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This can be generalized to the bivariate case, by setting for f(z, w) = 3, ;.o f;Z'W/

f{ABT}C)= > f{ACB =-—— f(z,w)(zI — A)~*C(zI — BT)~! dz dw.

i,j>0 Fa/Tg

* Most of the properties of univariate matrix functions carry over to this more general
setting.
e Similarities on A, B behave well:

f{A,BT}(C) = V- f{VIAV (W iBW)"}(V-icw) w1,

for any invertible matrices V, W.



Applications

* if X satisfies AX + XB = C, then
C:f{AaBT}(X)a f(X,y):X+y,
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* if X satisfies AX + XB = C, then
C:f{AaBT}(X)a f(X,y):X+y,

and therefore the solution of a Sylvester equation is expressed as:

X :g{Av BT}(C)a g(Xv y) = X+ y

* Similar ideas apply for generalized Sylvester equations of the form

p{A, B"}(X) = C, whose solution is expressed using f(x, y) := ﬁ.

* f{A,AT}(H) is the Frechét derivative of g(z) at A in the direction H, if f(z, w) is the
divided difference of g(z).

* There is a nice connection with Kronecker sums; if A = BT @ I + I @ A then

vec(X) = f(A)(vec(C)), = X = g{A BT}(C),  g(x,y)=Ff(x+y).



Evaluation in the diagonalizable case

f(x,y)=>_ fix'y = f{AB"}(C)=> fACB.
ij ij

When A, B are diagonalizable, i.e., A= VaDaV, * and B = VgDg V!
f{A BT}(C VAZfUDA VilcveDLvgt,
= VAf{DA, Dg}(V,1CVB)V,!
Hence, we have (o is the Hadamard product):

f()\l,,ul) f()\lyﬂn)
f{A,BT}(C) = Vy : : oVitcve | Vit
f(Am.pa) - f(Am, pn)

How do we compute f{A, B"}(C) for generic functions and non-normal matrices?



A bivariate evaluation scheme

Our aim: evaluating f{A, BT}(C).

* We can assume A, B triangular by taking Schur forms.
* We can partition the diagonal blocks of A, B so that their spectra are separated.
* We now need a formula for

.
o Al Ap
F._f{l o }(C).

The generic case is then obtained by divide-and-conquer.

By,

an B1,
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Block diagonalization

Let A, B be block upper triangular:

A Ap

A =
A2

. B=

Bi1 Bp
By,

If V7 w verify A11V = A22 V= A12 and 811W = Bzz W= 812; then:

I V| T =V|_|As I W|g|I -W|_ |Bu
I I P I I | By |
% W
So that:
IV I W A BT, I
f{A BT —f 1 11 vewt

decouple into 4 function evaluations of smaller matrices



Algorithm 1 Evaluates f{A, BT}(C)

: procedure fun2m(f, A, B, C)
[Qu, T4] = schur(A), [Qs, Ts] = schur(B)
C« Q.CQs _
F «fun2m_rec(f, Ta, Tg, C)
return QA FQg
end procedure
procedure fun2m_rec(f, A, B, C)
if A, B are small then return f{A, B"}(C)
else

Partition A, B and C as:

A:[A11212]7 32[311312}, C:[Cuclz]

22 By, G &

A W N R OOUAWN R

5 Retrieve V and W by solving Sylvester equations
Gn & NG _

6 Compute [ 2] = [1y] [GuGa] [1—]

7 Fij + fun2m_rec(f, Aii, Bjj, Cjj), for i, j=1,2
_ Fi1 F

8 return [T-V] [fif2] [1¥]

9: end if

10: end procedure




Algorithm 2 Evaluates f{A, BT}(C)

: procedure fun2m(f, A, B, C)
[QA, Ta] = schur(A), [Qs, Tg] = schur(B)
C +— Q,CQs _
F «fun2m_rec(f, Ta, Tz, C)
return QA FQg
end procedure
procedure fun2m_rec(f, A, B, C)
if A, B are small then return 7{A B"}(C)
else
Partition A, B and C as:

A A By, B G €
A 1A | B u B | 1 Cr2
Az By, 9 G &

A W N R OOUAWN R

5 Retrieve V and W by solving Sylvester equations
C; C C; G —

6:  Compute [ u Cz] = ! ‘f]icﬁ CZ} [1-W]

7 Fij fun2m_rec(f, Aii, Bjj, Cyj), for i, j=1,2

. _ Fi1 F

8 retum [T V] [f ] (1]

9: end if

10: end procedure
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Blocking strategy

Each recursive call needs the matrices [1 Y], [ %] to be not so ill-conditioned. This is
equivalent to keep under control the norm of the solutions of

AV — VA, = Ap, BiiW — WB;; = By,

As in the Schur—Parlett algorithm [4], the blocking is based on clustering the eigenvalues
of A (resp. B) such that, for a given ¢ > 0:

* For each eigenvalue X in a cluster 3 in the same cluster s.t. |\ — u| < 4.

* Each pair of eig. \, i1 that belong to different clusters verifies |\ — u| > 6

Since this criterion is only heuristic, we also check a posteriori whether || V||, > ~||Az2||
(resp. ||W/|2 > ~||B1z|)) for a moderate v > 6.

In that case the two clusters are merged.

