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Problem formulation

∂u

∂t
(x , t) = A(x)[u(x , t)] + f (x , t)

Discretization in Space:

u′(t) = Au(t) + b(t), u(0) = u0 (1)

▶How do we solve (1) when we are only interested in the solution at a
given time t?

Time-Steps methods −→ expensive for high accuracy (small ∆t) and/or
large t.

▶ Alternative approach: solve with Laplace transform

L[u′(t)] = zû − u0 = Aû + b̂(z) −→ û(z) = (zI− A)−1
(
u0 + b̂(z)

)
Go back to time domain by Inverse Laplace transform:

u(t) =
1

2πi

∫
Γ
ezt û(z) dz (2)
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The integration contour
We need to identify an opportune contour Γ and then to construct a map
z : R −→ Γ such as:

• Elliptic: [N. Guglielmi, M. López-Fernández, G. Nino]

z(x) =


ℓ1(x), x ∈

[
−∞,−π

2

]
;

(a1 + a2) cos x + i(a2 − a1) sin x + a3, x ∈
[
−π

2 ,
π
2

]
;

ℓ2(x) , x ∈
[
π
2 ,+∞

]
;

ℓ1,2(x) upper and lower half-lines

• Parabolic: [N. Guglielmi, M. López-Fernández, M. M.]

z(x) = −x2 − 2ixa1 + a2,

• Hyperbolic: [N. Guglielmi, M. López-Fernández, M. M.]

z(x) = a3 − a2 sin(a1) cosh x − ia2 cos(a1) sinh x .
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z(x) =


ℓ1(x), x ∈

[
−∞,−π

2

]
;

(a1 + a2) cos x + i(a2 − a1) sin x + a3, x ∈
[
−π

2 ,
π
2

]
;

ℓ2(x) , x ∈
[
π
2 ,+∞

]
;

ℓ1,2(x) upper and lower half-lines

• Parabolic: [N. Guglielmi, M. López-Fernández, M. M.]
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z(x) = −x2 − 2ixa1 + a2,

• Hyperbolic: [N. Guglielmi, M. López-Fernández, M. M.]
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Trapezoidal rule for analytic functions
After parametrization, contour integration gives

u(t) = I ≈ 1

2πi

∫ cπ

−cπ
F (z(x)) dx , 0 < c < cmax

with F (z(x)) = ez(x)t û(z(x))z ′(x).
Integral approximation:

IN =
c

iN

N−1∑
j=1

F (z(xj)) with xj = −cπ + j
2cπ

N
, j = 1, . . . ,N − 1.

Error:

∥u(t)− IN∥ ⪅
P

e
a
c
N − 1︸ ︷︷ ︸

quadrature err.

+ Mctol︸ ︷︷ ︸
truncation err.

+max
j
δF (xj)︸ ︷︷ ︸

noise err.

.

Note: each quadrature node z(xj) corresponds to the solution of the linear

system (z(xj)I− A)û = u0 + b̂(z(xj)).
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system (z(xj)I− A)û = u0 + b̂(z(xj)).



4/13

The three integration contours
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Three ellipses:

Γright → bound on D =
∣∣ezt∣∣ , Γleft → bound on eRe(z)t

∥∥∥(zI− A)−1
∥∥∥

Γ → Integration profile
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The weighted ϵ-Pseudospectrum

The ε−pseudospectrum is the set defined as:

σε(A) :=
{
z ∈ C :

∥∥∥(zI− A)−1
∥∥∥ > 1

ε

}
We define the “weighted” ε−pseudospectrum as:

σε,t(A) :=
{
z ∈ C : eRe(z)t

∥∥∥(zI− A)−1
∥∥∥ > 1

ε

}
The boundary of this set, denoted as ∂σε,t(A), is crucial in the
construction of the integration contour.

Recall that
∥∥∥(zI− A)−1

∥∥∥−1
= σmin (zI− A), σmin smallest singular value.
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Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:

• Eigtool (Wright, 2002)→ Too expensive;

• Contour tracing methods (Brühl, 1996)→ Problems with
disconnected components;

• Approximation of pseudospectral abscissa (Guglielmi, Overton 2011,
Kressner, Vandereycken 2014)→ difficulties with ill conditioned
eigenvalues Problems with eigs (ARPACK)

A computationally cheaper strategy:

• Section the complex plane with vertical lines;

• Search on each line with a fixed ϕ the highest intersection with σε(A)

e−ϕtσmin((ϕ+ iψ)I− A)︸ ︷︷ ︸
σ̃

−ε→ 0; (3)

• Apply Newton’s method exploiting a derivative formula for singular
values (see for instance Kato, 1995) to find the zero of (3) moving ψ.
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disconnected components;

• Approximation of pseudospectral abscissa (Guglielmi, Overton 2011,
Kressner, Vandereycken 2014)→ difficulties with ill conditioned
eigenvalues Problems with eigs (ARPACK)

A computationally cheaper strategy:

• Section the complex plane with vertical lines;

• Search on each line with a fixed ϕ the highest intersection with σε(A)

e−ϕtσmin((ϕ+ iψ)I− A)︸ ︷︷ ︸
σ̃

−ε→ 0; (3)

• Apply Newton’s method exploiting a derivative formula for singular
values (see for instance Kato, 1995) to find the zero of (3) moving ψ.



