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Introduction
Graphs and Higher-Order Interactions

Graph G is a pair of sets, G = (V ,E ):
V is the set of vertices, |V | = n

E is the set of edges, E ⊆ V ,×V , |E| = m
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Higher-order relations
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Introduction
Simplicial Complexes

There is a number of ways to introduce higher-order interactions in the
network: hypergraphs, motifs, etc.; we focus on:

Definition
For a given set V , a family X of its subsets is called a simplicial complex if
for any set S in X , every S ′ ⊆ S also belongs to X .
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Example of simplicial complex X

{
[A, B, C ],— 2-simplices, K2(X )

[A, B], [A, C ], [B, C ], [B,D],

[C ,D], [C , E ], [D, E ], [E , F ],— 1-simplices, K1(X )

[A], [B], [C ], [D], [E ], [F ]— 0-simplices, K0(X )

}
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Introduction
Chains and Boundary Operators

Inside the simplicial complexX , simplexes of different orders are connected
through the boundary relation ∂k .
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[1, 2, 3]
∂2−→ [1, 2]− [1, 3] + [2, 3]

Formal linear Chain Spaces are
spanned by the simplexes σi of the
same cardinality (σi ∈ Kk(X )):

Ck(X ) = span(σ1, . . . , σ|Kk (X )|)

Examples of Chain Spaces

C0(X ) — states of vertices;

C1(X ) — edge flows;

. . .
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Introduction
Chains and Boundary Operators

Definition
The boundary operator ∂k : Ck(X )→ Ck−1(X )

∂k [v0, v1, . . . , vp] =
k∑

j=0

(−1)j [v0, . . . , vj−1, vj+1, . . . , vk ]
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= B2 B1q

∂1
[
1
2

] [
1
3

] [
2
3

] [
2
4

] [
3
5

] [
4
5

] [
4
6

] [
4
7

] [
5
6

] [
6
7

]
[1] −1 −1 0 0 0 0 0 0 0 0
[2] 1 0 −1 −1 0 0 0 0 0 0
[3] 0 1 1 0 −1 0 0 0 0 0
[4] 0 0 0 1 0 −1 −1 −1 0 0
[5] 0 0 0 0 1 1 0 0 −1 0
[6] 0 0 0 0 0 0 1 0 1 −1
[7] 0 0 0 0 0 0 0 1 0 1





∂2

[
1
2
3

] [
4
5
6

] [
4
6
7

]
[1, 2] 1 0 0
[1, 3] −1 0 0
[2, 3] 1 0 0
[2, 4] 0 0 0
[3, 5] 0 0 0
[4, 5] 0 1 0
[4, 6] 0 −1 1
[4, 7] 0 0 −1
[5, 6] 0 1 0
[6, 7] 0 0 1
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Introduction
High-order Laplacians for Graphs

The conjugate map ∂∗k (BT
k ) is called a co-boundary operator.

(∂∗1 f )[v1, v2] = f (v2)− f (v1) ↔ ∇f (x) =
1

∆x
(f (x + ∆x)− f (x))

Definition
Analogous to the continuous Laplacian operator, L = ∇T∇, one defines
the classical graph Laplacian or connecting Laplacian:

L0 = B1B
T
1 , L0 ∈ Matn×n

L0 = diag (A1)− A, where A is the graph adjacency matrix;
L0 is s.p.d
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Introduction
High-order Laplacians for Graphs

Definition
The higher-order graph Laplacian is given by:

Lk = BT
k Bk + Bk+1B

T
k+1

In case k = 1, L1 = BT
1 B1 + B2B

T
2 is called a Hodge Laplacian, L1 ∈ Matm×m

dim ker L0 = number of connected
components
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dim ker L1 = number of 1-dim. holes
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Cheeger constant, Fiedler vector
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Problem Statement

Let us assume weighted generalizations of the boundary operators:

B1 7→ D+
v B1W , B2 7→ W +B2Dt

W is the diagonal matrix of weights of edges;
Dv(W ) is the diagonal matrix of weights of vertices;
Dt(W ) is the diagonal matrix of weights of triangles.

Probem Statement
Given the weighted connected graph G with the simplicial complex
X = (V , E ,T ) and k one-dimensional holes, find the smallest
perturbation ∆W of edges’ weights that increases the number of
1-dimensional holes in the graph G.
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Problem Statement
Target Functional

Consider the perturbation ∆W = εE :
ε ≥ 0, ‖E‖ = 1;
W + εE ≥ 0.

The target functional:

Fk(ε,E ) =
1

2

k+1∑
i=1

λ2i︸ ︷︷ ︸
control ker L1

+
α

2
max

(
0, 1− µ2

µ

)2

︸ ︷︷ ︸
connectedness

where λi ∈ σ(L1(W + εE )),
µ2 ∈ σ(L0(W + εE )).

