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Università di Padova
Dipartimento di Matematica “Tullio Levi Civita”

February 14, 2022

joint work with Chiara Faccio (SNS)

Due Giorni di algebra Lineare Numerica e Applicazioni
Napoli, 14-15 Febbraio 2022

Fabio Marcuzzi (marcuzzi@math.unipd.it) The minimal realization problem in physical coordinates February 14, 2022 1 / 23

 



Introduction Grey-box modelling Our LA approach Conclusions and future work

1 Introduction

2 Grey-box modelling

3 Our LA approach

4 Conclusions and future work

Fabio Marcuzzi (marcuzzi@math.unipd.it) The minimal realization problem in physical coordinates February 14, 2022 2 / 23



Introduction Grey-box modelling Our LA approach Conclusions and future work

State-space systems

Let us consider a general, finite-dimensional, deterministic, Discrete-time, Linear
Time-Invariant (DLTI) dynamical system, in the so-called state-space form:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(1)

where x(k) 2 Rnx is the state vector, u(k) 2 Rm the input vector, y(k) 2 Rp the output

vector and A 2 Rnx⇥nx , B 2 Rnx⇥m, C 2 Rp⇥nx and D 2 Rp⇥m are the model matrices.

The Markov coefficients, Gk , of (1), are defined as:

G0 = D e Gk = CA
k�1

B , k = 1, 2, . . . (2)

and their sequence, for k = 0, 1, 2, . . . , correspond to the discrete impulse response of
the system, in the sense that if we apply a Kronecker delta to the i-th input, we obtain at the
output:

h
(i)(0) = D[:, i] e h

(i)(k) = CA
k�1

B[:, i] , k = 1, 2, . . . (3)

that is the i-th column of the (matrix) Markov coefficients (2).

Fabio Marcuzzi (marcuzzi@math.unipd.it) The minimal realization problem in physical coordinates February 14, 2022 3 / 23



Introduction Grey-box modelling Our LA approach Conclusions and future work

State-space systems

Let us consider a general, finite-dimensional, deterministic, Discrete-time, Linear
Time-Invariant (DLTI) dynamical system, in the so-called state-space form:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(1)

where x(k) 2 Rnx is the state vector, u(k) 2 Rm the input vector, y(k) 2 Rp the output

vector and A 2 Rnx⇥nx , B 2 Rnx⇥m, C 2 Rp⇥nx and D 2 Rp⇥m are the model matrices.
The Markov coefficients, Gk , of (1), are defined as:

G0 = D e Gk = CA
k�1

B , k = 1, 2, . . . (2)

and their sequence, for k = 0, 1, 2, . . . , correspond to the discrete impulse response of
the system, in the sense that if we apply a Kronecker delta to the i-th input, we obtain at the
output:

h
(i)(0) = D[:, i] e h

(i)(k) = CA
k�1

B[:, i] , k = 1, 2, . . . (3)

that is the i-th column of the (matrix) Markov coefficients (2).

Fabio Marcuzzi (marcuzzi@math.unipd.it) The minimal realization problem in physical coordinates February 14, 2022 3 / 23



Introduction Grey-box modelling Our LA approach Conclusions and future work

Minimal realizations

Definition
(A ,B ,C ,D) is said realization of the sequence {Gk }1k=0 if it holds (2).

Definition
The realization (A ,B ,C ,D) is minimal if the model order nx is the minimum possible.

Theorem (Kalman)
A realization is minimal iff it is reachable and observable.
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The minimal realization problem

The minimal (state-space) realization problem can be formulated as follows1: “Given some
input-output data u(k), y(k) , k = 0, . . . ,N, find a state-space description of minimal size
nx that is capable of reproducing the given data”.

