Graph Topological Stability via Matrix Differential Equations

Anton Savostianov, anton.savostianov@gssi.it Gran Sasso Science Institute, L'Aquila, Italy
Joint work with Nicola Guglielmi and Francesco Tudisco

Two Days of Numerical Linear Algebra and Applications 15 February 2022, Naples

Graph \mathcal{G} is a pair of sets, $\mathcal{G}=(V, E)$:
$\square V$ is the set of vertices, $|V|=n$
$\square \mathcal{E}$ is the set of edges, $\mathcal{E} \subseteq V, \times V,|\mathcal{E}|=m$

Pairwise Interactions

Outline:

1 Introduction Definitions

Laplacians

Higher-order relations

Introduction

Simplicial Complexes

There is a number of ways to introduce higher-order interactions in the network: hypergraphs, motifs, etc.; we focus on:

Definition

For a given set V, a family X of its subsets is called a simplicial complex if for any set S in X, every $S^{\prime} \subseteq S$ also belongs to X.

Outline:

1 Introduction Definitions

Laplacians Topology Graphs


```
```

{

```
```

{
[A, B, C], - 2-simplices, K2(X)
[A, B, C], - 2-simplices, K2(X)
[A,B],[A,C],[B,C],[B,D],
[A,B],[A,C],[B,C],[B,D],
[C,D],[C,E],[D,E],[E,F], - 1-simplices, K
[C,D],[C,E],[D,E],[E,F], - 1-simplices, K
[A],[B],[C],[D],[E],[F]-0-simplices, Ko(X)
[A],[B],[C],[D],[E],[F]-0-simplices, Ko(X)
}

```
```

}

```
```

Example of simplicial complex X

Inside the simplicial complex X, simplexes of different orders are connected through the boundary relation ∂_{k}.

$[1,2,3]$

$\xrightarrow{\partial_{2}} \quad[1,2]-[1,3]+[2,3]$

Formal linear Chain Spaces are spanned by the simplexes σ_{i} of the same cardinality $\left(\sigma_{i} \in K_{k}(X)\right)$:

$$
C_{k}(X)=\operatorname{span}\left(\sigma_{1}, \ldots, \sigma_{\left|K_{k}(X)\right|}\right)
$$

Examples of Chain Spaces

- $C_{0}(X)$ - states of vertices;
- $C_{1}(X)$ - edge flows;
- ...

Outline:

1 Introduction Definitions
Graph
Laplacians
Topology
Graphs
Problem Stat
ment
Gradient Flo
Numerical

Introduction

Chains and Boundary Operators

Definition

The boundary operator $\partial_{k}: C_{k}(X) \rightarrow C_{k-1}(X)$

$$
\partial_{k}\left[v_{0}, v_{1}, \ldots, v_{p}\right]=\sum_{j=0}^{k}(-1)^{j}\left[v_{0}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{k}\right]
$$

Outline:
 1 Introduction Definitions
 Graph Laplacians
 Topology

 Fundamental
 Lemma Homology
 $\partial_{k} \partial_{k+1}=0$

The conjugate map $\partial_{k}^{*}\left(B_{k}^{T}\right)$ is called a co-boundary operator.

Outline:

$$
\left(\partial_{1}^{*} f\right)\left[v_{1}, v_{2}\right]=f\left(v_{2}\right)-f\left(v_{1}\right) \quad \leftrightarrow \quad \nabla f(x)=\frac{1}{\Delta x}(f(x+\Delta x)-f(x))
$$

Definition

Analogous to the continuous Laplacian operator, $L=\nabla^{\top} \nabla$, one defines the classical graph Laplacian or connecting Laplacian:

$$
L_{0}=B_{1} B_{1}^{T}, \quad L_{0} \in M a t_{n \times n}
$$

$\square L_{0}=\operatorname{diag}(A 1)-A$, where A is the graph adjacency matrix;

- L_{0} is s.p.d

Hodge Laplacians on Graphs
L.H. Lim

Definition

The higher－order graph Laplacian is given by：

$$
L_{k}=B_{k}^{T} B_{k}+B_{k+1} B_{k+1}^{T}
$$

In case $k=1, L_{1}=B_{1}^{T} B_{1}+B_{2} B_{2}^{T}$ is called a Hodge Laplacian，$L_{1} \in M a t_{m \times m}$ $\operatorname{dim} \operatorname{ker} L_{0}=$ number of connected $\quad \operatorname{dim} \operatorname{ker} L_{1}=$ number of 1 －dim．holes components

