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Introduction



Decaying matrices

Exponential off-diagonal decay: {An}n, An ∈ Cn×n,

|[An]ij | ≤ Cρ|i−j|, for all i , j ,

C > 0 and 0 < ρ < 1 are independent of n.

For all m define the m-banded truncation of An as

[A(m)
n ]ij =

{
[An]ij if |i − j | ≤ m,
0 otherwise.

For all ε > 0 there is m independent of n s.t. ‖An − A(m)
n ‖p ≤ ε for all n,

where p = 1, 2,∞ [Benzi-Razouk, 2007].

A(m)
n is m-banded =⇒ has O(n) non-zero entries.
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Decay for matrix functions

Matrix functions: A ∈ Cn×n Hermitian, A = UΛU∗ spectral
decomposition, Λ = diag(λ1, . . . , λn). Then f (A) is defined by

f (A) = Uf (Λ)U∗, f (Λ) = diag(f (λ1), . . . , f (λn)).

Given a set S, define Ek(f ,S) = infpk∈Pk supx∈S |f (x)− pk(x)|, where
Pk is the set of polynomials with degree at most k.

• A ∈ Cn×n Hermitian and m-banded, σ(A) ⊂ S, Ek(f ,S) ≤ Cρk

for all k ≥ 0. Then

|[f (A)]ij | ≤ Cρ
|i−j|

m −1 for all i 6= j .

The bound depends only on S and on m, not on n.
If {An}n is s.t. σ(An) ⊂ S and An is m-banded for all n, then
{f (An)}n has an exponential off-diagonal decay.

• If A is not m-banded, it still holds that |[f (A)]ij | ≤ Cρd(i,j) for all
i 6= j , where d(i , j) is the geodesic distance on G(A).
Under suitable hypotheses on G(A) [Frommer-Schimmel-Schweitzer, 2021],
f (A) is close to a sparse matrix.
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Spectral projector

H ∈ Cn×n Hermitian, σ(H) ⊂ [b1, a1] ∪ [a2, b2], b1 < a1 < a2 < b2.

The spectral projector associated with [b1, a1] is given by:

P = hµ(H), hµ(x) =


1 if x < µ,

1/2 if x = µ,

0 if x > µ,

where µ is arbitrary between a1 and a2.

• The function hµ(x) is not continuous over [b1, b2].
• Invariance for linear transformations: if H̃ = cH + d , then

P = P̃ = hµ̃(H̃), where µ̃ = cµ+ d . Note that σ(H̃) = c σ(H) + d .
• We can assume σ(H) ⊂ [−b,−a] ∪ [a, b], 0 < a < b, so µ = 0 and

h0(x) =: h(x).
• h(x) = (1− sign(x))/2, so |[P]ij | = |[sign(H)]ij |/2 for i 6= j .
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Previous result

Idea: sign(x) = x(x2)−1/2.
qk(y) ≈ y−1/2, y ∈ [a2, b2] =⇒ xqk(x2) ≈ sign(x), x ∈ [−b,−a] ∪ [a, b].

Theorem [Benzi-Boito-Razouk, 2013]

Let H be Hermitian and m-banded with σ(H) ⊂ [−b,−a] ∪ [a, b].
Then, for 1 < χ < χ̄ := b+a

b−a ,

2|[P]ij | = |[sign(H)]ij | ≤
2bM(χ)
χ− 1

(
1
χ

) |i−j|
2m −

1
2

for all i 6= j ,

where M(χ) = 1√z0
, z0 =

[
b2+a2

b2−a2 − χ2+1
2χ

]
b2−a2

2 .

For i , j fixed, we can minimize in χ.

The optimized bound numerically behaves as
(

b−a
b+a

) |i−j|
2m .
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Refined decay bounds



Exploiting an integral representation of sign(x)

sign(H) = 2
π

∫ ∞
0

H(H2 + t2I)−1 dt,

|[sign(H)]ij | ≤
2
π

∫ ∞
0
|[H(H2 + t2I)−1]ij | dt.

