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Introduction



Decaying matrices

Exponential off-diagonal decay: {A,},, A, € C"™",
I[Anli] < Cpl'=il, for all i,

C>0and 0 < p<1areindependent of n.
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Decaying matrices

Exponential off-diagonal decay: {A,},, A, € C"™",
I[Anli] < Cpl'=il, for all i,

C>0and 0 < p<1areindependent of n.

For all m define the m-banded truncation of A, as

[A(m)]: [An]u if‘i_.j| <m,
n 0 otherwise.

For all £ > 0 there is m independent of ns.t. ||A, — AE{N)HI, < ¢ for all n,

where p = 1,2, 00 [Benzi-Razouk, 2007].
b )

AY is m-banded = has O(n) non-zero entries.
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Decay for matrix functions

Matrix functions: A € C"*" Hermitian, A = UAU"* spectral
decomposition, A = diag(A1,...,A,). Then f(A) is defined by

f(A) = UF(NU*,  F(A) = diag(f(A1), ..., F(An)).

4/18



Decay for matrix functions

Matrix functions: A € C"*" Hermitian, A = UAU"* spectral
decomposition, A = diag(A1,...,A,). Then f(A) is defined by

f(A) = UF(NU*,  F(A) = diag(f(A1), ..., F(An)).

Given a set S, define £,(f,S) = inf,,cp, sup..s |F(x) — pr(x)|, where
Py is the set of polynomials with degree at most k.
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Decay for matrix functions

Matrix functions: A € C"*" Hermitian, A = UAU"* spectral
decomposition, A = diag(A1,...,A,). Then f(A) is defined by

f(A) = UF(NU*,  F(A) = diag(f(A1), ..., F(An)).

Given a set S, define £,(f,S) = inf,,cp, sup..s |F(x) — pr(x)|, where
Py is the set of polynomials with degree at most k.

e A€ C™" Hermitian and m-banded, o(A) C S, Ex(f,S) < Cpk
for all k > 0. Then

F(A);] < Cp'7 L forall i .

The bound depends only on § and on m, not on n.
If {Ap}niss.t. 0(A,) C S and A, is m-banded for all n, then
{f(An)}n has an exponential off-diagonal decay.
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Decay for matrix functions

Matrix functions: A € C"*" Hermitian, A = UAU"* spectral
decomposition, A = diag(A1,...,A,). Then f(A) is defined by

f(A) = UF(NU*,  F(A) = diag(f(A1), ..., F(An)).

Given a set S, define £,(f,S) = inf,,cp, sup..s |F(x) — pr(x)|, where
Py is the set of polynomials with degree at most k.

e A€ C™" Hermitian and m-banded, o(A) C S, Ex(f,S) < Cpk
for all k > 0. Then

F(A);] < Cp'7 L forall i .

The bound depends only on § and on m, not on n.
If {Ap}niss.t. 0(A,) C S and A, is m-banded for all n, then
{f(An)}n has an exponential off-diagonal decay.
e If Ais not m-banded, it still holds that |[f(A)];| < Cp(¥) for all
i # j, where d(i,j) is the geodesic distance on G(A).
Under suitable hypotheses on G(A) [Frommer-Schimmel-Schweitzer, 2021],
f(A) is close to a sparse matrix. 4/18



Spectral projector

H e C"™*" Hermitian, O‘(H) C [b1731] @] [az,bz], by < a1 < ax < by.

The spectral projector associated with [by, a1] is given by:

1 if x < p,
P=hu(H), h(x)=41/2 ifx=p,
0 if x > p,

where p is arbitrary between a; and a,.
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Spectral projector

H e C"™*" Hermitian, O‘(H) C [b1731] @] [ag,bz], by < a1 < ax < by.

