Mixed precision recursive block diagonalization for bivariate functions of matrices

Leonardo Robol <leonardo.robol@unipi.it>,
Stefano Massei <s.massei@tue.nl>

Due Giorni di Algebra Lineare, Napoli, 2022.

Univariate vs bivariate matrix functions

We may define univariate matrix functions in several ways, for $f(z) = \sum_{i>0} f_i z^i$,

$$f(A)v = \sum_{i\geq 0} f_i A^i v = \frac{1}{2\pi i} \int_{\Gamma} f(z)(zI-A)^{-1} v \ dz.$$

Univariate vs bivariate matrix functions

We may define univariate matrix functions in several ways, for $f(z) = \sum_{i>0} f_i z^i$,

$$f(A)v = \sum_{i\geq 0} f_i A^i v = \frac{1}{2\pi i} \int_{\Gamma} f(z)(zI-A)^{-1} v \ dz.$$

This can be generalized to the bivariate case, by setting for $f(z, w) = \sum_{i,j \ge 0} f_{ij} z^i w^j$:

$$f\{A, B^{T}\}(C) = \sum_{i,j\geq 0} f_{ij}A^{i}CB^{j} = -\frac{1}{4\pi^{2}}\int_{\Gamma_{A}}\int_{\Gamma_{B}} f(z,w)(zI-A)^{-1}C(zI-B^{T})^{-1} dz dw.$$

- Most of the properties of univariate matrix functions carry over to this more general setting.
- Similarities on A, B behave well:

$$f\{A, B^{T}\}(C) = V \cdot f\{V^{-1}AV, (W^{-1}BW)^{T}\}(V^{-1}CW) \cdot W^{-1},$$

for any invertible matrices V, W.

Applications

• if *X* satisfies AX + XB = C, then

$$C = f\{A, B^T\}(X), \qquad f(x, y) = x + y,$$

and therefore the solution of a Sylvester equation is expressed as:

$$X = g\{A, B^T\}(C), \qquad g(x, y) = \frac{1}{x + y}.$$

Applications

• if *X* satisfies AX + XB = C, then

$$C = f\{A, B^T\}(X), \qquad f(x, y) = x + y,$$

and therefore the solution of a Sylvester equation is expressed as:

$$X = g\{A, B^T\}(C), \qquad g(x, y) = \frac{1}{x+y}.$$

• Similar ideas apply for generalized Sylvester equations of the form $p\{A, B^T\}(X) = C$, whose solution is expressed using $f(x, y) := \frac{1}{p(x, y)}$.

Applications

• if X satisfies AX + XB = C, then

$$C = f\{A, B^T\}(X), \qquad f(x, y) = x + y,$$

and therefore the solution of a Sylvester equation is expressed as:

$$X = g\{A, B^T\}(C), \qquad g(x, y) = \frac{1}{x+y}.$$

- Similar ideas apply for generalized Sylvester equations of the form $p\{A, B^T\}(X) = C$, whose solution is expressed using $f(x, y) := \frac{1}{p(x, y)}$.
- *f*{*A*, *A*^T}(*H*) is the Frechét derivative of *g*(*z*) at *A* in the direction *H*, if *f*(*z*, *w*) is the divided difference of *g*(*z*).
- There is a nice connection with Kronecker sums; if $A = B^T \otimes I + I \otimes A$ then

$$\operatorname{vec}(X) = f(\mathcal{A})(\operatorname{vec}(C)), \implies X = g\{A, B^T\}(C), \qquad g(x, y) = f(x + y).$$

Evaluation in the diagonalizable case

$$f(x, y) = \sum_{ij} f_{ij} x^i y^j \implies f\{A, B^T\}(C) = \sum_{ij} f_{ij} A^i C B^j.$$

When *A*, *B* are diagonalizable, i.e., $A = V_A D_A V_A^{-1}$ and $B = V_B D_B V_B^{-1}$:

$$f\{A, B^{T}\}(C) = V_{A} \sum_{ij} f_{ij} D_{A}^{i} V_{A}^{-1} C V_{B} D_{B}^{j} V_{B}^{-1},$$

= $V_{A} f\{D_{A}, D_{B}\} (V_{A}^{-1} C V_{B}) V_{B}^{-1}.$

Hence, we have (o is the Hadamard product):

$$f\{A, B^{\mathsf{T}}\}(C) = V_A \begin{pmatrix} f(\lambda_1, \mu_1) & \dots & f(\lambda_1, \mu_n) \\ \vdots & & \vdots \\ f(\lambda_m, \mu_1) & \dots & f(\lambda_m, \mu_n) \end{pmatrix} \circ V_A^{-1} C V_B \end{pmatrix} V_B^{-1}.$$

How do we compute $f{A, B^T}(C)$ for generic functions and non-normal matrices?

