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Label Spreading (LS) and Semi-Supervised Learning (SSL)

• Given the dataset made out of c classes, In SSL the task is to assign
unknown labels based on a small portion of known input labels

• In LS unknown labels are inferred by “spreading” the known labels
following the edges of a graph

• Data should be represented as a graph that could be either a point
cloud or a relational network
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Higher-order notation

• H = (V , E , ω): E = {e1, . . . , em} and w(e) > 0 is a positive weight

• Every edge can contain an arbitrary number of nodes.

• D = Diag(δ1, . . . , δn), where δi =
∑

e:i∈e w(e) - the (hyper)degree of
node i

• We assume that δi > 0 for all i , i.e. that hypergraph has no isolated
nodes
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Higher-order notation

Incidence matrix:

Ki ,e =

{
1 i ∈ e

0 otherwise.

• W = (w(e1), . . . ,w(em)) - weight matrix

• X ∈ Rn×d , where row xi = Xi ,: ∈ Rd is the feature vector of i ∈ V

• Suppose each node i belongs to one of c classes {1, . . . , c} and we
know the label of a (small) subset T ⊂ V

• Y ∈ Rn×c the input-labels matrix of the nodes, in which Yij = 1 if
node i belongs to class j , and Yij = 0 otherwise.
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Laplacian regularization

• minF ℓΩ := ∥F − Y ∥2 + λΩ(F ) - regularized square loss function

• ΩL2(F ) =
∑

e∈E
∑

i ,j∈e
w(e)
|e|

∥∥∥ fi√
δi
− fj√

δj

∥∥∥2 - clique expansion

approach [Zhou et al., 2007].

• ΩTV (F ) =
∑

e∈E w(e)maxi ,j∈e ∥fi − fj∥2 - total variation on
hypregraph regularizer [Hein et al., 2013]
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Label Spreading

• For ΩL2 we can use the power method, as ∇ℓΩL2
is linear:

F (k+1) = αĀHF
(k) + (1− α)Y ,

where α = λ/(1 + λ) and ĀH is the normalized adjacency matrix of
the clique-expanded graph of H.

We call this method ”Higher Order Label Spreading”

• For ΩTV we have to use more complex approaches, as it is not easily
interpreted as a label diffusion
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Hyperedge variance regularization

We introduce a new hypergraph regularization term that aims at reducing
the variance across the hyperedge nodes:

• Ωµ(F ) =
∑

e∈E
∑

i∈e w(e)
∥∥∥ fi√

δi
− µ

({
fj√
δj
: j ∈ e

})∥∥∥2
• When µ is the mean µ({zj : j ∈ e}) = 1

|e|
∑

j∈e zj , we obtain the

variance of fi/
√
δi on the hyperedge e
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Hyperedge variance regularization

In this presentation we consider:

µ({ fi√
δi
, i ∈ e}) = meanp{

fi√
δi

: i ∈ e} =
( 1

|e|
∑
i∈e

(
fi√
δi
)p
)1/p

With this family of µ functions the embedding F minimizes the variation
of each node embedding fi from the p-power mean of the embeddings of
the nodes in each hyperedge i participates in.
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Nonlinear diffusion method

Recall that each node i ∈ V has a label-encoding vector yi and a feature
vector xi , hence the initial embedding is (c + d)-dimensional and forms an
input matrix U = [Y X ]{

F (k+1) = αΦ(F (k)) + (1− α)U

Φ(F ) = D−1/2KWσ(K⊤ϱ(D−1/2F ))

• ϱ(Z1) := Zp
1 , σ(Z2) := (D−1

E Z2)
1/p

• We will show that the limit point of the diffusion process
F⋆ = [Y⋆ X⋆] ∈ Rn×(c+d) exists, is unique and minimizes a normalized
version of the SSL regularized loss ℓΩµσ,ϱ

.

• We will then use F⋆ to train a logistic multi-class classifier based on
the known labels i ∈ T
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Relation with HOLS

Looking at the iterative processes again:

F (k+1) = αĀHF
(k) + (1− α)Y

F (k+1) = αΦ(F (k)) + (1− α)U

• Our diffusion process propagates both input node label and feature
embeddings through the hypergraph in a manner similar to the case
with ΩL2 , but allowing for nonlinear activations, which increases the
modeling power.

• Φ(F ) = ĀH when σ and ϱ are linear
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Related nonlinear diffusion models

Φ(x) = Kσ(KT (ϱ(x))

Different choices of σ and ϱ are used in different settings:

• If ϱ = id and σ(x) = |x |p−1sign(x) . . . . . . . . . . . . . . . graph p-Laplacian
[Saito et al., 2018]

• exp and log . . . . . . . . . . . . . chemical reactions and consensus dynamics
[Schaft et al., 2016] [Neuhäuser et al., 2021]

• Trigonometric functions . . . . . . . . . . . . . . . . . . . . . . . . . network oscillators
[Battiston et al., 2021] [Schaub et al., 2016]

• Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . semi-supervised learning
[Arya et al., 2021] [Ibrachim & Gleich, 2021] [Tudisco et al., 2021]
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Main theorem

