Mixed precision recursive block diagonalization for bivariate functions of matrices

Leonardo Robol leonardo.robol@unipi.it, Stefano Massei s.massei@tue.nl

Due Giorni di Algebra Lineare, Napoli, 2022.

Univariate vs bivariate matrix functions

We may define univariate matrix functions in several ways, for $f(z)=\sum_{i \geq 0} f_{i} z^{i}$,

$$
f(A) v=\sum_{i \geq 0} f_{i} A^{i} v=\frac{1}{2 \pi i} \int_{\Gamma} f(z)(z I-A)^{-1} v d z
$$

Univariate vs bivariate matrix functions

We may define univariate matrix functions in several ways, for $f(z)=\sum_{i \geq 0} f_{i} z^{i}$,

$$
f(A) v=\sum_{i \geq 0} f_{i} A^{i} v=\frac{1}{2 \pi i} \int_{\Gamma} f(z)(z I-A)^{-1} v d z
$$

This can be generalized to the bivariate case, by setting for $f(z, w)=\sum_{i, j \geq 0} f_{i j} z^{i} w^{j}$:

$$
f\left\{A, B^{T}\right\}(C)=\sum_{i, j \geq 0} f_{i j} A^{i} C B^{j}=-\frac{1}{4 \pi^{2}} \int_{\Gamma_{A}} \int_{\Gamma_{B}} f(z, w)(z I-A)^{-1} C\left(z I-B^{T}\right)^{-1} d z d w
$$

- Most of the properties of univariate matrix functions carry over to this more general setting.
- Similarities on A, B behave well:

$$
f\left\{A, B^{T}\right\}(C)=V \cdot f\left\{V^{-1} A V,\left(W^{-1} B W\right)^{T}\right\}\left(V^{-1} C W\right) \cdot W^{-1}
$$

for any invertible matrices V, W.

Applications

- if X satisfies $A X+X B=C$, then

$$
C=f\left\{A, B^{T}\right\}(X), \quad f(x, y)=x+y
$$

and therefore the solution of a Sylvester equation is expressed as:

$$
X=g\left\{A, B^{T}\right\}(C), \quad g(x, y)=\frac{1}{x+y}
$$

Applications

- if X satisfies $A X+X B=C$, then

$$
C=f\left\{A, B^{T}\right\}(X), \quad f(x, y)=x+y
$$

and therefore the solution of a Sylvester equation is expressed as:

$$
X=g\left\{A, B^{T}\right\}(C), \quad g(x, y)=\frac{1}{x+y}
$$

- Similar ideas apply for generalized Sylvester equations of the form $p\left\{A, B^{\top}\right\}(X)=C$, whose solution is expressed using $f(x, y):=\frac{1}{p(x, y)}$.

Applications

- if X satisfies $A X+X B=C$, then

$$
C=f\left\{A, B^{T}\right\}(X), \quad f(x, y)=x+y
$$

and therefore the solution of a Sylvester equation is expressed as:

$$
X=g\left\{A, B^{T}\right\}(C), \quad g(x, y)=\frac{1}{x+y}
$$

- Similar ideas apply for generalized Sylvester equations of the form $p\left\{A, B^{T}\right\}(X)=C$, whose solution is expressed using $f(x, y):=\frac{1}{p(x, y)}$.
- $f\left\{A, A^{T}\right\}(H)$ is the Frechét derivative of $g(z)$ at A in the direction H, if $f(z, w)$ is the divided difference of $g(z)$.
- There is a nice connection with Kronecker sums; if $\mathcal{A}=B^{T} \otimes I+I \otimes A$ then

$$
\operatorname{vec}(X)=f(\mathcal{A})(\operatorname{vec}(C)), \Longrightarrow X=g\left\{A, B^{T}\right\}(C), \quad g(x, y)=f(x+y)
$$

Evaluation in the diagonalizable case

$$
f(x, y)=\sum_{i j} f_{i j} x^{i} y^{j} \Longrightarrow f\left\{A, B^{T}\right\}(C)=\sum_{i j} f_{i j} A^{i} C B^{j}
$$

