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Univariate vs bivariate matrix functions

We may define univariate matrix functions in several ways, for f (z) =
∑

i≥0 fiz
i ,

f (A)v =
∑
i≥0

fiA
iv =

1

2πi

ˆ
Γ

f (z)(zI − A)−1v dz.

This can be generalized to the bivariate case, by setting for f (z,w) =
∑

i,j≥0 fijz
iw j :

f {A,BT}(C) =
∑
i,j≥0

fijA
iCBj = − 1

4π2

ˆ
ΓA

ˆ
ΓB

f (z,w)(zI − A)−1C(zI − BT )−1 dz dw .

• Most of the properties of univariate matrix functions carry over to this more general

setting.

• Similarities on A,B behave well:

f {A,BT}(C) = V · f {V−1AV , (W−1BW )T}(V−1CW ) ·W−1,

for any invertible matrices V ,W .
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Applications

• if X satisfies AX + XB = C, then

C = f {A,BT}(X ), f (x, y) = x + y ,

and therefore the solution of a Sylvester equation is expressed as:

X = g{A,BT}(C), g(x, y) =
1

x + y
.

• Similar ideas apply for generalized Sylvester equations of the form

p{A,BT}(X ) = C, whose solution is expressed using f (x, y) := 1
p(x,y) .

• f {A,AT}(H) is the Frechét derivative of g(z) at A in the direction H, if f (z,w) is the

divided difference of g(z).

• There is a nice connection with Kronecker sums; if A = BT ⊗ I + I ⊗ A then

vec(X ) = f (A)(vec(C)), =⇒ X = g{A,BT}(C), g(x, y) = f (x + y).
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Evaluation in the diagonalizable case

f (x, y) =
∑
ij

fijx
iy j =⇒ f {A,BT}(C) =

∑
ij

fijA
iCBj .

When A,B are diagonalizable, i.e., A = VADAV
−1
A and B = VBDBV

−1
B :

f {A,BT}(C) = VA

∑
ij

fijD
i
AV

−1
A CVBD

j
BV

−1
B ,

= VAf {DA,DB}(V−1
A CVB)V

−1
B .

Hence, we have (◦ is the Hadamard product):

f {A,BT}(C) = VA



f (λ1, µ1) . . . f (λ1, µn)

...
...

f (λm, µ1) . . . f (λm, µn)

 ◦ V−1
A CVB

V−1
B .

How do we compute f {A,BT}(C) for generic functions and non-normal matrices?
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A bivariate evaluation scheme

Our aim: evaluating f {A,BT}(C).

• We can assume A,B triangular by taking Schur forms.

• We can partition the diagonal blocks of A,B so that their spectra are separated.

• We now need a formula for

F := f


[
A11 A12

A22

]
,

[
B11 B12

B22

]T (C).

The generic case is then obtained by divide-and-conquer.
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Block diagonalization

Let A,B be block upper triangular:

A =

[
A11 A12

A22

]
, B =

[
B11 B12

B22

]
.

If V ,W verify A11V − A22V = A12 and B11W − B22W = B12, then:[
I V

I

]
︸ ︷︷ ︸

Ṽ

A

[
I −V

I

]
=

[
A11

A22

]
,

[
I W

I

]
︸ ︷︷ ︸

W̃

B

[
I −W

I

]
=

[
B11

B22

]
.

So that:[
I V

I

]
f {A,BT}(C)

[
I −W

I

]
= f

{[
A11

A22

]
,

[
BT
11

BT
22

]}
(ṼCW̃−1)︸ ︷︷ ︸

decouple into 4 function evaluations of smaller matrices
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Algorithm 1 Evaluates f {A,BT}(C)

1: procedure fun2m(f ,A,B,C)

2: [QA,TA] = schur(A), [QB,TB] = schur(B)

3: C̃ ← Q∗
ACQB

4: F ←fun2m_rec(f ,TA,TB, C̃)

5: return QAFQ
∗
B

6: end procedure

1: procedure fun2m_rec(f ,A,B,C)

2: if A,B are small then return f {A,BT}(C)

3: else

4: Partition A,B and C as:

A =
[
A11 A12

A22

]
, B =

[
B11 B12

B22

]
, C =

[
C11 C12
C21 C22

]
5: Retrieve V and W by solving Sylvester equations

6: Compute
[
C̃11 C̃12

C̃21 C̃22

]
=

[
I V
I

] [ C11 C12
C21 C22

] [
I −W

I

]
7: Fij ← fun2m_rec(f ,Aii ,Bjj , C̃ij), for i, j = 1, 2

8: return
[
I −V

I

] [ F11 F12
F21 F22

] [
I W

I

]
9: end if

10: end procedure
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Blocking strategy

Each recursive call needs the matrices
[
I V
I

]
,
[
I W

I

]
to be not so ill-conditioned. This is

equivalent to keep under control the norm of the solutions of

A11V − VA22 = A12, B11W −WB22 = B12.

As in the Schur-Parlett algorithm [4], the blocking is based on clustering the eigenvalues

of A (resp. B) such that, for a given δ > 0:

• For each eigenvalue λ in a cluster ∃µ in the same cluster s.t. |λ− µ| ≤ δ.