Idea: Bound |[H(H2 + t2)−1]ij | and integrate [Benzi-Simoncini, 2015].

qk(y) ≈ (y + t2)−1 =⇒ xqk(x2) ≈ x(x2 + t2)−1, and the best
polynomial approximation of the inverse gives a single bound.

Theorem [Benzi-R., 2021]

Let H be Hermitian, m-banded, σ(H) ⊂ [−b,−a] ∪ [a, b]. Then

|[P]ij | ≤
(1 +

√
b/a)2

4

(
b − a
b + a

) |i−j|
2m −

1
2

for all i , j . (1)

We get the previous behaviour without optimization.
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Asymptotically optimal bound

The last bound was not the best from an asymptotic point of view.

It is shown (see [Eremenko-Yuditskii, 2007]) that

Ek(sign(x), [−b,−a] ∪ [a, b]) = O
(

1√
k

(
b − a
b + a

) k
2
)

as k →∞.

If H = H∗ is Hermitian and m-banded, σ(H) ⊂ [−b,−a] ∪ [a, b], then

|[sign(H)]ij | ≤
C√
|i−j|

m − 1

(
b − a
b + a

) |i−j|
2m −

1
2

,

for some C > 0.

However, such C is still unknown.

8/18



Asymptotically optimal bound

The last bound was not the best from an asymptotic point of view.

It is shown (see [Eremenko-Yuditskii, 2007]) that

Ek(sign(x), [−b,−a] ∪ [a, b]) = O
(

1√
k

(
b − a
b + a

) k
2
)

as k →∞.

If H = H∗ is Hermitian and m-banded, σ(H) ⊂ [−b,−a] ∪ [a, b], then

|[sign(H)]ij | ≤
C√
|i−j|

m − 1

(
b − a
b + a

) |i−j|
2m −

1
2

,

for some C > 0.

However, such C is still unknown.

8/18



Asymptotically optimal bound

Theorem [Benzi-R., 2021]

Let H be Hermitian, m-banded, σ(H) ⊂ [−b,−a] ∪ [a, b]. Let
C1 = 1

2ab , C2 = a2+ab+b2

8a3b3 , and 0 < τ < τ̄ :=
√

C1
C2
. Then

|[P]ij | ≤
K1(τ)√
|i−j|

m − 1

(
b − a
b + a

) |i−j|
2m −

1
2

+ K2 q(τ)
|i−j|

2m −
1
2 (2)

for |i − j | ≥ m, where q(τ) =
√

b2+τ 2−
√

a2+τ 2√
b2+τ 2+

√
a2+τ 2 and

K1(τ) = (1+b/a)2

2
√

2π(C1−τ 2C2)
, K2 = 1

4

(
1 +

√
b/a
)2
.

q(τ) < q(0) = b−a
b+a =⇒ optimal asymptotic behaviour for all τ > 0.

We can also optimize to get the best possible bound.
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Comparison between the bounds

H ∈ C150×150 Hermitian and tridiagonal.

σ(H) ⊂ [−1,−0.2] ∪ [0.2, 1] uniformly distributed.

0 50 100 150

10-15

10-10

10-5

100

Solid line: dP(k) = max|i−j|=k |Pij |. Other lines: bounds for |i − j| = k.

Remark: The bounds are independent of the size.
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Comparison between the bounds

H ∈ C2000×2000 Hermitian, 20-banded.

σ(H) ⊂ [−1,−0.3] ∪ [0.3, 1] uniformly distributed.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10-15

10-10

10-5

100

Solid line: dP(k) = max|i−j|=k |Pij |. Other lines: bounds for |i − j| = k.

Remark: The bounds are independent of the size.
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Bounds related with the eigenvalue distribution

The decay of the entries of A−1 benefits from certain eigenvalue
distributions [Frommer-Schimmel-Schweitzer, 2018].

Does a similar property hold for spectral projectors?
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Bounds related with the eigenvalue distribution

Theorem [Benzi-R., 2021]

Let H = H∗ be m-banded with σ(H) ⊂ [−b,−a] ∪ [a, b]. Let
b = b0 > b1 > . . . , > bν = a, with ν ≤ n, be the distinct values of |λ|
for λ ∈ σ(H). Then

|[Pij ]| ≤ C`q`
|i−j|

2m −
1
2−` for ` = 0, 1, . . . ,

⌈
|i−j|
2m −

1
2

⌉
, (3)

where C` = 1
4

(
1 +

√
b`
a

)2
, q` = b`−a

b`+a .