1B. De Schutter. “Minimal state-space realization in linear system theory: An overview”. In: Journal of

Computational and Applied Mathematics, Special Issue on Numerical Analysis in the 20th Century – Vol. I:
Approximation Theory 121.1–2 (2000), pp. 331–354. doi: 10.1016/S0377-0427(00)00341-1.
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The Ho-Kalman algorithm

The first algorithm for this problem has been developed by Ho and Kalman in 1966, for
single-input-single-output (SISO) state-space models and their discrete impulse response:

H =

2
666666666666666666666666666666664

h1 h2 h3 h4 . . .

h2 h3 h4
. . . . . .

h3 h4
. . .

. . . . . .

h4
. . .

. . .
. . .

...
...

...

3
777777777777777777777777777777775

=

2
6666666666666666666664

c

cA

cA
2

cA
3

...

3
7777777777777777777775

·
h

b Ab A
2
b A

3
b . . .

i
(4)

These matrices can be truncated at a number of blocks equal to the system dimension,
thanks to the well-known Cayley-Hamilton theorem.
The algorithm associates a numerical factorization of the matrix H to this symbolic
description. In this way, the realization (A ,B ,C) can be easily extracted from the numerical
factors.
For numerical stability issues, are commonly used the QR factorization or the SVD but the
applicable numerical factorizations are infinite. The numerical values of the parameters
depend therefore on the chosen factorization, i.e. they are not uniquely determined.
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black-box vs grey-box modelling

What is the meaning of (A ,B ,C ,D), i.e. the model parameters ?

The model may be used as a statistical description of a phenomenon (see e.g. ”statistical
learning”); in this case it is called a ”black-box” and its parameters and state-variables have
no meaning by itself (like it happens in neural networks and most machine learning
modeling techniques).

The model parameters may have physical or socio-economic relevance; in this case it is
called a ”gray-box” and its parameters and variables may be masses,
friction/heat-transfer/etc coefficients and temperatures, velocities, etc. Usually such a model
comes from the discretization of differential equations (ODEs or PDEs), i.e. the model is
usually defined on a spatial and/or temporal continuum:

ẋ(t) = Acx(t) + Bcu(t)
y(t) = Ccx(t) + Dcu(t)

, (5)

We will refer to this second framework, that has many applications, e.g. ”soft-sensors”.
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ẋ(t) = Acx(t) + Bcu(t)
y(t) = Ccx(t) + Dcu(t)

, (5)

We will refer to this second framework, that has many applications, e.g. ”soft-sensors”.

Fabio Marcuzzi (marcuzzi@math.unipd.it) The minimal realization problem in physical coordinates February 14, 2022 7 / 23



Introduction Grey-box modelling Our LA approach Conclusions and future work

black-box vs grey-box modelling

What is the meaning of (A ,B ,C ,D), i.e. the model parameters ?

The model may be used as a statistical description of a phenomenon (see e.g. ”statistical
learning”); in this case it is called a ”black-box” and its parameters and state-variables have
no meaning by itself (like it happens in neural networks and most machine learning
modeling techniques).

The model parameters may have physical or socio-economic relevance; in this case it is
called a ”gray-box” and its parameters and variables may be masses,
friction/heat-transfer/etc coefficients and temperatures, velocities, etc. Usually such a model
comes from the discretization of differential equations (ODEs or PDEs), i.e. the model is
usually defined on a spatial and/or temporal continuum:
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Model discretization

Model discretization usually means that even for linear models there is a nonlinear map that
relates the entries of (A ,B ,C ,D) with their continuous counterpart (Ac ,Bc ,Cc ,Dc).