[4] Davies, Higham. A Schur-Farlett algorithm for computing matrix functions. SIMAX, 2003.
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Evaluating the function of the triangular atomic blocks

Core idea [5,6]: Consider small diagonal random perturbations E,, Eg and compute
f{A+ Es, B+ Eg}(C)

via diagonalization with higher precision.

Main issue: Vj, Vg such that A+ Ex = VaDaV, !, B + Eg = VgDV ! might have large
condition numbers.

* Lower the unit round—off to u? and compute A = A + E4, B = B + Eg with
|Eall = ul|All, ||Esl| = ul|B]|-

* Set the unit round-off to u, < u and retrieve triangular V,, Vz by solving shifted
linear systems with A and B.

* Evaluate Vaf{Da, Dg}(V, *CVg) Vg using uy

* Go back to unit round-off u.

[5] Davies. Approximate diagonalization. SIMAX, 2008.

[6] Higham, Liu. A multiprecision derivative—free Schur-Parlett algorithm for computing matrix functions. MIMS EPrint 2020.19, 2020.



The following Lemma suggests the choice | u, < m L

Lemma

Let Y = Vaf{Da, Dg}(V,1CVi)V;!, and let Y be the corresponding quantity computed
in floating point arithmetic. If the matrix multiplications are performed exactly, and
f(NA, /\F) is computed with relative error bounded by uy,, then

IF = Fll < s(Va)s(Va)IIC| e[ ) e
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The following Lemma suggests the choice | u, < m L

Lemma
Let Y = Vaf{Da, Dg}(V,1CVi)V;!, and let Y be the corresponding quantity computed
in floating point arithmetic. If the matrix multiplications are performed exactly, and

f(NA, /\F) is computed with relative error bounded by uy,, then

IF = Fll < s(Va)s(Va)IIC| e[ ) e

Problem: How to estimate x(Vy), x(Vg) before their computation?
r(Va) (analogously x(V;)) can be estimated from the entries of A:

e
Vo s me et (o TalAl
mini |Aji — Ajjl

This is usually too pessimistic; practically, we apply the blocking method with a

parameter §; < § and we compute the maximum of (1) for the diagonal blocks.
10



Numerical results: highly non normal matrices

s m=n=64f(x,y)=(x+y):.

* diag: diagonalization (no blocking and no HP).

* diag_hp: HP diagonalization (no blocking).

* Err: relative error with respect to f{A, B}(C) evaluated with diag_hp using 128 digits.
* ngu, ng: number of atomic blocks in A and B.

* k¢ estimate of

|f{A+ AA, BT + ABT}(C) — f{A,BT}(O)|

lim su .
h—0 jaay a8 h
TAT > M8l =
FUN2M DIAG DIAG _HP
Test Err Time nA nB  Digits Err Time | Time Err Digits Ky
jordbloc | 2.0-107% 002 15 15 4% [ 39-107' 0008 | 1.65  20-107° 51 | 3.2.10710
grear L5-107% 153 1 1 40 | 7.7-107% 0008 | 154 15-107Y 40 1.0-1077
smoke 35-107% 146 1 1 35 L1-107% 0002 | 145  1.8-107° 35 5.0-107!
kahan 3.4-1071 0 137 1 1 43 6.8-10°7 0.002 | 136 4.5-1071¢ 43 1.4-10°7
lesp 4.4-107% 023 9 9 35 LG6-1071 0003 | 132 35-1001% 36 L9 1018
sampling | 1.0-1077 041 10 9 49 | 22-107% 0006 | 204 L0-1077 19 82-107°
50009 | 145 5.2-10712 31 3.7-107°

grecar-rand | 5.2-107'2 039 1 16 29 7.8-10
11



Numerical results: random matrices

Test = randn, f(x,y) = m

fun2m diag 19 | —e—fun2m 2|
Size Time nA nB Time —=— diag %
64 0.01 16 16 0.01 B | |

128 0.08 32 32 0.06
256 0.27 64 64 0.2
512 1.42 128 128 1.07 10° |-
1,024 | 547 256 256 4.09
2,048 | 29.12 512 512 22.01
4,096 | 243.41 1,024 1,024 | 132.48 1072

Time (s)

102 103

Size (n)

Figure 1: Timings of fun2m and diag for well-conditioned A and B.
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Is there code available?

Yes, we have the Julia package BivMatFun.
julia> import Pkg;

julia> Pkg.add(url = "https://github.com/numpi/BivMatFun.git");
julia> using BivMatFun;

# Only complex matrices are implemented

julia> n = 1024;

julia> A = complex(randn(n,n)); B = complex(randn(n,n));
julia> C = complex(randn(n,n));

julia> f = (z,w,1,j) > 1/ (z + w);

julia> X, _ = fun2m(f, A, B, CO);

julia> using LinearAlgebra;
julia> opnorm(A*X + X*B — C) / opnorm(X)

3.277465131019034e-13

13



Conclusions

Reference:

* S. Massei., L. R. Mixed precision recursive block diagonalization for bivariate
functions of matrices, to appear on SIMAX, 2022.

Remarks:

* A perturb—and-diagonalize approach combined with high precision can be a
workaround when dealing with linear algebra tasks related to (nearly) non
diagonalizable matrices.

* An effective blocking strategy is necessary in order to mitigate the impact of high
precision arithmetic on timings.

Possible applications/extensions

* Projection methods for function of Kronecker sum structured matrices.
 Multivariate matrix functions — operations on tensors.
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