For fixed i , j , when ` increases:

• q` << q`−1 when b` << b`−1.
• Smaller exponent: trade-off with the geometric rate.
• One or few isolated eigenvalue of maximum modulus do not

contribute to the decay.
• Certain eigenvalue distributions lead to superexponential decay.
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One isolated eigenvalue

H ∈ C3000×3000, Hermitian, 20-banded,
σ(H) ⊂ {−1} ∪ [−0.5,−0.1] ∪ [0.1, 0.5], and −1 has multiplicity 10.

0 500 1000 1500 2000 2500 3000
10-15

10-10

10-5

100

Bound (3) with ` = 1 catches the behaviour.
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Superexponential decay

H ∈ C300×300, Hermitian, tridiagonal, σ(H) ⊂ [−1,−0.1] ∪ [0.1, 1].

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 50 100 150 200 250 300

10-15

10-10

10-5

100

Left: σ(H), symmetric with respect to the origin. There are several isolated
eigenvalues at the extremes. They cluster near the spectral gap.
Right: Exact decay compared with the bounds.
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H ∈ C300×300, Hermitian, tridiagonal, σ(H) ⊂ [−1,−0.1] ∪ [0.1, 1].

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 50 100 150 200 250 300

10-15

10-10

10-5

100

Left: σ(H), no symmetry is present. There are several isolated eigenvalues at
the extremes. They cluster near the spectral gap.
Right: Exact decay compared with the bounds.
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Conclusions

We developed three new decay bounds for the entries of spectral
projectors.

• The first is a single bound that describes well the decay.
• The second is optimal in the sense of polynomial approximation.
• The third catches the behaviour in presence of extremal isolated

eigenvalues.

Some open problems are:

• Find an appropriate bound for the case of nonsymmetric intervals.
• Try new strategies to obtain smaller constant factors.
• Establish connections with more complicated eigenvalue

distributions.
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Non-symmetric intervals

Ek(sign(x), [−b1,−a] ∪ [a, b2]) = O(k− 1
2 e−ηk),

η =
∫ K
−1

K−x√
(1−x2)(x+b1/a)(x−b2/a)

dx
(

= log
(

b+a
b−a

)
if b1 = b2 = b

)
, where

K =
∫ 1

−1
x((1−x2)(x+b1/a)(x−b2/a))−1/2 dx∫ 1

−1
((1−x2)(x+b1/a)(x−b2/a))−1/2 dx

.

0 50 100 150 200 250 300

10-15

10-10

10-5

100

H ∈ C300×300, tridiagonal, σ(H) ⊂ [−0.5,−0.1] ∪ [0.1, 1]. Rate with C = 1.
Dashed line: b1 = 0.5, b2 = 1. Dotted line: b1 = b2 = 1.



Inverse function and general analytic functions

• f (A) = A−1, σ(A) ⊂ [a, b], 0 < a < b. In this case
Ek(x−1, [a, b]) = Cqk+1 [Meinardus, 1967], where

C = (1 +
√

b/a)2/2b, q = (
√

b −
√

a)/(
√

b +
√

a).

A is m-banded =⇒ |[A−1]ij | ≤ Cq
|i−j|

m , i 6= j [Demko-Moss-Smith, 1984].
Remark: q = (

√
b/a − 1)/(

√
b/a + 1) =⇒ connection with CG.

• σ(A) ⊂ [−1, 1], f analytic over the ellipse Eχ with foci in ±1 and
sum of semiaxes χ > 1. From Bernstein’s Theorem [Meinardus, 1967]

Ek(f , [−1, 1]) ≤ 2M(χ)
χ− 1

(
1
χ

)k
, M(χ) = max

z∈Eχ
|f (z)|.

A is m-banded =⇒ |[f (A)]ij | ≤ 2M(χ)
χ−1

(
1
χ

) |i−j|
m −1

[Benzi-Golub, 1999].
Remark: We can shift and scale any A to have σ(A) ⊂ [−1, 1].