For example, let Tsc be the time-discretization step, x(k) ⇡ xc(k Tsc) be the state vector of
the discrete-time model, and consider for simplicity the well-known ✓-method:

x(k + 1) � x(k)

Tsc

= (1 � ✓)f(x(k), u(k)) + ✓f(x(k + 1), u(k + 1)) . (6)

. Using (6) with e.g. ✓ = 1 (the Implicit Euler method) we obtain from (5) a state-space
discrete model in physical coordinates:

x(k + 1) = Af x(k) + Bf u(k)
y(k) = Cf x(k)

(7)

with
Af = (I � TscAc)

�1 , Bf = (I � TscAc)
�1

TscBc , Cf = Cc (8)

Our aim is to obtain system (7) by solving the minimal realization problem.
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Subspace identification methods

At present, the solution algorithms for general multi-input-multi-output (MIMO) state-space
models are the so-called ”subspace identification methods”2, that we briefly recall. In the
deterministic case, these methods usually derive the realization (A ,B ,C ,D) from an
extended observability matrix or from the estimated state vectors X . To give and idea,
following this second approach, matrices are derived using least-squares on this equation:

"
X

d

i+1
Yi|i

#
=

"
A B

C D

# "
X

d

i

Ui|i

#
(9)

Now the point is: which base have used the subspace methods to express the minimal
realization found?
Indeed, they compute the state estimates X from block-Hankel matrices built upon inputs
and outputs measurements, and performing on these matrices oblique projections, SVD
and QR factorizations. They are completely data-driven.

2Peter Van Overschee and Bart De Moor. Subspace Methods in System Identification. Springer, 1996.
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Invariants to a basis change

Moreover, the minimal realization is not unique: given an arbitrary, invertible, basis-change
matrix T , the system transformed in the new coordinates x̃ = T

�1
x maintains the same

input-output behavior. Therefore, there are infinite possible data-driven bases that may
be used by subspace methods to build the minimal realization.

In general, at each basis change the matrices (Ã , B̃ , C̃ , D̃) are different, and so the model
parameters:

Ã = T
�1

AT , B̃ = T
�1

B , C̃ = CT , x̃ = T
�1

x (10)

Note that there are also other invariants, e.g. the eigenvalues of A , as can be easily noticed
from (11).

Hence, we try to solve a harder problem: to find the (unique) minimal realization whose

state vector is expressed in the physical base, that is true when each of its state
variables has a twin variable in the physical-mathematical model describing the real system.
Only with this base the estimated model parameters have a physical meaning.
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Physical parameters estimate

In system identification, the computation of physical parameter estimates classically adopts
nonlinear estimation procedures

3; these, anyway, suffer from convergence problems,
depending much from the initialization of the estimates and from the ill-conditioning of the
problem to be numerically solved.

The bibliography on the estimation of physical parameters with subspace methods imposes
constraints on the system’s response ( impulse response, transfer function, weighting
matrices constructed from the Markov parameters of the unknown observer, etc.)
There is also a huge literature on more physical approaches, tailored on a specific
application, e.g. in vibration mechanics it it well known the so-called “inverse vibration
problem”
In the literature there are also methods that exploit the structure of the matrices in the
continuum-time model, because of their physical meaning, to compute directly a matrix T

which should transform in physical coordinates the estimated model to obtain this it is
necessary to reformulate the abstract model equations into a null-space-based problem,
that brings to a quite involved solution and has in general an high computational cost or it is
restricted to a small number of model structures.
The method here proposed is a linear estimation, eventually followed by a nonlinear

map (matrix inversion).

3Lennart Ljung. System Identification: Theory for the User. Prentice-Hall, 1999.
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necessary to reformulate the abstract model equations into a null-space-based problem,
that brings to a quite involved solution and has in general an high computational cost or it is
restricted to a small number of model structures.
The method here proposed is a linear estimation, eventually followed by a nonlinear

map (matrix inversion).
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Our LA approach

Let us suppose that exists an (unknown) basis-change matrix Tf , that transforms the
data-driven minimal realization obtained by subspace methods, into the minimal realization
in the physical base:

Af = T
�1
f

AsTf , Bf = T
�1
f

Bs , Cf = CsTf , x̃f = T
�1
f

xs (11)

Our approach to find an approximation T̂f starts by considering the eigen-decomposition of
the (unknown) matrix Af :

Af = Vf⇤Af
V
�1
f

(12)

Note that the ordering of the eigenvectors is not an invariant for the minimal realization in
the physical base. In fact, a permutation of the eigenvectors is a basis-change which
changes also the Cf matrix, which instead must remain fixed with the definition of the state
variables and of the output variables.