Our aim: evaluating $f{A, B^T}(C)$.

- We can assume *A*, *B* triangular by taking Schur forms.
- We can partition the diagonal blocks of *A*, *B* so that their spectra are separated.
- We now need a formula for

$$F := f \left\{ \begin{bmatrix} A_{11} & A_{12} \\ & A_{22} \end{bmatrix}, \begin{bmatrix} B_{11} & B_{12} \\ & B_{22} \end{bmatrix}^T \right\} (C).$$

The generic case is then obtained by divide-and-conquer.

Block diagonalization

Let *A*, *B* be block upper triangular:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ & A_{22} \end{bmatrix}, \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ & B_{22} \end{bmatrix}.$$

Block diagonalization

Let *A*, *B* be block upper triangular:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ & A_{22} \end{bmatrix}, \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ & B_{22} \end{bmatrix}.$$

If V, W verify $A_{11}V - A_{22}V = A_{12}$ and $B_{11}W - B_{22}W = B_{12}$, then: $\underbrace{\begin{bmatrix} I & V \\ & I \end{bmatrix}}_{\widetilde{V}} A \begin{bmatrix} I & -V \\ & I \end{bmatrix} = \begin{bmatrix} A_{11} \\ & A_{22} \end{bmatrix}, \qquad \underbrace{\begin{bmatrix} I & W \\ & I \end{bmatrix}}_{\widetilde{W}} B \begin{bmatrix} I & -W \\ & I \end{bmatrix} = \begin{bmatrix} B_{11} \\ & B_{22} \end{bmatrix}.$

Block diagonalization

Let *A*, *B* be block upper triangular:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ & A_{22} \end{bmatrix}, \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ & B_{22} \end{bmatrix}.$$

If V, W verify $A_{11}V - A_{22}V = A_{12}$ and $B_{11}W - B_{22}W = B_{12}$, then: $\underbrace{\begin{bmatrix} I & V \\ & I \end{bmatrix}}_{\widetilde{V}} A \begin{bmatrix} I & -V \\ & I \end{bmatrix} = \begin{bmatrix} A_{11} \\ & A_{22} \end{bmatrix}, \qquad \underbrace{\begin{bmatrix} I & W \\ & I \end{bmatrix}}_{\widetilde{W}} B \begin{bmatrix} I & -W \\ & I \end{bmatrix} = \begin{bmatrix} B_{11} \\ & B_{22} \end{bmatrix}.$

So that:

$$\begin{bmatrix} I & V \\ & I \end{bmatrix} f\{A, B^T\}(C) \begin{bmatrix} I & -W \\ & I \end{bmatrix} = \underbrace{f\left\{ \begin{bmatrix} A_{11} \\ & A_{22} \end{bmatrix}, \begin{bmatrix} B_{11}^T \\ & B_{22}^T \end{bmatrix} \right\} (\tilde{V}C\tilde{W}^{-1})$$

decouple into 4 function evaluations of smaller matrices

Algorithm 1 Evaluates $f{A, B^T}(C)$

- 1: **procedure** fun2m(*f*, *A*, *B*, *C*)
- 2: $[Q_A, T_A] = \operatorname{schur}(A), [Q_B, T_B] = \operatorname{schur}(B)$
- 3: $\widetilde{C} \leftarrow Q_A^* C Q_B$
- 4: $F \leftarrow \text{fun2m_rec}(f, T_A, T_B, \widetilde{C})$
- 5: return $Q_A F Q_B^*$
- 6: end procedure
- 1: **procedure** fun2m_rec(*f*, *A*, *B*, *C*)
- 2: if A, B are small then return $f\{A, B^T\}(C)$
- 3: **else**
- 4: Partition *A*, *B* and *C* as:

$$\boldsymbol{A} = \begin{bmatrix} A_{11} & A_{12} \\ A_{22} \end{bmatrix}, \qquad \boldsymbol{B} = \begin{bmatrix} B_{11} & B_{12} \\ B_{22} \end{bmatrix}, \qquad \boldsymbol{C} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

- 5: Retrieve V and W by solving Sylvester equations
- 6: Compute $\begin{bmatrix} \tilde{c}_{11} & \tilde{c}_{12} \\ \tilde{c}_{21} & \tilde{c}_{22} \end{bmatrix} = \begin{bmatrix} I & V \\ I \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} I & -W \\ I \end{bmatrix}$
- 7: $F_{ij} \leftarrow \text{fun2m_rec}(f, A_{ii}, B_{jj}, \widetilde{C}_{ij})$, for i, j = 1, 2
- 8: return $\begin{bmatrix} I & -V \\ I \end{bmatrix} \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} \begin{bmatrix} I & W \\ I \end{bmatrix}$
- 9: **end if**
- 10: end procedure

