Nonlinear Label Spreading on Hypergraphs

Konstantin Prokopchik

Gran Sasso Science Institute (GSSI), L'Aquila, Italy konstantin.prokopchik@gssi.it

joint work with: Austin R Benson (Cornell Univ.) and Francesco Tudisco (GSSI)

Konstantin Prokopchik

Nonlinear Label Spreading on Hypergraph

Label Spreading (LS) and Semi-Supervised Learning (SSL)

• Given the dataset made out of c classes, In **SSL** the task is to assign unknown labels based on a small portion of known input labels

• In **LS** unknown labels are inferred by "spreading" the known labels following the edges of a graph

• Data should be represented as a graph that could be either a point cloud or a relational network

Higher-order notation

- $H = (V, \mathcal{E}, \omega)$: $\mathcal{E} = \{e_1, \dots, e_m\}$ and w(e) > 0 is a positive weight
- Every edge can contain an arbitrary number of nodes.
- $D = \text{Diag}(\delta_1, \ldots, \delta_n)$, where $\delta_i = \sum_{e:i \in e} w(e)$ the (hyper)degree of node *i*
- We assume that δ_i > 0 for all i, i.e. that hypergraph has no isolated nodes

Higher-order notation

Incidence matrix:

$$\mathcal{K}_{i,e} = egin{cases} 1 & i \in e \ 0 & ext{otherwise}. \end{cases}$$

- $W = (w(e_1), \dots, w(e_m))$ weight matrix
- $X \in \mathbb{R}^{n \times d}$, where row $x_i = X_{i,:} \in \mathbb{R}^d$ is the feature vector of $i \in V$
- Suppose each node *i* belongs to one of *c* classes {1,..., *c*} and we know the label of a (small) subset *T* ⊂ *V*
- Y ∈ ℝ^{n×c} the input-labels matrix of the nodes, in which Y_{ij} = 1 if node i belongs to class j, and Y_{ij} = 0 otherwise.

Laplacian regularization

• $\min_F \ell_{\Omega} := \|F - Y\|^2 + \lambda \Omega(F)$ - regularized square loss function

•
$$\Omega_{L^2}(F) = \sum_{e \in E} \sum_{i,j \in e} \frac{w(e)}{|e|} \left\| \frac{f_i}{\sqrt{\delta_i}} - \frac{f_j}{\sqrt{\delta_j}} \right\|^2$$
 - clique expansion approach [Zhou et al., 2007].

• $\Omega_{TV}(F) = \sum_{e \in E} w(e) \max_{i,j \in e} ||f_i - f_j||^2$ - total variation on hypregraph regularizer [Hein et al., 2013]

Label Spreading

• For Ω_{L^2} we can use the power method, as $\nabla \ell_{\Omega_{I^2}}$ is linear:

$$F^{(k+1)} = \alpha \bar{A}_H F^{(k)} + (1-\alpha)Y,$$

where $\alpha = \lambda/(1 + \lambda)$ and \bar{A}_H is the normalized adjacency matrix of the clique-expanded graph of H.

We call this method "Higher Order Label Spreading"

 For Ω_{TV} we have to use more complex approaches, as it is not easily interpreted as a label diffusion

Hyperedge variance regularization

We introduce a new hypergraph regularization term that aims at reducing the variance across the hyperedge nodes:

•
$$\Omega_{\mu}(F) = \sum_{e \in E} \sum_{i \in e} w(e) \left\| \frac{f_i}{\sqrt{\delta_i}} - \mu\left(\left\{\frac{f_j}{\sqrt{\delta_j}} : j \in e\right\}\right) \right\|^2$$

• When μ is the mean $\mu(\{z_j : j \in e\}) = \frac{1}{|e|} \sum_{j \in e} z_j$, we obtain the variance of $f_i/\sqrt{\delta_i}$ on the hyperedge e

Hyperedge variance regularization

In this presentation we consider:

$$\mu(\{\frac{f_i}{\sqrt{\delta_i}}, i \in e\}) = \operatorname{mean}_p\{\frac{f_i}{\sqrt{\delta_i}} : i \in e\} = (\frac{1}{|e|}\sum_{i \in e} (\frac{f_i}{\sqrt{\delta_i}})^p)^{1/p}$$

With this family of μ functions the embedding F minimizes the variation of each node embedding f_i from the *p*-power mean of the embeddings of the nodes in each hyperedge *i* participates in.