• Each pair of eig. λ, µ that belong to different clusters verifies |λ− µ| > δ

Since this criterion is only heuristic, we also check a posteriori whether ‖V‖2 > γ‖A12‖
(resp. ‖W‖2 > γ‖B12‖) for a moderate γ ≥ δ−1.

In that case the two clusters are merged.

[4] Davies, Higham. A Schur-Parlett algorithm for computing matrix functions. SIMAX, 2003.
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Evaluating the function of the triangular atomic blocks

Core idea [5,6]: Consider small diagonal random perturbations EA,EB and compute

f {A+ EA,B + EB}(C)

via diagonalization with higher precision.

Main issue: VA,VB such that A+ EA = VADAV
−1
A ,B + EB = VBDBV

−1
B might have large

condition numbers.

• Lower the unit round-off to u2 and compute Ã = A+ EA, B̃ = B + EB with

‖EA‖ = u‖A‖, ‖EB‖ = u‖B‖.
• Set the unit round-off to uh ≤ u and retrieve triangular VA,VB by solving shifted

linear systems with Ã and B̃.

• Evaluate VAf {DA,DB}(V−1
A CVB)V

−1
B using uh

• Go back to unit round-off u.

[5] Davies. Approximate diagonalization. SIMAX, 2008.

[6] Higham, Liu. A multiprecision derivative-free Schur–Parlett algorithm for computing matrix functions. MIMS EPrint 2020.19, 2020.
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Choosing uh

The following Lemma suggests the choice uh ≤ u
κ(VA)κ(VB)

.

Lemma
Let Y = VAf {DA,DB}(V−1

A CVB)V
−1
B , and let Ŷ be the corresponding quantity computed

in floating point arithmetic. If the matrix multiplications are performed exactly, and

f (λAi , λ
B
j ) is computed with relative error bounded by uh, then

‖F − F̂‖ ≤ κ(VA)κ(VB)‖C‖max
i,j

|f (λi , µj)|uh.

Problem: How to estimate κ(VA), κ(VB) before their computation?

κ(VA) (analogously κ(VB)) can be estimated from the entries of Ã:

κ(VA) . mζ(ζ + 1)m+1, ζ =
maxi<j |Ãij |

mini 6=j |Ãii − Ãjj |
(1)

This is usually too pessimistic; practically, we apply the blocking method with a

parameter δ1 < δ and we compute the maximum of (1) for the diagonal blocks.
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mini 6=j |Ãii − Ãjj |
(1)

This is usually too pessimistic; practically, we apply the blocking method with a

parameter δ1 < δ and we compute the maximum of (1) for the diagonal blocks.

10



Choosing uh

The following Lemma suggests the choice uh ≤ u
κ(VA)κ(VB)

.

Lemma
Let Y = VAf {DA,DB}(V−1

A CVB)V
−1
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Numerical results: highly non normal matrices

Setting

• m = n = 64, f (x, y) = (x + y)−
1
2 .

• diag: diagonalization (no blocking and no HP).

• diag_hp: HP diagonalization (no blocking).

• Err: relative error with respect to f {A,B}(C) evaluated with diag_hp using 128 digits.

• nA,nB: number of atomic blocks in A and B.

• κf : estimate of

lim
h→0

sup
‖∆A‖
‖A‖ ,

‖∆B‖
‖B‖ ≤h

‖f {A+∆A,BT +∆BT}(C)− f {A,BT}(C)‖
h

.
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Numerical results: random matrices

Test = randn, f (x, y) = 1√
x+y(x−y)

fun2m diag

Size Time nA nB Time

64 0.01 16 16 0.01

128 0.08 32 32 0.06

256 0.27 64 64 0.2

512 1.42 128 128 1.07

1,024 5.47 256 256 4.09

2,048 29.12 512 512 22.01

4,096 243.41 1,024 1,024 132.48

102 103

10−2

100

102

104

Size (n)

T
im

e
(s
)

fun2m

diag

O(n3)

Figure 1: Timings of fun2m and diag for well-conditioned A and B.
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Is there code available?

Yes, we have the Julia package BivMatFun.

julia> import Pkg;

julia> Pkg.add(url = "https://github.com/numpi/BivMatFun.git");

julia> using BivMatFun;

# Only complex matrices are implemented

julia> n = 1024;

julia> A = complex(randn(n,n)); B = complex(randn(n,n));

julia> C = complex(randn(n,n));

julia> f = (z,w,i,j) -> 1 / (z + w);

julia> X, _ = fun2m(f, A, B, C);

julia> using LinearAlgebra;

julia> opnorm(A*X + X*B - C) / opnorm(X)

3.277465131019034e-13

13



Conclusions

Reference:

• S. Massei., L. R. Mixed precision recursive block diagonalization for bivariate

functions of matrices, to appear on SIMAX, 2022.

Remarks:

• A perturb-and-diagonalize approach combined with high precision can be a

workaround when dealing with linear algebra tasks related to (nearly) non

diagonalizable matrices.

• An effective blocking strategy is necessary in order to mitigate the impact of high

precision arithmetic on timings.

Possible applications/extensions

• Projection methods for function of Kronecker sum structured matrices.

• Multivariate matrix functions → operations on tensors.
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