! From the other side, there is no way to guarantee that the subspace methods find a
minimal realization in which the eigenvectors of As are in the same order as those of Af ,
since here Cs is completely arbitrary and data-driven.
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Imposing the physical C matrix

This suggests us that there is an unknown, optimal permutation that should be applied to
the eigenvectors of As , and we insert the search for this optimal permutation in our
algorithm, as follows.

First of all, by using the eigenvectors Vs of As as a first basis change, we obtain a
realization in modal coordinates

{⇤As
,BVs
,CVs
} (13)

and get two advantages:
• ⇤As

is a good estimate of Af in modal coordinates, i.e. diagonalized. Indeed, only the
diagonal elements of both matrices are different from zero and are equal to the
eigenvalues, that are usually well estimated by subspace methods.

• the eigenspaces are now associated to single state variables and it is possible, with a
row-column permutation, to associate them to specific measured variables, since the
dynamics are decoupled, in this basis. To consider all the possible permutations for
low-order models requires a modest effort and, as we will see, it turns out to be very
effective on obtaining a good approximation of Tf among the infinite possible T .
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Imposing the physical Cf matrix

Suppose we have decided a row-permutation Mr . If we apply the basis change
T
�1 = Mr V

�1
s

we get a realization {⇤perm

As
,Bperm

Vs
,Cperm

Vs
} that can now be reconducted to the

physical cohordinates by imposing a further basis change Tx such that C
perm

Vs
Tx = Cf .

This can be done by solving:

MTx = G , M =

"
C

perm

Vs

X

#
, G =

"
Cf

Y

#
(14)

where M,Tx ,G 2 Rnx⇥nx . The matrices X and Y can be chosen in different ways.
Let us define H

?
r

the matrix whose rows form a basis for the orthogonal complement of the
row space of CVs

, and I[iu, :] the matrix formed by the rows of the identity matrix of indexes
corresponding to the unmeasured state variables. We found a few reasonable
choices/methods to choose X and Y :

1 X = Y = H
?
r

2 X = Y = I[iu, :]

3 X = H
?
r

, Y = I[iu, :]

4 X = Y = H
?
r

VAs

5 X = H
?
r

VAs , Y = I[iu, :]
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Permutations reduction

Different choices have different properties. We have found choice ”2” as the best one, since
it reduces considerably the number of permutations that must be considered, as we have
demonstrated in the following Lemma.

Lemma
Consider problem (14), with the choice X = Y = I[iu, :]. If we change basis to the

realization {⇤As
,BVs
,CVs
} with T

�1 = Mr a row-permutation matrix, we determine a specific

selection of eigenvectors to form the matrix T̂
�1
f

. Moreover, the number of permutations to

be considered is restricted to (nx

p
) = nx !

(nx�p)! p! .

In practice, in the test examples this means to consider e.g. with nx = 6, 15 permutations
instead of 720.
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Looking for the optimal permutation

Here a fundamental problem is that the algorithm cannot directly measure the efficacy of a
given permutation in the estimation of parameters, since they are unknown and there is no
evident algebraic characterization of the physical basis in the discrete model.

Let us suppose to know a coarse estimate of (at least) a few parameters of the continuous
model, that we want to estimate more precisely with the algorithm proposed. With this novel
piece of information we apply then an heuristic method, which we will validate with the
numerical experiments. An example of a reasonable heuristic method may be e.g. the
following:

1 from the coarse initial estimate of the parameters of the continuous model, compute
the matrix Ãc ;

2 from T̂f obtain Âf and compute Âc from (8); choose the permutation where the
submatrix Âc [im, im] is closer, in a chosen norm, to Ãc [im, im].