The spectral projector associated with [by, a1] is given by:

1 if x < p,
P=hu(H), h(x)=41/2 ifx=p,
0 if x > p,

where p is arbitrary between a; and a,.

e The function h,(x) is not continuous over [by, by].
e Invariance for linear transformations: if H = cH + d, then
P = P = hy(H), where i = cit + d. Note that o(H) = co(H) + d.
e We can assume o(H) C [~b,—a|U|a,b], 0 <a< b,sou=0and
ho(x) =: h(x).
o h(x) = (1—sign(x))/2, so |[P];| = |[sign(H)];|/2 for i # j.
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Previous result
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Previous result

Idea: sign(x) = x(x2)~1/2.

a(y) = yY2, y € [%, b?] = xqu(x?) ~ sign(x), x € [-b,—a] U[a, b].
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Previous result

Idea: sign( ) = x(x?)"1/2
a(y) = y/2, y € [2%, b?] = xqi(x?) ~ sign(x), x € [~b, —a] U [a, b].

Let H be Hermitian and m-banded with o(H) C [—b, —a] U [a, b].
Then, for 1 < y < i := 22,

li=jl _

2Pl = lsen(H)lsl < 22200 (2) 77 forat i),

_ 1 _ [ p24a2 Pl b2
where M(X) = U=’ Zy = {bz_az 2x 5 -
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Previous result

Idea: sign( ) = x(x?)"1/2
ak(y) =y~ 12, y € [a%, b?] = xqi(x?) =~ sign(x), x € [-b, —a] U [a, b].

Let H be Hermitian and m-banded with o(H) C [—b, —a] U [a, b].
Then, for 1 < y < i := 22,

li=jl _

2Pl = lsen(H)lsl < 22200 (2) 77 forat i),

where M(x) = bt+a’ X2+1] L

1,
\/%v 0 — b2 — 32 2x 2
For i,j fixed, we can minimize in Y.

The optimized bound numerically behaves as
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Refined decay bounds




Exploiting an integral representation of sign(x)

2 o0
sign(H) = 7/ H(H? + £21)~tdt,
0

(sl < 2 [ )

Idea: Bound |[H(H? + t2)71];| and integrate [Benzi-Simoncini, 2015].
ij

qr(y) =~ (v + t2)7! = xqu(x?) = x(x? + t?) 71, and the best
polynomial approximation of the inverse gives a single bound.
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Exploiting an integral representation of sign(x)

sign(H) = g/ H(H? + t21)~ 1 dt,
0

™

(sl < 2 [ )

Idea: Bound |[H(H? + t?)71];| and integrate [Benzi-Simoncini, 2015].
ak(y) = (v + t2)71 = xqu(x?) = x(x? + t?)71, and the best
polynomial approximation of the inverse gives a single bound.

Theorem [Benzi-R., 2021]
Let H be Hermitian, m-banded, o(H) C [—b, —a] U [a, b]. Then

1+ //mz bfa \771' o
|[P]j] j( \4 /a) <b ‘ a> for all i, . (1)

We get the previous behaviour without optimization.
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Asymptotically optimal bound

The last bound was not the best from an asymptotic point of view.
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Asymptotically optimal bound

The last bound was not the best from an asymptotic point of view.

It is shown (see [Eremenko-Yuditskii, 2007]) that

Ex(sign(x), [~b, —a] U[a, b]) = O (\/1} <‘; - z> ) 2s k = 0.

If H= H* is Hermitian and m-banded, o(H) C [—b, —a] U [a, b], then

li—jl

sign(H)];| < Cl (b— )

b+a

for some C > 0.

However, such C is still unknown.
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Asymptotically optimal bound

Let H be Hermitian, m-banded, o(H) C [—b, —a] U [a, b]. Let
CG=5L, G==2t ando<r<7:= 1/%. Then

2ab’ 8a3h3
K
ALyl < —2D Ky )
for |i — j| > m, where and

2

_ (14b/a)’ 1
Ki(r) = ;AR =} (1 n \/b/a)

q(1) < q(0) = Z;j = optimal asymptotic behaviour for all 7 > 0.

We can also optimize to get the best possible bound.
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Comparison between the bounds

H € C50x150 Hermitian and tridiagonal.

o(H) C [-1,-0.2] U [0.2, 1] uniformly distributed.

10°
< qg5h
=
m
&
010
210
Exact ~ \
777777 Bound old
- ound (1)
- = - -Bound (2) optimized
107 : .
0 50 100 150

k

Solid line: dp(k) = max|;_jj—« |P;|. Other lines: bounds for |i — j| = k.