Algorithm 2 Evaluates $f{A, B^T}(C)$

- 1: procedure fun2m(f, A, B, C)
- 2: $[Q_A, T_A] = \operatorname{schur}(A), [Q_B, T_B] = \operatorname{schur}(B)$
- 3: $C \leftarrow Q_A^* C Q_B$
- 4: $F \leftarrow \text{fun2m_rec}(f, T_A, T_B, C)$
- 5: return $Q_A F Q_B^*$
- 6: end procedure
- 1: procedure fun2m_rec(f, A, B, C)
- 2: if A, B are small then return $f{A, B^T}(C)$
- 3: else
- Partition A. B and C as: 4:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{22} \end{bmatrix}, \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{22} \end{bmatrix}, \qquad C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

- 5:
- Retrieve V and W by solving Sylvester equations Compute $\begin{bmatrix} \tilde{C}_{11} & \tilde{C}_{12} \\ \tilde{C}_{21} & \tilde{C}_{22} \end{bmatrix} = \begin{bmatrix} I & V \\ I \end{bmatrix} \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} \begin{bmatrix} I & -W \\ I \end{bmatrix}$ 6:

7:
$$F_{ij} \leftarrow \text{fun2m_rec}(f, A_{ii}, B_{jj}, \widetilde{C}_{ij})$$
, for $i, j = 1, 2$

- return $\begin{bmatrix} I & -V \\ I \end{bmatrix} \begin{vmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{vmatrix} \begin{bmatrix} I & W \\ I \end{bmatrix}$ 8:
- 9: end if

10: end procedure

Blocking strategy

Each recursive call needs the matrices $\begin{bmatrix} I & V \\ I \end{bmatrix}$, $\begin{bmatrix} I & W \\ I \end{bmatrix}$ to be not so ill-conditioned. This is equivalent to keep under control the norm of the solutions of

 $A_{11}V - VA_{22} = A_{12}, \qquad B_{11}W - WB_{22} = B_{12}.$

Blocking strategy

Each recursive call needs the matrices $\begin{bmatrix} I & V \\ I \end{bmatrix}$, $\begin{bmatrix} I & W \\ I \end{bmatrix}$ to be not so ill-conditioned. This is equivalent to keep under control the norm of the solutions of

$$A_{11}V - VA_{22} = A_{12}, \qquad B_{11}W - WB_{22} = B_{12}.$$

As in the Schur–Parlett algorithm [4], the blocking is based on clustering the eigenvalues of *A* (resp. *B*) such that, for a given $\delta > 0$:

- For each eigenvalue λ in a cluster $\exists \mu$ in the same cluster s.t. $|\lambda \mu| \leq \delta$.
- Each pair of eig. λ, μ that belong to different clusters verifies $|\lambda \mu| > \delta$

Blocking strategy

Each recursive call needs the matrices $\begin{bmatrix} I & V \\ I \end{bmatrix}$, $\begin{bmatrix} I & W \\ I \end{bmatrix}$ to be not so ill-conditioned. This is equivalent to keep under control the norm of the solutions of

 $A_{11}V - VA_{22} = A_{12}, \qquad B_{11}W - WB_{22} = B_{12}.$

As in the Schur–Parlett algorithm [4], the blocking is based on clustering the eigenvalues of *A* (resp. *B*) such that, for a given $\delta > 0$:

- For each eigenvalue λ in a cluster $\exists \mu$ in the same cluster s.t. $|\lambda \mu| \leq \delta$.
- Each pair of eig. λ, μ that belong to different clusters verifies $|\lambda \mu| > \delta$

Since this criterion is only heuristic, we also check a posteriori whether $\|V\|_2 > \gamma \|A_{12}\|$ (resp. $\|W\|_2 > \gamma \|B_{12}\|$) for a moderate $\gamma \ge \delta^{-1}$.

In that case the two clusters are merged.

[4] Davies, Higham. A Schur-Parlett algorithm for computing matrix functions. SIMAX, 2003.

Evaluating the function of the triangular atomic blocks

Core idea [5,6]: Consider small diagonal random perturbations E_A , E_B and compute

 $f\{A + E_A, B + E_B\}(C)$

via diagonalization with higher precision.

Evaluating the function of the triangular atomic blocks

Core idea [5,6]: Consider small diagonal random perturbations E_A , E_B and compute

 $f\{A + E_A, B + E_B\}(C)$

via diagonalization with higher precision.