Cheeger constant，Fiedler vector

Outline：

1 Introduction
Definitions

Topology

Hodge Laplacians on Graphs
L．H．Lim

Problem Statement

Let us assume weighted generalizations of the boundary operators:

$$
B_{1} \mapsto D_{v}^{+} B_{1} W, \quad B_{2} \mapsto W^{+} B_{2} D_{t}
$$

- W is the diagonal matrix of weights of edges;
- $D_{v}(W)$ is the diagonal matrix of weights of vertices;
- $D_{t}(W)$ is the diagonal matrix of weights of triangles.

Probem Statement

Outline:

2 Problem State-

Given the weighted connected graph \mathcal{G} with the simplicial complex $X=(V, \mathcal{E}, T)$ and k one-dimensional holes, find the smallest perturbation ΔW of edges' weights that increases the number of 1-dimensional holes in the graph \mathcal{G}.

Problem Statement Target Functional

Consider the perturbation $\Delta W=\varepsilon E$:

$$
\square \varepsilon \geq 0,\|E\|=1
$$

Outline:

2 Problem Statement
Why connectedness?
The target functional:

$$
F_{k}(\varepsilon, E)=\underbrace{\frac{1}{2} \sum_{i=1}^{k+1} \lambda_{i}^{2}}_{\text {control ker } L_{1}}+\underbrace{\frac{\alpha}{2} \max \left(0,1-\frac{\mu_{2}}{\mu}\right)^{2}}_{\text {connectedness }}
$$

$$
\begin{array}{r}
\text { where } \lambda_{i} \in \sigma\left(L_{1}(W+\varepsilon E)\right), \\
\mu_{2} \in \sigma\left(L_{0}(W+\varepsilon E)\right) .
\end{array}
$$

- $\sigma\left(L_{1}\right)$ contains non-zero part of $\sigma\left(L_{0}\right)$;
- due to W^{+}, L_{1} can be discontinuous upon complete edge elimination;
- complete edge elimination = dimensionality reduction.

$$
\begin{aligned}
& \|E\|=\sqrt{\langle E, E\rangle_{F}} \\
& \langle A, B\rangle_{F}=\operatorname{Tr}\left(A^{T} B\right) \\
& \sigma(A)=\text { ordered by magni- } \\
& \text { tude spectrum of } A
\end{aligned}
$$

Gradient Flow Approach Inner and Outer Iterations

The optimization task：

$$
\operatorname{argmin}_{\varepsilon} F_{k}(\varepsilon, E), \quad \text { where }\|E\|=1, W+\varepsilon E \succeq 0
$$

Optimization：Inner Iteration

Assume ε is fixed，then one optimizes for E ：

$$
\begin{array}{ll|ll}
\min & F_{k}(\varepsilon, E) \\
& \|E\|=1 \\
& W+\varepsilon E \succeq 0
\end{array} \quad \longrightarrow \quad\|E\|=-\nabla_{E} F_{k}(\varepsilon, E(t))
$$

For the case of simple eigenvalue $\lambda(t)$ with corresponding unit eigenvector x ，we use the derivative formula：

$$
\frac{d}{d t} \lambda(t)=\left\langle\frac{d}{d t} L(t), x x^{T}\right\rangle
$$

Constrained graph

 partitioning via matrix differential equationsE．Andreotti，
D．Edelmann， N．Guglielmi， and C．Lubich，

Gradient Flow Approach Inner and Outer Iterations

Constraints are taken in the account through projections to corresponding manifolds (in Frobenius norm):

- $W+\varepsilon E \geq 0 \leftrightarrow \mathbb{P}_{+}$- non-negativity projector;

■ $\|E\|=1 \leftrightarrow \dot{E}(t)=-\nabla_{E} F_{k}(\varepsilon, E(t))+\kappa E(t)-$ trajectory's projection on the unit sphere.