When A, B are diagonalizable, i.e., $A=V_{A} D_{A} V_{A}^{-1}$ and $B=V_{B} D_{B} V_{B}^{-1}$:

$$
\begin{aligned}
f\left\{A, B^{T}\right\}(C) & =V_{A} \sum_{i j} f_{i j} D_{A}^{i} V_{A}^{-1} C V_{B} D_{B}^{j} V_{B}^{-1} \\
& =V_{A} f\left\{D_{A}, D_{B}\right\}\left(V_{A}^{-1} C V_{B}\right) V_{B}^{-1}
\end{aligned}
$$

Hence, we have (o is the Hadamard product):

$$
f\left\{A, B^{T}\right\}(C)=V_{A}\left(\left[\begin{array}{ccc}
f\left(\lambda_{1}, \mu_{1}\right) & \ldots & f\left(\lambda_{1}, \mu_{n}\right) \\
\vdots & & \vdots \\
f\left(\lambda_{m}, \mu_{1}\right) & \ldots & f\left(\lambda_{m}, \mu_{n}\right)
\end{array}\right] \circ V_{A}^{-1} C V_{B}\right) V_{B}^{-1}
$$

How do we compute $f\left\{A, B^{T}\right\}(C)$ for generic functions and non-normal matrices?

A bivariate evaluation scheme

Our aim: evaluating $f\left\{A, B^{\top}\right\}(C)$.

- We can assume A, B triangular by taking Schur forms.
- We can partition the diagonal blocks of A, B so that their spectra are separated.
-We now need a formula for

$$
F:=f\left\{\left[\begin{array}{cc}
A_{11} & A_{12} \\
& A_{22}
\end{array}\right],\left[\begin{array}{ll}
B_{11} & B_{12} \\
& B_{22}
\end{array}\right]^{T}\right\}(C) .
$$

The generic case is then obtained by divide-and-conquer.

Block diagonalization

Let A, B be block upper triangular:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
& A_{22}
\end{array}\right], \quad B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
& B_{22}
\end{array}\right] .
$$

Block diagonalization

Let A, B be block upper triangular:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
& A_{22}
\end{array}\right], \quad B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
& B_{22}
\end{array}\right] .
$$

If V, W verify $A_{11} V-A_{22} V=A_{12}$ and $B_{11} W-B_{22} W=B_{12}$, then:

$$
\underbrace{\left[\begin{array}{cc}
I & V \\
& I
\end{array}\right]}_{\widetilde{V}} A\left[\begin{array}{cc}
I & -V \\
& I
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & \\
& A_{22}
\end{array}\right], \quad \underbrace{\left[\begin{array}{cc}
I & W \\
& I
\end{array}\right]}_{\widetilde{W}} B\left[\begin{array}{cc}
I & -W \\
& I
\end{array}\right]=\left[\begin{array}{ll}
B_{11} & \\
& B_{22}
\end{array}\right] .
$$

Block diagonalization

Let A, B be block upper triangular:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
& A_{22}
\end{array}\right], \quad B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
& B_{22}
\end{array}\right] .
$$

If V, W verify $A_{11} V-A_{22} V=A_{12}$ and $B_{11} W-B_{22} W=B_{12}$, then:

$$
\underbrace{\left[\begin{array}{cc}
I & V \\
& I
\end{array}\right]}_{\widetilde{V}} A\left[\begin{array}{cc}
I & -V \\
& I
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & \\
& A_{22}
\end{array}\right], \quad \underbrace{\left[\begin{array}{cc}
I & W \\
& I
\end{array}\right]}_{\widetilde{W}} B\left[\begin{array}{cc}
I & -W \\
& I
\end{array}\right]=\left[\begin{array}{ll}
B_{11} & \\
& B_{22}
\end{array}\right] .
$$

So that:

$$
\left[\begin{array}{cc}
I & V \\
& I
\end{array}\right] f\left\{A, B^{T}\right\}(C)\left[\begin{array}{cc}
I & -W \\
& I
\end{array}\right]=\underbrace{f\left\{\left[\begin{array}{ll}
A_{11} & \\
& A_{22}
\end{array}\right],\left[\begin{array}{ll}
B_{11}^{T} & \\
& B_{22}^{T}
\end{array}\right]\right\}\left(\tilde{V} C \tilde{W}^{-1}\right)}_{\text {decouple into } 4 \text { function evaluations of smaller matrices }}
$$