The numerical experiments confirm that this method is a good choice to distinguish the
optimal permutation, even starting from a matrix discretized with a coarse estimate of the
physical parameters.
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2 from T̂f obtain Âf and compute Âc from (8); choose the permutation where the
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Algorithm

Now we can formulate a solution algorithm4:

Minimal realization in physical base

1: given a set of I/O data, find a minimal realization {As ,Bs ,Cs} through a subspace
algorithm;

2: diagonalize As and get the decomposition (12);

3: for each convenient permutation of the eigenvalues/eigenvectors, use the permuted
eigenvectors Vs to change the basis of the state vector in modal coordinates (13) and
compute the basis-change matrix T̂f = T

�1
x

Mr V
�1
s

;

4: find the optimal permutation using the apriori, coarse, estimate of the parameters and
compute the resulting minimal realization in partial physical coordinates.

4C. Faccio and F. Marcuzzi. “A linear algorithm for the minimal realization problem in physical coordinates with a
non-invertible output matrix”. In: Linear Algebra and its Applications (accepted).
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Experiments

Let us consider a well-known class of models:

Md̈(t) + Gḋ(t) + Kd(t) = f(t)
(15)

Here x(t) =

"
ḋ(t)
d(t)

#

and Ac =

"
�M

�1
G �M

�1
K

I 0

#
, Bc =

"
M
�1

0

#

Let us consider the following index Ei to quantify the physical parameters estimation error:

Ei = |diag(Âc [im, im] � Ac [im, im]/Ac [im, im])| (16)
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Experiments

p = 2 median{min(Ei)}i=0...N�1,median{max(Ei)}i=0...N�1

nx standard ss T̂f opt perm
4 0.86, 1.12 0.01, 0.03
6 0.94, 1.21 0.06, 0.13

10 0.87, 1.52 0.03, 0.09
20 0.97, 1.17 0.17, 0.45
30 1.00, 1.38 0.52, 0.80

Table: The Table shows the results on the estimation error Ei (16), for various nx and various estimation
methods, from left to right: a standard subspace method (”standard ss”) and T̂f with the best
permutation obtainable by Algorithm 17 (”opt perm”). Each cell contains two results: the median
minimum relative error median{min(Ei)}i=0...N�1 and the median maximum relative error
median{min(Ei)}i=0...N�1 through N experiments.
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Experiments

Figure: Above left: histogram of min(Ei), i = 0 . . .N � 1, with ”standard ss”; above right: histogram of
min(Ei), i = 0 . . .N � 1 with ”opt perm”; below left: histogram of max(Ei), i = 0 . . .N � 1 with
”standard ss”; below right: histogram of max(Ei), i = 0 . . .N � 1 with ”opt perm”.
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We have put on evidence that eigenvectors approximation is a key issue in the minimal
realization problem.

Open source codes
All codes discussed available online at the URL:
https://github.com/NLALDlab/subspace-methods-in-physical-base.
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Constraining eigenvectors: overdetermined case

The basis change Tx obtained in (14) gives an exact matrix C = Cf :

As a future work, we are trying to relax this statement, with an obvious precision loss in the
state variables, adopting a regularization term that should improve the eigenvectors to
follow a prescribed behaviour:

"
CsVsM

T

r

�VsM
T

r

#
Tx =

"
Cf

�Z

#
(17)

where Z is a matrix of known eigenvectors, reasonably close to what should be the
eigenvectors of Af . They could be e.g. known from the theory related to the specific class of
models, or the eigenvectors of Ãf .
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Constraining eigenvectors: underdetermined case

Actually, the matrix Z could be itself learned from data, i.e. a dictionary of eigenvectors from
which to recover Tx with a sparse recovery from this underdetermined system:

"
CsVsM

T

r
0

�VsM
T

r
��Z

# "
Tx

S

#
=

"
Cf

0

#
(18)
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Thank you for your attention!
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