Insights on bound (1)

• |[sign(H)]ij | ≤ 2
π

∫∞
0 |[H(H2 + t2I)−1]ij | dt.

• qk(y) ≈ (y + t2)−1 of best approximation, y ∈ [a2, b2]. Then

E2k+1(x(x2 + t2)−1, [−b,−a] ∪ [a, b]) ≤ ‖x(x2 + t2)−1 − xqk(x2)‖∞
≤ b ‖(y + t2)−1 − qk(y)‖ = b Ek((y + t2)−1, [a2, b2]).
= b C(t)q(t)k+1,

where C(t) = (1 +
√

b2+t2

a2+t2 )2/2(b2 + t2), q(t) =
√

b2+t2−
√

a2+t2√
b2+t2+

√
a2+t2 .

• |[H(H2 + t2)−1]ij | ≤ b C(t)q(t)
|i−j|

2m −
1
2 .

•
∫∞

0 |[H(H2 + t2I)−1]ij | dt ≤
∫∞

0 C(t)q(t) dt ≤
∫∞

0 b C(t) dt · q(0).
•
∫∞

0 C(t) dt =
∫∞

0
1

2(b2+t2) dt +
∫∞

0
1

2(a2+t2) dt +
∫∞

0
1√

b2+t2
√

a2+t2 dt.
First= π/4b; Second= π/4a; Third≤ π/2

√
ab.

• |[sign(H)]ij | ≤ 1
2

(
1 + 2

√
b/a + b/a

)
q(0) = 1

2

(
1 +

√
b
a

)2 (
b−a
b+a

)



Insights on bound (2)

Idea: α = |i−j|
2m −

1
2 , C1 = 1

2ab , C2 = a2+ab+b2

8a3b3 , 0 < τ < τ̄ :=
√

C1
C2
,∫∞

0 C(t)q(t)α dt =
∫ τ

0 C(t)q(t)α dt +
∫∞
τ

C(t)q(t)α dt

• q(t)α ≤ q(0)αe−(C1−τ 2C2)αt2 for 0 ≤ t ≤ τ . Then∫ τ
0 C(t)q(t)α dt ≤ C(0)

∫ τ
0 q(t) dt ≤ C(0)q(0)

∫∞
0 e−(C1−τ 2C2)αt2 dt

≈ C(0)q(0)α/
√
|i−j|

m − 1.

•
∫∞
τ

C(t)q(t)α dt ≤
∫∞

0 C(t) dt · q(τ)α.



Insights on bound (3)

Bound for |[H(H2 + t2I)−1]ij |.

b = b0 > b1 > · · · > bν = a moduli of eigenvalues of H.

R`(x) =
`−1∏
i=0

(
1− x

b2
i + t2

)
R`(b2

i + t2) = 0 for i = 0, . . . , `− 1, |R`(b2
i + t2)| < 1 for i = `, . . . , ν

and R`(0) = 1.

pk(x) = 1−R`(x)
x − qk−`(x), qk−`(x) ≈ 1/x best, x ∈ [a2 + t2, b2

` + t2], so
x

x2 + t2 − xpk(x2 + t2) = xR`(x2 + t2)
(

1
x2 + t2 − qk−`(x2 + t2)

)

max
x=b0,...,bν

∣∣∣∣ x
x2 + t2 − xpk(x2 + t2)

∣∣∣∣
≤b` max

x=b`,...,bν

∣∣∣∣ 1
x2 + t2 − qk−`(x2 + t2)

∣∣∣∣
≤b`C`(t)q`(t)k+1.



Spectra used for the experiments

Symmetric:

λ
(j)
i = (−1)j

[
1 + 0.9

(
1− i − 1

149 − 2
√
1− i − 1

149

)]
∈ [−1,−0.1] ∪ [0.1, 1],

for i = 1, . . . , 150 and j = 0, 1.

Non symmetric:

λi = (−1)i

[
1 + 0.9

(
1− i − 1

299 − 2
√
1− i − 1

299

)]
∈ [−1,−0.1] ∪ [0.1, 1],

for i = 1, . . . , 300.
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