6/13

Weighted pseudospectral computation

Existing literature relying on the concept of pseudospectrum:

• Eigtool (Wright, 2002)→ Too expensive;

• Contour tracing methods (Brühl, 1996)→ Problems with
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Summary of the method
• set initial data (A, b, u0). Fix t, tol ;

• compute Γleft (based on pseudospectral computation);

• compute Γ (minimizing the number of quadrature nodes N to reach
the target accuracy tol);

• compute the truncation parameter c ;

• apply the quadrature formula.

Advantages:

• no a priori knowledge about the resolvent norm of A is needed;

• the profile of integration does not depend on N;

• the method is stable w.r.t. N;

• the method can be extended to time intervals t ∈ [t0, t1];

• the main computational effort, i.e. the computation of the û(zj), can
be parallelized in a straightforward way;

• the method is designed to achieve a given target accuracy tol and
check whether this is possible.
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be parallelized in a straightforward way;

• the method is designed to achieve a given target accuracy tol and
check whether this is possible.
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be parallelized in a straightforward way;

• the method is designed to achieve a given target accuracy tol and
check whether this is possible.



7/13

Summary of the method
• set initial data (A, b, u0). Fix t, tol ;

• compute Γleft (based on pseudospectral computation);

• compute Γ (minimizing the number of quadrature nodes N to reach
the target accuracy tol);

• compute the truncation parameter c ;

• apply the quadrature formula.

Advantages:

• no a priori knowledge about the resolvent norm of A is needed;

• the profile of integration does not depend on N;

• the method is stable w.r.t. N;

• the method can be extended to time intervals t ∈ [t0, t1];

• the main computational effort, i.e. the computation of the û(zj), can
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Black–Scholes equation

For u = u(s, τ),

∂u

∂τ
=

1

2
σ2s2

∂2u

∂s2
+ rs

∂u

∂s
− ru, τ ≥ 0, L ≤ s ≤ S .

With initial and boundary conditions

u(s, 0) = max(0, s − K )

u(0, τ) = 0 , τ ≥ 0;

u(S , τ) = S − e−rτK , τ ≥ 0.

Spatial discretization: centered finite differences
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Heston equation

For u = u(s, v , τ),

∂u

∂τ
=

1

2
s2v

∂2u

∂s2
+ ρσsv

∂2u

∂s∂v
+

1

2
σ2v

∂2u

∂v2
+ (rd − rf )s

∂u

∂s
+ κ(η − v)

∂u

∂v
− rdu ,

for τ ≥ 0, 0 ≤ s ≤ S , 0 ≤ v ≤ V .

With initial and boundary conditions

u(s, 0) = max(0, s − K )

u(0, v , τ) = 0 ,
∂u

∂s
(S , v , τ) = 1 , τ ≥ 0, 0 ≤ v ≤ V ;

u(s, 0, τ) = 0 , u(s,V , τ) = s , τ ≥ 0, 0 ≤ s ≤ S .

Spatial discretization: ADI difference scheme from in ’Hout & Foulon 2010.
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Results on time windows for Heston equation

10 20 30 40 50 60 70
10

-10

10
-5

10
0

10
5

A
b

s
o

lu
te

 E
rr

o
r

5 10 15 20 25 30 35
10

-10

10
-5

10
0

10
5

A
b

s
o

lu
te

 E
rr

o
r

Heston equation in time intervals [0.1, 1] (left) and [5.5, 10] (right), for
tol = 5 · 10−4.



12/13

References
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Extension to time windows

F (z(xj)) = ez(xj )t û(z(xj))z
′(xj)

Note that:

• the main effort is due to the computation of

û(z(xj)) = (z(xj)I − A(µ))−1
(
u0 + b̂(z(xj), µ)

)
;

• the dependence on time is only in the scalar term ez(xj )t .

Therefore: it is possible to construct a unique profile of integration for a
time window

[t0,Λt0], Λ > 1.