Nonlinear diffusion method

Recall that each node $i \in V$ has a label-encoding vector y_i and a feature vector x_i , hence the initial embedding is (c + d)-dimensional and forms an input matrix U = [Y X]

$$\begin{cases} F^{(k+1)} = \alpha \, \Phi(F^{(k)}) + (1-\alpha) \, U \\ \Phi(F) = D^{-1/2} K W \sigma(K^{\top} \varrho(D^{-1/2}F)) \end{cases}$$

•
$$\varrho(Z_1) := Z_1^p, \ \sigma(Z_2) := (D_E^{-1}Z_2)^{1/p}$$

- We will show that the limit point of the diffusion process
 F_{*} = [Y_{*} X_{*}] ∈ ℝ^{n×(c+d)} exists, is unique and minimizes a normalized
 version of the SSL regularized loss ℓ_{Ωμσ,σ}.
- We will then use F_{*} to train a logistic multi-class classifier based on the known labels i ∈ T

Relation with HOLS

Looking at the iterative processes again:

$$F^{(k+1)} = \alpha \bar{A}_H F^{(k)} + (1-\alpha) Y$$
$$F^{(k+1)} = \alpha \Phi(F^{(k)}) + (1-\alpha) U$$

• Our diffusion process propagates both input node label and feature embeddings through the hypergraph in a manner similar to the case with Ω_{L^2} , but allowing for nonlinear activations, which increases the modeling power.

•
$$\Phi(F) = \bar{A}_H$$
 when σ and ϱ are linear

Related nonlinear diffusion models

$$\Phi(x) = K\sigma(K^{T}(\varrho(x)))$$

Different choices of σ and ϱ are used in different settings:

- If $\rho = id$ and $\sigma(x) = |x|^{p-1}sign(x)$ graph *p*-Laplacian [Saito et al., 2018]
- Trigonometric functionsnetwork oscillators [Battiston et al., 2021] [Schaub et al., 2016]
- Polynomials semi-supervised learning [Arya et al., 2021] [Ibrachim & Gleich, 2021] [Tudisco et al., 2021]

イロト 不同 トイヨト イヨト ヨー ろくで

Main theorem

Theorem

Let Φ and μ be defined as before. Define the real-valued function:

$$\varphi(F) = 2\sqrt{\sum_{e \in E} w(e)} \left\| \mu\left(\left\{\frac{f_j}{\sqrt{\delta_j}}, j \in e\right\}\right) \right\|^2$$

Then, for any starting point $F^{(0)} \ge 0$, the sequence

$$\begin{cases} \tilde{F}^{(k)} = \alpha \, \Phi(F^{(k)}) + (1 - \alpha) \, U \\ F^{(k+1)} = \tilde{F}^{(k)} / \varphi(\tilde{F}^{(k)}) \end{cases} \to F_{\star}$$

such that $\varphi(F_{\star}) = 1$, $F_{\star} > 0$. Moreover, F_{\star} is the solution of

$$\begin{cases} \min_{F} \|F - \frac{U}{\varphi(U)}\|^{2} + \lambda \,\Omega_{\mu}(F) \\ \text{subject to } F \geq 0, \ \varphi(F) = 1, \quad \text{where } \lambda = \alpha/(1-\alpha) \end{cases}$$

Konstantin Prokopchik

Datasets

We use five co-citation and co-authorship hypergraphs: Cora co-authorship, Cora co-citation, Citeseer, Pubmed [Sen et al., 2008] and DBLP [Rossi & Ahmed et al., 2015]. All nodes in the datasets are documents, features are given by the content of the abstract and hyperedge connections are based on either co-citation or co-authorship. The task for each dataset is to predict the topic to which a document belongs. We also consider a foodweb hypergraph, where the nodes are organisms and hyperedges represent directed carbon exchange in the Florida bay **foodweb**. Here we predict the role of the nodes in the food chain.