Remark: The bounds are independent of the size. )
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Comparison between the bounds

H e C2000x2000 Harmitian, 20-banded.

o(H) C [-1,-0.3] U [0.3, 1] uniformly distributed.

Decay for |i — j| = k

1010

Exact

- Bound old
- Bound (1)
-Bound (2) optimized

1015

200 400 600 800 1000 1200 1400 1600 1800 2000
k

Solid line: dp(k) = max|;_jj— |P;|. Other lines: bounds for |/ — j| = k.

Remark: The bounds are independent of the size.
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Bounds related with the eigenvalue distribution

The decay of the entries of A~ benefits from certain eigenvalue
distributions [Frommer-Schimmel-Schweitzer, 2018].

Does a similar property hold for spectral projectors?

12/18



Bounds related with the eigenvalue distribution

Let H = H* be m-banded with o(H) C [—b,—a] U [a, b]. Let
b=by> by >...,> b, =a, with v < n, be the distinct values of ||
for A € o(H). Then

1Pl < Coge'm 4" fore=o0,1,..., [l -

2m

. ®

(SIS

where

13/18



Bounds related with the eigenvalue distribution

Let H = H* be m-banded with o(H) C [—b,—a] U [a, b]. Let
b=by> by >...,> b, =a, with v < n, be the distinct values of ||

for A € o(H). Then

. ®

(SIS

I1P;]l < 4 forE:O,l,...,P’;njl—

where

For fixed i, j, when / increases:

e q; << qp_1 when by << by_1.

e Smaller exponent: trade-off with the geometric rate.

e One or few isolated eigenvalue of maximum modulus do not
contribute to the decay.

Certain eigenvalue distributions lead to superexponential decay.
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One isolated eigenvalue

H e C3000x3000 Hermitian, 20-banded,
o(H) C {~1} U[=05,~0.1] U[0.1,0.5], and —1 has multiplicity 10,

10°

105+

100

1015 L L L L L
500 1000 1500 2000 2500 3000

Bound (3) with ¢ = 1 catches the behaviour.
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Superexponential decay

H € C300%3%0 Hermitian, tridiagonal, o(H) C [-1, —0.1] U [0.1,1].

10
<
\~ Exact
~ Bound with £=0
s S Bound with £=1,...,50
N R = = = +Optimized bound
<
.
-5 \\
10 R
\
\
\
\
\
\
\
\
: \
1010 \
\
\
\
\
N Wy
\
\
107 \
L L L L L L L L L L L L \ L
1 08 06 -04 -02 0 02 04 06 08 1 50 100 150 200 250 300

Left: o(H), symmetric with respect to the origin. There are several isolated
eigenvalues at the extremes. They cluster near the spectral gap.

Right: Exact decay compared with the bounds.
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Superexponential decay

H € C300%3%0 Hermitian, tridiagonal, o(H) C [-1, —0.1] U [0.1,1].

10
<
~ o Exact
ht Bound with £=0
~ R Bound with £=1,...,50
< = = = -Optimized bound
<
<
<
10° N
<
.
<
.
<
<
<
<
S
-10 \\
10701 R
\
N
\
.
\
<

s |

1005 - A 1
\
1 08 06 -04 -02 0 02 04 06 08 1 50 100 150 200 250 300

Left: o(H), no symmetry is present. There are several isolated eigenvalues at
the extremes. They cluster near the spectral gap.
Right: Exact decay compared with the bounds.
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Conclusions

We developed three new decay bounds for the entries of spectral
projectors.

e The first is a single bound that describes well the decay.

e The second is optimal in the sense of polynomial approximation.

e The third catches the behaviour in presence of extremal isolated
eigenvalues.

Some open problems are:

e Find an appropriate bound for the case of nonsymmetric intervals.
e Try new strategies to obtain smaller constant factors.

e Establish connections with more complicated eigenvalue
distributions.
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Non-symmetric intervals

Ei(sign(x), [~ b1, —a] U [a, bo]) = O(k~2e77%),

— K K—x . b4a . o o
"= e e (=log(§22) if bu = b2 = b) , where

f_llX((l—XZ)(X—Fbl/a)(x—bz/a))—l/z dx
f—ll((l_xz)(x+b1/a)(x—b2/a))—1/2dX .