Algorithm 1 Evaluates $f\left\{A, B^{T}\right\}(C)$

procedure fun $2 \mathrm{~m}(f, A, B, C)$
$\left[Q_{A}, T_{A}\right]=\operatorname{schur}(A),\left[Q_{B}, T_{B}\right]=\operatorname{schur}(B)$
$\widetilde{C} \leftarrow Q_{A}^{*} C Q_{B}$
$F \leftarrow$ fun2m_rec $\left(f, T_{A}, T_{B}, \widetilde{C}\right)$
return $Q_{A} F Q_{B}^{*}$
end procedure
procedure fun2m_rec (f, A, B, C)
if A, B are small then return $f\left\{A, B^{T}\right\}(C)$
else
Partition A, B and C as:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
& A_{22}
\end{array}\right], \quad B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
& B_{22}
\end{array}\right], \quad C=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

Retrieve V and W by solving Sylvester equations
Compute $\left[\begin{array}{cc}\tilde{c}_{11} & \tilde{C}_{12} \\ \tilde{C}_{21} & \widetilde{c}_{22}\end{array}\right]=\left[\begin{array}{ccc}I & V \\ I\end{array}\right]\left[\begin{array}{ccc}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]\left[\begin{array}{cc}I & -W \\ I\end{array}\right]$
$F_{i j} \leftarrow \operatorname{fun} 2 \mathrm{~m} _$rec $\left(f, A_{i j}, B_{j j}, \widetilde{C}_{i j}\right)$, for $i, j=1,2$
return $\left[\begin{array}{cc}I-V \\ I\end{array}\right]\left[\begin{array}{c}F_{11} \\ F_{21} \\ F_{22}\end{array}\right]\left[\begin{array}{c}I \\ I\end{array}\right]$
end if
end procedure

Algorithm 2 Evaluates $f\left\{A, B^{T}\right\}(C)$
: procedure fun2m(f, A, B, C)
$\left[Q_{A}, T_{A}\right]=\operatorname{schur}(A),\left[Q_{B}, T_{B}\right]=\operatorname{schur}(B)$
$\widetilde{C} \leftarrow Q_{A}^{*} C Q_{B}$
$F \leftarrow$ fun2m_rec $\left(f, T_{A}, T_{B}, \widetilde{C}\right)$
return $Q_{A} F Q_{B}^{*}$
end procedure
procedure fun2m_rec (f, A, B, C)
if A, B are small then return $f\left\{A, B^{\top}\right\}(C)$
else
Partition A, B and C as:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
& A_{22}
\end{array}\right], \quad B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
& B_{22}
\end{array}\right], \quad C=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

5: \quad Retrieve V and W by solving Sylvester equations
6: Compute $\left[\begin{array}{cc}\tilde{C}_{11} & \widetilde{c}_{12} \\ \tilde{C}_{21} & \tilde{c}_{22}\end{array}\right]=\left[\begin{array}{cc}I & V \\ I\end{array}\right]\left[\begin{array}{ccc}C_{11} \\ C_{21} & C_{12} \\ C_{22}\end{array}\right]\left[\begin{array}{cc}I-W \\ I\end{array}\right]$
7: $\quad F_{i j} \leftarrow$ fun $2 \mathrm{~m} _$rec $\left(f, A_{i i}, B_{j j}, \widetilde{C}_{i j}\right)$, for $i, j=1,2$
8: return $\left[\begin{array}{c}I-V \\ I\end{array}\right]\left[\begin{array}{cc}F_{11} & F_{12} \\ F_{21} & F_{22}\end{array}\right]\left[\begin{array}{c}I \\ I\end{array}\right]$
end if
10: end procedure

Blocking strategy

Each recursive call needs the matrices $\left[\begin{array}{cc}I & V \\ I\end{array}\right],\left[\begin{array}{cc}I & W \\ I\end{array}\right]$ to be not so ill-conditioned. This is equivalent to keep under control the norm of the solutions of

$$
A_{11} V-V A_{22}=A_{12}, \quad B_{11} W-W B_{22}=B_{12}
$$

Blocking strategy

Each recursive call needs the matrices $\left[\begin{array}{cc}I & V \\ I\end{array}\right],\left[\begin{array}{cc}I & W \\ I\end{array}\right]$ to be not so ill-conditioned. This is equivalent to keep under control the norm of the solutions of

$$
A_{11} V-V A_{22}=A_{12}, \quad B_{11} W-W B_{22}=B_{12}
$$

As in the Schur-Parlett algorithm [4], the blocking is based on clustering the eigenvalues of A (resp. B) such that, for a given $\delta>0$:

- For each eigenvalue λ in a cluster $\exists \mu$ in the same cluster s.t. $|\lambda-\mu| \leq \delta$.
- Each pair of eig. λ, μ that belong to different clusters verifies $|\lambda-\mu|>\delta$

Blocking strategy

Each recursive call needs the matrices $\left[\begin{array}{cc}I & V \\ I\end{array}\right],\left[\begin{array}{ll}I & W \\ I\end{array}\right]$ to be not so ill-conditioned. This is equivalent to keep under control the norm of the solutions of

$$
A_{11} V-V A_{22}=A_{12}, \quad B_{11} W-W B_{22}=B_{12}
$$

As in the Schur-Parlett algorithm [4], the blocking is based on clustering the eigenvalues of A (resp. B) such that, for a given $\delta>0$:

- For each eigenvalue λ in a cluster $\exists \mu$ in the same cluster s.t. $|\lambda-\mu| \leq \delta$.
- Each pair of eig. λ, μ that belong to different clusters verifies $|\lambda-\mu|>\delta$

Since this criterion is only heuristic, we also check a posteriori whether $\|V\|_{2}>\gamma\left\|A_{12}\right\|$ (resp. $\|W\|_{2}>\gamma\left\|B_{12}\right\|$) for a moderate $\gamma \geq \delta^{-1}$.
In that case the two clusters are merged.

Evaluating the function of the triangular atomic blocks

Core idea [5,6]: Consider small diagonal random perturbations E_{A}, E_{B} and compute

$$
f\left\{A+E_{A}, B+E_{B}\right\}(C)
$$

via diagonalization with higher precision.

Evaluating the function of the triangular atomic blocks

Core idea [5,6]: Consider small diagonal random perturbations E_{A}, E_{B} and compute

$$
f\left\{A+E_{A}, B+E_{B}\right\}(C)
$$

via diagonalization with higher precision.

Main issue: V_{A}, V_{B} such that $A+E_{A}=V_{A} D_{A} V_{A}^{-1}, B+E_{B}=V_{B} D_{B} V_{B}^{-1}$ might have large condition numbers.

Evaluating the function of the triangular atomic blocks

Core idea [5,6]: Consider small diagonal random perturbations E_{A}, E_{B} and compute

$$
f\left\{A+E_{A}, B+E_{B}\right\}(C)
$$

via diagonalization with higher precision.

Main issue: V_{A}, V_{B} such that $A+E_{A}=V_{A} D_{A} V_{A}^{-1}, B+E_{B}=V_{B} D_{B} V_{B}^{-1}$ might have large condition numbers.

- Lower the unit round-off to u^{2} and compute $\widetilde{A}=A+E_{A}, \widetilde{B}=B+E_{B}$ with $\left\|E_{A}\right\|=u\|A\|,\left\|E_{B}\right\|=u\|B\|$.
- Set the unit round-off to $u_{h} \leq u$ and retrieve triangular V_{A}, V_{B} by solving shifted linear systems with \widetilde{A} and \widetilde{B}.
- Evaluate $V_{A} f\left\{D_{A}, D_{B}\right\}\left(V_{A}^{-1} C V_{B}\right) V_{B}^{-1}$ using u_{h}
- Go back to unit round-off u.

[^0][6] Higham, Liu. A multiprecision derivative-free Schur-Parlett algorithm for computing matrix functions. MIMS EPrint 2020.19, 2020.

Choosing u_{h}

The following Lemma suggests the choice $u_{h} \leq \frac{u}{k\left(V_{A}\right) \kappa\left(V_{B}\right)}$.
Lemma
Let $Y=V_{A} f\left\{D_{A}, D_{B}\right\}\left(V_{A}^{-1} C V_{B}\right) V_{B}^{-1}$, and let \hat{Y} be the corresponding quantity computed in floating point arithmetic. If the matrix multiplications are performed exactly, and $f\left(\lambda_{i}^{A}, \lambda_{j}^{B}\right)$ is computed with relative error bounded by u_{h}, then

$$
\|F-\hat{F}\| \leq \kappa\left(V_{A}\right) \kappa\left(V_{B}\right)\|C\| \max _{i, j}\left|f\left(\lambda_{i}, \mu_{j}\right)\right| u_{h} .
$$

Choosing u_{h}

The following Lemma suggests the choice $u_{h} \leq \frac{u}{k\left(V_{A}\right) \kappa\left(V_{B}\right)}$.