Why connectedness?
σ(L1) contains non-zero
part of σ(L0);

due to W+, L1 can be
discontinuous upon
complete edge
elimination;

complete edge
elimination =
dimensionality reduction.
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Gradient Flow Approach
Inner and Outer Iterations

The optimization task:
argminεFk(ε,E ), where ‖E‖ = 1, W + εE � 0

Optimization: Inner Iteration
Assume ε is fixed, then one optimizes for E :

min Fk(ε,E ) Ė (t) = −∇EFk(ε,E (t))
‖E‖ = 1 −→ ‖E‖ = 1
W + εE � 0 W + εE � 0

For the case of simple eigenvalue λ(t) with corresponding unit eigenvector
x , we use the derivative formula:

d

dt
λ(t) =

〈
d

dt
L(t), xxT

〉
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Gradient Flow Approach
Inner and Outer Iterations

Constraints are taken in the account through projections to corresponding
manifolds (in Frobenius norm):

W + εE ≥ 0↔ P+ — non-negativity projector;
‖E‖ = 1↔ Ė (t) = −∇EFk(ε,E (t)) + κE (t) — trajectory’s
projection on the unit sphere.

Optimization: Inner Iteration
Ė (t) = −∇EP+Fk(ε,E (t)) + κP+E (t)

minimizer E∗(ε) = lim
t→∞

E (t)

if P+ support is conserved, Fk(ε,E (t)) monotonically decreases;

P+ limits the control of the rank of the minimizer E∗(ε).
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Gradient Flow Approach
Outer Iteration

inner iteration is Euler integrated conserving monotonicity;
inner iteration converges to a local minimizer E ∗(ε);
outer iteration conducts a search for the minimal ε such that
Fk(ε,E ∗(ε)) = 0;
due to the intrinsic structure of the target functional:

outer iteration is started with small ε;
quasi-homotopic transition: the minimizer E∗(ε) is used as an initial
point in Euler integration for the inner iteration when ε is modified to
a nearby value;
forward phase: increase ε until Fk(ε,E

∗(ε)) = 0;
backward phase: decrease ε while Fk(ε,E

∗(ε)) = 0 holds.
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Illustrative Example

1
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7 the set of triangles T in the simplicial
complex consists of 3 triangles, [1, 2, 3],
[4, 5, 6] and [4, 6, 7];

weights of the edges are randomly
sampled, wi ∼ U

[
1
4 ,

3
4

]
;

weight of the vertex in matrix Dv

equals the sum of all adjacent edges;

weight of the triangle is a minimal
weight of included edges:

w([i , j , k]) = min{w[i,j],w[i,k],w[j,k]}
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Example: Flow
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Example
Triangulation

1 2

34

5

6
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8

(n − 4) points are randomly thrown on
the unit square;

Delauney triangulation of sampled and
corner points is calculated;

edges randomly added or removed to
reach the target sparsity ν;

weights of the edges are randomly
sampled, wi ∼ U

[
1
4 ,

3
4

]
.
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Example
Triangulation
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Thank you for attention
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Inheritance of the Spectrum

Theorem (HOL’s Inheritance of the Spectrum)
Given the Classical Laplacian L0 and the Hodge Laplacian L1 for graph G, one gets:

1 σ+(L0) ⊆ σ+(L1);

2 if 0 6= µ ∈ σ+(L0) ⊆ σ+(L1), then eigenvectors are related as follows:
1 if x is an eigenvector for L0 with µ-eigenvalue, then y = 1√

µB
T
1 x is an

eigenvector for L1 with the same eigenvalue
2 if u is an eigenvector for L1 with µ-eigenvalue and u /∈ kerB1, then

v = 1√
µB1u is an eigenvector for L0 with the same eigenvalue

3 µ ∈ σ+(L1) and µ /∈ σ+(L0), then its corresponding eigenvector u is in kerB1

and the eigen-properties hold for the second term in the L1:
B2B

T
2 u = µu

Stability of Hodge Laplacian on Graphs —Anton Savostianov (GSSI) 18

Outline:
1 Introduction
2 Problem State-

ment
3 Gradient Flow
4 Numerical

experiments

σ+(·) denotes the
positive part of the
spectrum



Inheritance of the Spectrum

0 0 · · · 0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 ← σ(L1)

0 0 · · · 0 λ1 λ2 0 λ4 0 0 λ7 λ8 0 λ10 ← σ(BT
1 B1)

0 0 · · · 0 0 0 λ3 0 λ5 λ6 0 0 λ9 0 ← σ(B2B
T
2 )

holes µ

Figure: Illustration for the Combinatorial Spectrum Inheritance
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Th-Limit to the Continuous Case

One can show the convergence of the discrete L1 to the continuous L1 as
|V | → ∞ for:

w([i , j ]) = d(xi , xj)

w([i ]) =
∑

[i,j]∈E w([i , j ])

w([i , j , k]) = w([i , j ])w([i , k])w([j , k])

Note:
The elimination of the edge here eliminates also triangle and vertex.
Such setup is less sensible for the current work’s topological stability
definition.
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