Main issue: V_A , V_B such that $A + E_A = V_A D_A V_A^{-1}$, $B + E_B = V_B D_B V_B^{-1}$ might have large condition numbers.

Evaluating the function of the triangular atomic blocks

Core idea [5,6]: Consider small diagonal random perturbations E_A , E_B and compute

 $f\{A+E_A,B+E_B\}(C)$

via diagonalization with higher precision.

Main issue: V_A , V_B such that $A + E_A = V_A D_A V_A^{-1}$, $B + E_B = V_B D_B V_B^{-1}$ might have large condition numbers.

- Lower the unit round-off to u^2 and compute $\widetilde{A} = A + E_A$, $\widetilde{B} = B + E_B$ with $||E_A|| = u||A||$, $||E_B|| = u||B||$.
- Set the unit round-off to u_h ≤ u and retrieve triangular V_A, V_B by solving shifted linear systems with à and B̃.
- Evaluate $V_A f\{D_A, D_B\}(V_A^{-1}CV_B)V_B^{-1}$ using u_h
- Go back to unit round-off *u*.

[5] Davies. Approximate diagonalization. SIMAX, 2008.

[6] Higham, Liu. A multiprecision derivative-free Schur-Parlett algorithm for computing matrix functions. MIMS EPrint 2020.19, 2020.

The following Lemma suggests the choice $u_h \leq \frac{u}{\kappa(V_A)\kappa(V_B)}$

Lemma

Let $Y = V_A f\{D_A, D_B\}(V_A^{-1}CV_B)V_B^{-1}$, and let \hat{Y} be the corresponding quantity computed in floating point arithmetic. If the matrix multiplications are performed exactly, and $f(\lambda_i^A, \lambda_i^B)$ is computed with relative error bounded by u_h , then

$$\|F - \hat{F}\| \leq \kappa(V_A)\kappa(V_B)\|C\| \max_{i,j} |f(\lambda_i, \mu_j)|u_h.$$

The following Lemma suggests the choice $u_h \leq \frac{u}{\kappa(V_a)\kappa(V_B)}$

Lemma

Let $Y = V_A f\{D_A, D_B\}(V_A^{-1}CV_B)V_B^{-1}$, and let \hat{Y} be the corresponding quantity computed in floating point arithmetic. If the matrix multiplications are performed exactly, and $f(\lambda_i^A, \lambda_i^B)$ is computed with relative error bounded by u_h , then

$$\|F - \hat{F}\| \leq \kappa(V_A)\kappa(V_B)\|C\|\max_{i,j}|f(\lambda_i,\mu_j)|u_h.$$

Problem: How to estimate $\kappa(V_A), \kappa(V_B)$ before their computation?

The following Lemma suggests the choice $u_h \leq \frac{u}{\kappa(V_A)\kappa(V_B)}$

Lemma

Let $Y = V_A f\{D_A, D_B\}(V_A^{-1}CV_B)V_B^{-1}$, and let \hat{Y} be the corresponding quantity computed in floating point arithmetic. If the matrix multiplications are performed exactly, and $f(\lambda_i^A, \lambda_i^B)$ is computed with relative error bounded by u_h , then

$$\|F - \hat{F}\| \leq \kappa(V_A)\kappa(V_B)\|C\|\max_{i,j}|f(\lambda_i,\mu_j)|u_h$$

Problem: How to estimate $\kappa(V_A), \kappa(V_B)$ before their computation? $\kappa(V_A)$ (analogously $\kappa(V_B)$) can be estimated from the entries of \widetilde{A} :

$$\kappa(V_A) \lesssim m\zeta(\zeta+1)^{m+1}, \qquad \zeta = rac{\max_{i < j} |\widetilde{A}_{ij}|}{\min_{i \neq j} |\widetilde{A}_{ii} - \widetilde{A}_{jj}|}$$
(1)

The following Lemma suggests the choice $u_h \leq \frac{u}{\kappa(V_A)\kappa(V_B)}$.

Lemma

Let $Y = V_A f\{D_A, D_B\}(V_A^{-1}CV_B)V_B^{-1}$, and let \hat{Y} be the corresponding quantity computed in floating point arithmetic. If the matrix multiplications are performed exactly, and $f(\lambda_i^A, \lambda_i^B)$ is computed with relative error bounded by u_h , then

$$\|F - \hat{F}\| \leq \kappa(V_A)\kappa(V_B)\|C\|\max_{i,j}|f(\lambda_i,\mu_j)|u_h.$$

Problem: How to estimate $\kappa(V_A), \kappa(V_B)$ before their computation?