Once computed û(z(x)) on the quadrature nodes the solution u can be
quickly evaluated ∀t ∈ [t0, t1].
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′(xj)

Note that:

• the main effort is due to the computation of
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Conformal mapping

1

2πi

∫ π/2

−π/2
ez(x)t (z(x)I− A)−1

(
u0 + b̂(z(x))

)
z ′(x) dx

- /2 /2

+ia

-ia

+

-

z(x + iy) = A1(y) cos x + iA2(y) sin x + A3(y)

with suitable A1,A2,A3 ∈ R provides a parametrization of the ellipses.
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Estimates of the resolvent of the BS operator

We generalize the analysis in Reddy & Trefethen, 1994 for the canonical
convection-diffusion equation and derive theoretical estimates for the
resolvent of the BS operator.
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norm (right). This also provides us a good guess for Γleft .
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A variational result for simple singular values

Lemma (Kato, 1995)

Let D(t) be a differentiable matrix-valued function in a neighborhood of
t0. Let

D(t) = U(t)Σ(t)V (t)∗ =
∑
i

ui (t)σi (t)vi (t)
∗

be a smooth (with respect to t) singular value decomposition of the
matrix D(t) and σ(t) be a certain singular value of D(t) converging to a
simple singular value σ̂ of D0 = D(t0).
If û, v̂ are the associated left and right singular vectors, respectively, the
function σ(t) is differentiable near t = t0 with

σ̇(t0) = ℜ
(
û∗Ḋ0v̂

)
with Ḋ0 = Ḋ(t0).
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Guglielmi, López-Fernández & MM: construction of Γleft
We fix:

• zR intersection of Γleft with the real axis.

• zL with ez
Lt < eps, being eps the machine precision of the solver used.

• Choose a grid of M points zk , with k = 1, . . . ,M, Im zk > 0,

zR > Re z1 > Re z2 > · · · > Re zM .

• A control point d + ir on Γleft with

d =
1

M

M∑
k=1

Re zk fixed.

If any of the zk lays in the wrong pseudospectral level set, we move the ordinate r
of the control point by solving

σ̃k(d , r)− ϵ = 0, with respect to r ,

for σ̃k(d , r) the smallest weighted singular value of A− zk(d , r)I .
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Guglielmi, López-Fernández & MM: construction of Γleft
We fix:

• zR intersection of Γleft with the real axis.

• zL with ez
Lt < eps, being eps the machine precision of the solver used.

• Choose a grid of M points zk , with k = 1, . . . ,M, Im zk > 0,

zR > Re z1 > Re z2 > · · · > Re zM .

• A control point d + ir on Γleft with

d =
1

M

M∑
k=1

Re zk fixed.

If any of the zk lays in the wrong pseudospectral level set, we move the ordinate r
of the control point by solving

σ̃k(d , r)− ϵ = 0, with respect to r ,

for σ̃k(d , r) the smallest weighted singular value of A− zk(d , r)I .



13/13

An example: the parabolic profile

Γleft(x) = −x2 + zR +
irx√
zR − d

, x ∈ R. (4)

Setting Γleft(x) = ϕ+ iψ and fixing the abscissa ϕ = Re (Γleft) we obtain

ψ =
rx√

zR − d
,

which depends on r and d . We easily obtain

∂ψ

∂d
=

xr

2(zR − d)3/2

∂ψ

∂r
=

x√
zR − d

.
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Applying Lemma 1 to σ̃(d , r)- with u and v left and right associated
singular vectors - we get

d

dr
σ̃ (d , r) = −e−Re(zk )t Re(iu∗v) g

with
g =

xk√
zR − d

.

In order to accurately compute r such that σ̃(d , r) = ϵ do a few (say m)
Newton iterations

r ℓ+1 = r ℓ +
e−Re(zk )tσmin

(
A− z(d , r ℓ)I

)
− ϵ

e−Re(zk )t Re
(
i(uℓ)∗v ℓ

)
g

, ℓ = 1, . . . ,m − 1 (5)

with uℓ and v ℓ singular vectors associated to σmin(A− z(d , r ℓ)I) and r ℓ

the actual ordinate of the control point.
Then we compute a new parabola, which interpolates d + irm,
reparametrize it and compute a new set of points.
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Parameters selection: computation of a and c

1. We first find a maximal value for c, from Re(z(cmaxπ)) = zL, where

etz
L
= eps. It is cmax(a).

2. Compute a: For a given target accuracy tol we have

N ≤ cmax(a)

a

(
log

(
2πcmax(a)M̃right + πM̃left

)
− log (tol)

)
,

We minimize numerically the right hand side. The interval of
minimization for a is chosen in such a way that stability of the
method is ensured.

3. Compute c: From
|F (cπ)| = tol .

Determine c by fixed point iterations.

4. Set N =
⌈
c
a

(
log

(
2πcM̃right + πM̃left

)
− log (tol)

)⌉
.
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Contours and nodes for BS
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Example of integration profiles for the Black-Scholes problem for tolerance
tol = 5 · 10−6 at time t = 1 (left) and t = 10 (right).
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Examples of constructed integration contours
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Examples of constructed integration contours
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