r
of the control point by solving

&%(d,r) —e =0, with respect to r,

for 5%(d, r) the smallest weighted singular value of A — z(d,r)l.



An example: the parabolic profile

irx

)
zR —d

r/eft(X) = —X2 + ZR +

x € R.

(4)

Setting e (x) = ¢ + 1t and fixing the abscissa ¢ = Re (I'ez) we obtain

rx
V= ——,

zR —d

which depends on r and d. We easily obtain

% B Xr
od 2(zR — d)3/2
ai X

or ZR—d



Applying Lemma 1 to &(d, r)- with u and v left and right associated
singular vectors - we get

d
E& (d,r) = —e~ Re(@)t Re(iu*v) g

with



Applying Lemma 1 to &(d, r)- with u and v left and right associated
singular vectors - we get

d
E& (d,r) = —e~ Re(@)t Re(iu*v) g
with
& zZR—d

In order to accurately compute r such that 5(d, r) = € do a few (say m)
Newton iterations

1 ¢ € Re(z)ty . (A — z(d, rZ)I) —€

r =r +
e— Re(z)t Re (i(ué)*vf) g

, ¢=1,...,.m—1 (5)

with u’ and v’ singular vectors associated to opmin(A — z(d, r‘)I) and r
the actual ordinate of the control point.

Then we compute a new parabola, which interpolates d + ir",
reparametrize it and compute a new set of points.
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Parameters selection: computation of a and ¢

1. We first find a maximal value for ¢, from Re(z(cmaxm)) = z*, where
" = eps. It is cra(a).
2. Compute a: For a given target accuracy tol we have

Cmax(a)

N < /22 ( log (27rcmax(a) M,;ght + 77/\7I,eft) — log (tol) ),
a

We minimize numerically the right hand side. The interval of
minimization for a is chosen in such a way that stability of the
method is ensured.

3. Compute c: From
|F(cm)| = tol.

Determine c¢ by fixed point iterations.

4. Set N = E ( log (27TCM,;ght + 77/\71,6&) — log (tol) ﬂ



Contours and nodes for BS

Contour Curves with Quadrature P.

Contour Curves with Quadrature P.
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Example of integration profiles for the Black-Scholes problem for tolerance
tol =5-107° at time t = 1 (left) and t = 10 (right).



Examples of constructed integration contours

Casse 1: profile close to the pseudospectrum level curve Case 2: profile far from the pseudospectrum level curve
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Examples of constructed integration contours

Good choice of the profile

Case 3: exponential growth of the condition number 20 -

Tntegretion Profile
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