		DBLP co-authorship	Pubmed co-citation	Cora co-authorship	Cora co-citation	Citeseer co-citation	Foodweb carbon-exchange
V	(#nodes)	43413	19717	2708	2708	3312	122
E	(#hyperedges)	22535	7963	1072	1579	1079	141233
d	(#features)	1425	500	1433	1433	3703	0
с	(#labels)	6	3	7	7	6	3

Competitors

- **HGNN** hypergraph neural network model that uses the clique-expansion Laplacian for the hypergraph convolutional filter [Feng et al., 2019]
- HyperGCN hypergraph convolutional network model with regularization similar to the total variation [Yadati et al., 2019]
- **HTV** confidence-interval subgradient-based method that minimizes the Ω_{TV} loss. [Hein et al., NeurIPS, 2013]
- **APPNP** graph convolutional network model combined with PageRank [Klicpera et al., 2019]
- **SGC** graph convolutional network model without nonlinearities [Wu et al., 2017]
- SCE graph convolutional network model inspired by a sparset-cut problem, where unsupervised network embedding is learned only using negative samples for training.. [Zhang et al., ICML, 2020]

Method comparison

Setup: For HyperND and HTV we run 5-fold CV with label-balanced 50/50 splits to choose α from $\{0.1, 0.2, \ldots, 0.9\}$ and p from $\{1, 2, 3, 5, 10\}$. For the network-based models we use 2 layers and 200 epochs.

	Method	HyperND	APPNP	HGNN	HyperGCN	SGC	SCE	HTV
Data	% labeled							
Citeseer	4.2%	72.13 ±1.00	$63.51 \ \pm 1.39$	$61.78 \hspace{0.1cm} \pm 3.46$	$50.94 {\ \pm 8.27}$	52.66 ± 2.18	$61.28 \ \pm 1.61$	29.63±0.3
Cora-author	5.2%	77.33 ±1.51	$71.34 \ \pm 1.60$	$63.11 \hspace{0.1cm} \pm 2.73$	$61.27 \ \pm 1.06$	$30.46\ \pm 0.22$	$71.96 \ \pm 2.18$	$44.55{\scriptstyle\pm0.6}$
Cora-cit	5.2%	$\textbf{83.13} \pm 1.11$	$82.08 \ \pm 1.61$	$62.88 \ \pm 2.26$	62.78 ± 2.73	$29.08 \ \pm 0.25$	$79.85 \ \pm 1.91$	$35.60{\pm}0.8$
DBLP	4.0%	$\textbf{89.63} \pm 0.12$	$88.94 \ \pm 0.07$	$73.82\ \pm 0.71$	$70.02 \ \pm 0.10$	$43.61 \ \pm 0.17$	$87.50\ \pm 0.19$	$45.19{\scriptstyle \pm 0.9}$
Foodweb	5.0%	$64.09 \ \pm 5.94$	69.12 ± 3.30	$57.09 \ {\pm}2.33$	$56.14 {\ \pm 3.85}$	$57.45 \ \pm 0.47$	$63.50 \ \pm 4.78$	57.23±0.9
Pubmed	0.8%	$\textbf{82.81} \pm 2.16$	$81.50\ \pm 1.18$	$72.57 \ \pm 1.03$	$78.11 \ \pm 0.99$	$54.30 \ \pm 1.11$	$77.57\ {\pm}2.34$	$47.04{\scriptstyle\pm0.8}$

Table: Accuracy (mean \pm standard deviation) over five random samples of the training nodes \mathcal{T} . We compare HyperND and the six baseline methods (APPNP, HGNN, HyperGCN, SGC, SCE, HTV). Overall, HyperND is more accurate than the baselines.

Time comparison

Figure: Execution time on the largest dataset DBLP (for one hyper-parameter setting in each case). All methods are comparable on small datasets.

This presentation was based on the works of two papers:

- F. Tudisco, A. R. Benson, K. Prokopchik, Nonlinear Higher-Order Label Spreading [WWW 2021]
- F. Tudisco, K. Prokopchik, A. R. Benson, A nonlinear diffusion method for semi-supervised learning on hypergraphs, arXiv:2103.14867

Thank You!

Nonlinear Label Spreading on Hypergraph

Parameter dependence

Figure: Performance of the proposed HyperND for varying p and α parameters.

19 / 20

Embedding comparison

Figure: Accuracy (mean and standard deviation) of multinomial logistic regression classifier, using different combinations of features obtained from embeddings.

20 / 20