Optimization: Inner Iteration

$$
\begin{gathered}
\dot{E}(t)=-\nabla_{E} \mathbb{P}_{+} F_{k}(\varepsilon, E(t))+\kappa \mathbb{P}_{+} E(t) \\
\text { minimizer } E^{*}(\varepsilon)=\lim _{t \rightarrow \infty} E(t)
\end{gathered}
$$

■ if \mathbb{P}_{+}support is conserved, $F_{k}(\varepsilon, E(t))$ monotonically decreases;

- \mathbb{P}_{+}limits the control of the rank of the minimizer $E^{*}(\varepsilon)$.

Outline:

-

2 Problem State

Gradient Flow Approach Outer Iteration

■ inner iteration is Euler integrated conserving monotonicity;
■ inner iteration converges to a local minimizer $\boldsymbol{E}^{*}(\varepsilon)$;

Outline:

- outer iteration conducts a search for the minimal ε such that $F_{k}\left(\varepsilon, E^{*}(\varepsilon)\right)=0$;
- due to the intrinsic structure of the target functional:

■ outer iteration is started with small ε;

- quasi-homotopic transition: the minimizer $E^{*}(\varepsilon)$ is used as an initial point in Euler integration for the inner iteration when ε is modified to a nearby value;
- forward phase: increase ε until $F_{k}\left(\varepsilon, E^{*}(\varepsilon)\right)=0$;

■ backward phase: decrease ε while $F_{k}\left(\varepsilon, E^{*}(\varepsilon)\right)=0$ holds.

Illustrative Example

- the set of triangles T in the simplicial complex consists of 3 triangles, $[1,2,3]$, $[4,5,6]$ and $[4,6,7]$;
- weights of the edges are randomly

Outline:

 sampled, $w_{i} \sim U\left[\frac{1}{4}, \frac{3}{4}\right]$;

- weight of the vertex in matrix D_{v} equals the sum of all adjacent edges;
- weight of the triangle is a minimal weight of included edges:

$$
w([i, j, k])=\min \left\{w_{[i, j]}, w_{[i, k]}, w_{[j, k]}\right\}
$$

Example: Flow

Outline:

Example

Triangulation

- $(n-4)$ points are randomly thrown on the unit square;
- Delauney triangulation of sampled and corner points is calculated;

■ edges randomly added or removed to reach the target sparsity ν;

■ weights of the edges are randomly sampled, $w_{i} \sim U\left[\frac{1}{4}, \frac{3}{4}\right]$.

Outline:

-1 Introduction
Problem Stat
ment
10. Gradient F
4 Numerical experiments

Triangulations

Example

Triangulation

Thank you for attention

Theorem (HOL's Inheritance of the Spectrum)

Given the Classical Laplacian L_{0} and the Hodge Laplacian L_{1} for graph \mathcal{G}, one gets:
$1 \sigma_{+}\left(L_{0}\right) \subseteq \sigma_{+}\left(L_{1}\right)$;
2 if $0 \neq \mu \in \sigma_{+}\left(L_{0}\right) \subseteq \sigma_{+}\left(L_{1}\right)$, then eigenvectors are related as follows:
1 if x is an eigenvector for L_{0} with μ-eigenvalue, then $y=\frac{1}{\sqrt{\mu}} B_{1}^{T} x$ is an eigenvector for L_{1} with the same eigenvalue

Outline:

II Introduction

- Problem State

2 if u is an eigenvector for L_{1} with μ-eigenvalue and $u \notin \operatorname{ker} B_{1}$, then
$v=\frac{1}{\sqrt{\mu}} B_{1} u$ is an eigenvector for L_{0} with the same eigenvalue
$3 \mu \in \sigma_{+}\left(L_{1}\right)$ and $\mu \notin \sigma_{+}\left(L_{0}\right)$, then its corresponding eigenvector u is in ker B_{1} and the eigen-properties hold for the second term in the L_{1} :

$$
B_{2} B_{2}^{T} u=\mu u
$$

Figure: Illustration for the Combinatorial Spectrum Inheritance

Th-Limit to the Continuous Case

One can show the convergence of the discrete L_{1} to the continuous L_{1} as $|V| \rightarrow \infty$ for:
$\square w([i, j])=\mathrm{d}\left(x_{i}, x_{j}\right)$
$\square w([i])=\sum_{[i, j] \in \mathcal{E}} w([i, j])$
■ $w([i, j, k])=w([i, j]) w([i, k]) w([j, k])$

Note:

The elimination of the edge here eliminates also triangle and vertex. Such setup is less sensible for the current work's topological stability definition.

Outline:

[1] Introduction