K:

10710

107"

0 50 100 150 200 250 300

H € €39%3% tridiagonal, o(H) C [-0.5,—0.1] U [0.1,1]. Rate with C = 1.
Dashed line: b; = 0.5, b = 1. Dotted line: by = b, = 1.



Inverse function and general analytic functions

o f(A)=A"1 o(A) C[a,b], 0 < a< b. In this case
Ex(x71,[a, b]) = Cgk*1 [Meinardus, 1967], where

C=(1++/b/a)’/2b, q=(Vb-a)/(Vb+a).

i

Ais m-banded = |[A"'];| < Cq%, i # j [Demko-Moss-Smith, 1984].
Remark: g = (y/b/a—1)/(y/b/a+ 1) = connection with CG.
e 0(A) C [-1,1], f analytic over the ellipse &£, with foci in £1 and
sum of semiaxes xy > 1. From Bernstein's Theorem [Meinardus, 1967]

2M(x) [1\* B
B 1) < 20 (1)L M00 = max @)L

Ais m-banded = [[£(A)];| < 23] (%) " [Benzi-Golub, 1999].

Remark: We can shift and scale any A to have o(A) C [-1,1].




Insights on bound (1)

o |[sign(H)]y < 2 57 [[H(H? + t21)~1]| dt.

e gi(y) = (y + t2)71 of best approximation, y € [a?, b?]. Then
Eorra(x(x* + 7)1 [=b, —a] U[a, b]) < [Ix(x* + %) " = xqu(x*) [l
< by + )7 = aW)ll = b El(y + )1 a7 b7)).

= b C(t)q(t)**,
_ b2 1212 2 2 Vb2 t2 /a2 42
Where C(t) = (]. + az+t2) /2(b +t ), q(t) = W
o |[H(H? +2)71y] < bC(t)q(t)"%-é
° f0°°|[H (H? + t21)71);|dt < f0°° dt<f0°°bC t)dt - q(0).

® fo dt—fo b2+r2)dt+jo 232+t2)dt+f0 mmd
First= 7 /4b; Second= 7 /4a; Third< 7/2v ab.

o [[sign(H)] | < % (1 +2y/b/a+ b/a) q(0) = 3 (1 + \/;)2 (Zli)




Insights on bound (2)

ldea: a =

li—jl 1  Phabib? g
2m G 1= 2ap G = sap 0< T <T = o

Jo~ C(t)a(t)® df— ./0 C(t)q(t)* dt + [ C(t)q(t)* dt

(t)* < q(0)~ e—(G—T"G)at’ £, 0 <t <. Then

Oﬁ C(t)g(t)™ dt < C(0 fo t)dt < C(0)q(0) fooo e_(cl—TZCQ)atz dt

~ €(0)q(0)"/(/ " 1

Q

—

m

o 7 C(D)q(e)de < ¥ C(t)dt-q(r)".



Insights on bound (3)

Bound for |[H(H? + t21)~1];].

b=by> by >---> b, =a moduli of eigenvalues of H.
(-1
X
R = 1— ——
«(x) ,l_g< b?ﬂ)
Re(b? +t?)=0fori=0,...,0 =1, |[R(b? +t?)| < 1fori={,...,v
and Ry(0) = 1.

pk(x) = %k(x) — Gr—e(x), qr—e(x) = 1/x best, x € [a® + t2, b? + t?], s0

1 2
e P ) = xR 4 1) (m qi—e(x° f2)>

2 2
max —— — XPr(X° + t
x=bor.by, | X2 + 2 Pi( )

1
<bp max |——— — qge_o(x®> + 2
S Dy ey X2 T 2 Ak z( )

<by Cg(t)Qz(t)kJrl.



Spectra used for the experiments

Symmetric:

D = (—1y

149 149

-1 1
1+o.9<1—’ —2y/1- >]e[—1,—0.1]u[0.1,1],

fori=1,...,150 and j =0,1.

Non symmetric:

i—1 i—1
1+0.9 (1 555~ 21~ 00 )] €[-1,-0.1]U0.1,1],

fori=1,...,300.

A= (=1)
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