Lemma

Let $Y=V_{A} f\left\{D_{A}, D_{B}\right\}\left(V_{A}^{-1} C V_{B}\right) V_{B}^{-1}$, and let \hat{Y} be the corresponding quantity computed in floating point arithmetic. If the matrix multiplications are performed exactly, and $f\left(\lambda_{i}^{A}, \lambda_{j}^{B}\right)$ is computed with relative error bounded by u_{h}, then

$$
\|F-\hat{F}\| \leq \kappa\left(V_{A}\right) \kappa\left(V_{B}\right)\|C\| \max _{i, j}\left|f\left(\lambda_{i}, \mu_{j}\right)\right| u_{h} .
$$

Problem: How to estimate $\kappa\left(V_{A}\right), \kappa\left(V_{B}\right)$ before their computation?

Choosing u_{h}

The following Lemma suggests the choice $u_{h} \leq \frac{u}{k\left(V_{A}\right) \kappa\left(V_{B}\right)}$.

Lemma

Let $Y=V_{A} f\left\{D_{A}, D_{B}\right\}\left(V_{A}^{-1} C V_{B}\right) V_{B}^{-1}$, and let \hat{Y} be the corresponding quantity computed in floating point arithmetic. If the matrix multiplications are performed exactly, and $f\left(\lambda_{i}^{A}, \lambda_{j}^{B}\right)$ is computed with relative error bounded by u_{h}, then

$$
\|F-\hat{F}\| \leq \kappa\left(V_{A}\right) \kappa\left(V_{B}\right)\|C\| \max _{i, j}\left|f\left(\lambda_{i}, \mu_{j}\right)\right| u_{h}
$$

Problem: How to estimate $\kappa\left(V_{A}\right), \kappa\left(V_{B}\right)$ before their computation?
$\kappa\left(V_{A}\right)$ (analogously $\kappa\left(V_{B}\right)$) can be estimated from the entries of \widetilde{A} :

$$
\begin{equation*}
\kappa\left(V_{A}\right) \lesssim m \zeta(\zeta+1)^{m+1}, \quad \zeta=\frac{\max _{i<j}\left|\widetilde{A}_{i j}\right|}{\min _{i \neq j}\left|\widetilde{A}_{i j}-\widetilde{A}_{j j}\right|} \tag{1}
\end{equation*}
$$

Choosing u_{h}

The following Lemma suggests the choice $u_{h} \leq \frac{u}{\kappa\left(V_{A}\right) \kappa\left(V_{B}\right)}$.

Lemma

Let $Y=V_{A} f\left\{D_{A}, D_{B}\right\}\left(V_{A}^{-1} C V_{B}\right) V_{B}^{-1}$, and let \hat{Y} be the corresponding quantity computed in floating point arithmetic. If the matrix multiplications are performed exactly, and $f\left(\lambda_{i}^{A}, \lambda_{j}^{B}\right)$ is computed with relative error bounded by u_{h}, then

$$
\|F-\hat{F}\| \leq \kappa\left(V_{A}\right) \kappa\left(V_{B}\right)\|C\| \max _{i, j}\left|f\left(\lambda_{i}, \mu_{j}\right)\right| u_{h}
$$

Problem: How to estimate $\kappa\left(V_{A}\right), \kappa\left(V_{B}\right)$ before their computation?
$\kappa\left(V_{A}\right)$ (analogously $\kappa\left(V_{B}\right)$) can be estimated from the entries of \widetilde{A} :

$$
\begin{equation*}
\kappa\left(V_{A}\right) \lesssim m \zeta(\zeta+1)^{m+1}, \quad \zeta=\frac{\max _{i<j}\left|\widetilde{A}_{i j}\right|}{\min _{i \neq j}\left|\widetilde{A}_{i j}-\widetilde{A}_{j j}\right|} \tag{1}
\end{equation*}
$$

This is usually too pessimistic; practically, we apply the blocking method with a parameter $\delta_{1}<\delta$ and we compute the maximum of (1) for the diagonal blocks.