Theorem

Let Φ and µ be defined as before. Define the real-valued function:

φ(F ) = 2

√∑
e∈E

w(e)
∥∥∥µ({ fj√

δj
, j ∈ e

})∥∥∥2
Then, for any starting point F (0) ≥ 0, the sequence{

F̃ (k) = αΦ(F (k)) + (1− α)U

F (k+1) = F̃ (k)/φ(F̃ (k))
→ F⋆

such that φ(F⋆) = 1, F⋆ > 0. Moreover, F⋆ is the solution ofmin
F

∥∥∥F − U

φ(U)

∥∥∥2 + λΩµ(F )

subject to F ≥ 0, φ(F ) = 1, where λ = α/(1− α)
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Datasets

We use five co-citation and co-authorship hypergraphs: Cora
co-authorship, Cora co-citation, Citeseer, Pubmed [Sen et al., 2008] and
DBLP [Rossi & Ahmed et al., 2015]. All nodes in the datasets are
documents, features are given by the content of the abstract and
hyperedge connections are based on either co-citation or co-authorship.
The task for each dataset is to predict the topic to which a document
belongs. We also consider a foodweb hypergraph, where the nodes are
organisms and hyperedges represent directed carbon exchange in the
Florida bay foodweb. Here we predict the role of the nodes in the food
chain.

DBLP Pubmed Cora Cora Citeseer Foodweb
co-authorship co-citation co-authorship co-citation co-citation carbon-exchange

|V | (#nodes) 43413 19717 2708 2708 3312 122
|E | (#hyperedges) 22535 7963 1072 1579 1079 141233
d (#features) 1425 500 1433 1433 3703 0
c (#labels) 6 3 7 7 6 3
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Competitors

• HGNN - hypergraph neural network model that uses the
clique-expansion Laplacian for the hypergraph convolutional filter
[Feng et al., 2019]

• HyperGCN - hypergraph convolutional network model with
regularization similar to the total variation [Yadati et al., 2019]

• HTV - confidence-interval subgradient-based method that minimizes
the ΩTV loss. [Hein et al., NeurIPS, 2013]

• APPNP - graph convolutional network model combined with
PageRank [Klicpera et al., 2019]

• SGC - graph convolutional network model without nonlinearities [Wu
et al., 2017]

• SCE - graph convolutional network model inspired by a sparset-cut
problem, where unsupervised network embedding is learned only using
negative samples for training.. [Zhang et al., ICML, 2020]
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Method comparison

Setup: For HyperND and HTV we run 5-fold CV with label-balanced
50/50 splits to choose α from {0.1, 0.2, . . . , 0.9} and p from
{1, 2, 3, 5, 10}. For the network-based models we use 2 layers and 200
epochs.

Method HyperND APPNP HGNN HyperGCN SGC SCE HTV

Data % labeled

Citeseer 4.2% 72.13 ±1.00 63.51 ±1.39 61.78 ±3.46 50.94 ±8.27 52.66 ±2.18 61.28 ±1.61 29.63±0.3

Cora-author 5.2% 77.33 ±1.51 71.34 ±1.60 63.11 ±2.73 61.27 ±1.06 30.46 ±0.22 71.96 ±2.18 44.55±0.6

Cora-cit 5.2% 83.13 ±1.11 82.08 ±1.61 62.88 ±2.26 62.78 ±2.73 29.08 ±0.25 79.85 ±1.91 35.60±0.8

DBLP 4.0% 89.63 ±0.12 88.94 ±0.07 73.82 ±0.71 70.02 ±0.10 43.61 ±0.17 87.50 ±0.19 45.19±0.9

Foodweb 5.0% 64.09 ±5.94 69.12 ±3.30 57.09 ±2.33 56.14 ±3.85 57.45 ±0.47 63.50 ±4.78 57.23±0.9

Pubmed 0.8% 82.81 ±2.16 81.50 ±1.18 72.57 ±1.03 78.11 ±0.99 54.30 ±1.11 77.57 ±2.34 47.04±0.8

Table: Accuracy (mean ± standard deviation) over five random samples of the
training nodes T . We compare HyperND and the six baseline methods (APPNP,
HGNN, HyperGCN, SGC, SCE, HTV). Overall, HyperND is more accurate than
the baselines.
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Time comparison

APPNP HGNN HyperGCN SGC SCE HTV HyperND

102

103

104

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

Figure: Execution time on the largest dataset DBLP (for one hyper-parameter
setting in each case). All methods are comparable on small datasets.
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Papers

This presentation was based on the works of two papers:

• F. Tudisco, A. R. Benson, K. Prokopchik, Nonlinear Higher-Order
Label Spreading [WWW 2021]

• F. Tudisco, K. Prokopchik, A. R. Benson, A nonlinear diffusion
method for semi-supervised learning on hypergraphs,
arXiv:2103.14867
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Thank You!
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Parameter dependence
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Figure: Performance of the proposed HyperND for varying p and α parameters.
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Embedding comparison
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Figure: Accuracy (mean and standard deviation) of multinomial logistic regression
classifier, using different combinations of features obtained from embeddings.
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