 $\kappa(V_A)$ (analogously $\kappa(V_B)$) can be estimated from the entries of \widetilde{A} :

$$\kappa(V_A) \lesssim m\zeta(\zeta+1)^{m+1}, \qquad \zeta = rac{\max_{i < j} |\widetilde{A}_{ij}|}{\min_{i \neq j} |\widetilde{A}_{ii} - \widetilde{A}_{jj}|}$$
(1)

This is usually too pessimistic; practically, we apply the blocking method with a parameter $\delta_1 < \delta$ and we compute the maximum of (1) for the diagonal blocks.

Numerical results: highly non normal matrices

Setting

- m = n = 64, $f(x, y) = (x + y)^{-\frac{1}{2}}$.
- diag: diagonalization (no blocking and no HP).
- diag_hp: HP diagonalization (no blocking).
- Err: relative error with respect to $f{A, B}(C)$ evaluated with diag_hp using 128 digits.
- n_A , n_B : number of atomic blocks in A and B.
- κ_f : estimate of

$$\lim_{h\to 0} \sup_{\frac{\|\Delta A\|}{\|A\|}, \frac{\|\Delta B\|}{\|B\|} \leq h} \frac{\|f\{A + \Delta A, B^T + \Delta B^T\}(C) - f\{A, B^T\}(C)\|}{h}.$$

	FUN2M					DIAG		DIAG_HP			
Test	Err	Time	$\mathbf{n}\mathbf{A}$	nB	Digits	Err	Time	Time	Err	Digits	$\kappa_f \cdot u$
jordbloc	$2.0 \cdot 10^{-9}$	0.02	15	15	48	$3.9 \cdot 10^{-1}$	0.008	1.65	$2.0\cdot 10^{-9}$	51	$3.2 \cdot 10^{-10}$
grcar	$1.5 \cdot 10^{-13}$	1.53	1	1	40	$7.7 \cdot 10^{-8}$	0.008	1.54	$1.5 \cdot 10^{-13}$	40	$1.0 \cdot 10^{-9}$
smoke	$3.5 \cdot 10^{-9}$	1.46	1	1	35	$1.1 \cdot 10^{-8}$	0.002	1.45	$1.8 \cdot 10^{-9}$	35	$5.0 \cdot 10^{-1}$
kahan	$3.4 \cdot 10^{-16}$	1.37	1	1	43	$6.8 \cdot 10^{-7}$	0.002	1.36	$4.5 \cdot 10^{-16}$	43	$1.4 \cdot 10^{-7}$
lesp	$4.4 \cdot 10^{-15}$	0.23	9	9	35	$1.6 \cdot 10^{-1}$	0.003	1.32	$3.5 \cdot 10^{-15}$	36	$1.9 \cdot 10^{-15}$
sampling	$1.0 \cdot 10^{-7}$	0.41	10	9	49	$2.2 \cdot 10^{-2}$	0.006	2.04	$1.0 \cdot 10^{-7}$	49	$8.2 \cdot 10^{-8}$
grcar-rand	$5.2\cdot 10^{-12}$	0.39	1	16	29	$7.8\cdot 10^{-8}$	0.009	1.45	$5.2\cdot 10^{-12}$	31	$3.7\cdot 10^{-6}$

Numerical results: random matrices

Figure 1: Timings of fun2m and diag for well-conditioned A and B.

Yes, we have the Julia package BivMatFun.

```
julia> import Pkg;
julia> Pkg.add(url = "https://github.com/numpi/BivMatFun.git");
julia> using BivMatFun;
```

```
# Only complex matrices are implemented
julia> n = 1024;
julia> A = complex(randn(n,n)); B = complex(randn(n,n));
julia> C = complex(randn(n,n));
julia> f = (z,w,i,j) -> 1 / (z + w);
julia> f = (z,w,i,j) -> 1 / (z + w);
julia> X, _ = fun2m(f, A, B, C);
julia> using LinearAlgebra;
julia> opnorm(A*X + X*B - C) / opnorm(X)
```

3.277465131019034e-13

Conclusions

Reference:

• S. Massei., L. R. *Mixed precision recursive block diagonalization for bivariate functions of matrices*, to appear on SIMAX, 2022.

Remarks:

- A perturb-and-diagonalize approach combined with high precision can be a workaround when dealing with linear algebra tasks related to (nearly) non diagonalizable matrices.
- An effective blocking strategy is necessary in order to mitigate the impact of high precision arithmetic on timings.

Possible applications/extensions

- Projection methods for function of Kronecker sum structured matrices.
- Multivariate matrix functions \rightarrow operations on tensors.