Numerical results: highly non normal matrices

Setting

- $m=n=64, f(x, y)=(x+y)^{-\frac{1}{2}}$.
- diag: diagonalization (no blocking and no HP).
- diag_hp: HP diagonalization (no blocking).
- Err: relative error with respect to $f\{A, B\}(C)$ evaluated with diag_hp using 128 digits.
- n_{A}, n_{B} : number of atomic blocks in A and B.
- κ_{f} : estimate of

$$
\lim _{h \rightarrow 0} \sup _{\frac{\|\Delta A\|}{\|A\|}, \frac{\|\Delta B\|}{\|B\|} \leq h} \frac{\left\|f\left\{A+\Delta A, B^{T}+\Delta B^{T}\right\}(C)-f\left\{A, B^{T}\right\}(C)\right\|}{h} .
$$

	FUN2M					DIAG			DIAG_HP		
Test	Err	Time	nA	nB	Digits	Err	Time	Time	Err	Digits	$\kappa_{f} \cdot u$
jordbloc	$2.0 \cdot 10^{-9}$	0.02	15	15	48	$3.9 \cdot 10^{-1}$	0.008	1.65	$2.0 \cdot 10^{-9}$	51	$3.2 \cdot 10^{-10}$
grcar	$1.5 \cdot 10^{-13}$	1.53	1	1	40	$7.7 \cdot 10^{-8}$	0.008	1.54	$1.5 \cdot 10^{-13}$	40	$1.0 \cdot 10^{-9}$
smoke	$3.5 \cdot 10^{-9}$	1.46	1	1	35	$1.1 \cdot 10^{-8}$	0.002	1.45	$1.8 \cdot 10^{-9}$	35	$5.0 \cdot 10^{-1}$
kahan	$3.4 \cdot 10^{-16}$	1.37	1	1	43	$6.8 \cdot 10^{-7}$	0.002	1.36	$4.5 \cdot 10^{-16}$	43	$1.4 \cdot 10^{-7}$
lesp	$4.4 \cdot 10^{-15}$	0.23	9	9	35	$1.6 \cdot 10^{-1}$	0.003	1.32	$3.5 \cdot 10^{-15}$	36	$1.9 \cdot 10^{-15}$
sampling	$1.0 \cdot 10^{-7}$	0.41	10	9	49	$2.2 \cdot 10^{-2}$	0.006	2.04	$1.0 \cdot 10^{-7}$	49	$8.2 \cdot 10^{-8}$
grcar-rand	$5.2 \cdot 10^{-12}$	0.39	1	16	29	$7.8 \cdot 10^{-8}$	0.009	1.45	$5.2 \cdot 10^{-12}$	31	$3.7 \cdot 10^{-6}$

Numerical results: random matrices

Figure 1: Timings of fun2m and diag for well-conditioned A and B.

Is there code available?

Yes, we have the Julia package BivMatFun.
julia> import Pkg; julia> Pkg.add(url = "https://github.com/numpi/BivMatFun.git"); julia> using BivMatFun;
\# Only complex matrices are implemented
julia> n = 1024;
julia> A = complex(randn(n,n)); B = complex(randn(n,n));
julia> C = complex(randn(n,n));
julia> $f=(z, w, i, j)->1 /(z+w) ;$
julia> X, _ = fun2m(f, A, B, C);
julia> using LinearAlgebra;
julia> opnorm ($\mathrm{A} * \mathrm{X}+\mathrm{X} * \mathrm{~B}-\mathrm{C}$) / opnorm(X)
$3.277465131019034 \mathrm{e}-13$

Conclusions

Reference:

- S. Massei., L. R. Mixed precision recursive block diagonalization for bivariate functions of matrices, to appear on SIMAX, 2022.

Remarks:

- A perturb-and-diagonalize approach combined with high precision can be a workaround when dealing with linear algebra tasks related to (nearly) non diagonalizable matrices.
- An effective blocking strategy is necessary in order to mitigate the impact of high precision arithmetic on timings.

Possible applications/extensions

- Projection methods for function of Kronecker sum structured matrices.
- Multivariate matrix functions \rightarrow operations on tensors.

[^0]: [5] Davies. Approximate diagonalization. SIMAX, 2008.

