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Introduction

Graphs and Higher-Order Interactions

Outline:

Introduction

Graph G is a pair of sets, G = (V, E): sl
m Vs the set of vertices, |V| = n
m Eisthesetof edges, € C V, xV, |E|=m

Pairwise Interactions Higher-order relations
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Introduction

Simplicial Complexes

There is a number of ways to introduce higher-order interactions in the
network: hypergraphs, motifs, etc.; we focus on:

Definition

For a given set V, a family X of its subsets is called a simplicial complex if
forany set Sin X, every S’ C § also belongs to X.

{
[A, B, C], — 2-simplices, Ka(X)
[A, Bl [A, €1, [B, €], [B, D],
[C, D], [C, E], [D, E], [E, F], — 1-simplices, Ki(X)
[A], [B], [C], [D], [E], [F]— O-simplices, Kp(X)
}

Example of simplicial complex X
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Introduction
Chains and Boundary Operators

Inside the simplicial complex X, simplexes of different orders are connected
through the boundary relation 0,.

Formal linear Chain Spaces are
/\ spanned by the simplexes o; of the
same cardinality (o; € K, (X)):

1,2,3] 2 w2 -3+ 23] Ci( ):Spa‘n(alu"'va\Kk(Xﬂ)

Examples of Chain Spaces

m Go(X) — states of vertices;
B G (X) — edge flows;
m ...
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Introduction

Chains and Boundary Operators

Outline:
onc Introduction
Deﬁnltlon Definitions
The boundary operator 9 : Cx(X) — Cx—1(X)
k
8k[V0,V1,...,VP] = E (—1)"[V0,...,VJ'_1,VH_1,...,Vk]
Jj=0
o |[2] [3] |@
2
3] [6] [7

L2 1 0 0 %1

[1,3]) -1 0 0 17 717 127 12 47 747 74

231 0 o oul[5] [3] [3] (3] [3] (2] [&] [5] [B] (9]

[2,4]] O 0 0 [1]|-1 -1 o0 0 0 0 0 0 0 0

[3,5]] 0 0 0 [2j1 0 -1 -1 0 0 0O 0O 0 O Fundamental

[4,5]] O 1 0 [3]| o 1 1 0o -1 0 0 0 0 0 Lemma of

[4,6]] 0 —1 1 [4l 0o o o 1 0 -1 -1 -1 0 0 Homology

477 0 o -1 Bl o o o o 1 1 0 0 -1 0 D1 =0

[5,6]] 0 1 0 llo o o o o 0o 1 0 1 -1

6,711 0 0o 1 Mo o o o o o o 1 0 1
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Introduction
High-order Laplacians for Graphs

Outline:

Introduction

The conjugate map 95 (B/) is called a co-boundary operator.
1 rap!

(a;(f)[vh V2] = f(Vz) - f(Vl) e Vf(X) — E (f(X + AX) — f(X)) fap\a';ians

Definition

Analogous to the continuous Laplacian operator, L = V'V, one defines
the classical graph Laplacian or connecting Laplacian:

Lo = BlBlT, Lo € Mat,,x,,

Hodge Laplacians

on Graphs
m L, = diag (A1) — A where A is the graph adjacency matrix; e =
m[yisspd B
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Introduction

High-order Laplacians for Graphs

Outline:
DeﬁﬂItIOﬂ Introduction
The higher-order graph Laplacian is given by:
T T Topology  of
L, = Bk Bi + Bk+lBk+1 Graphs

Incase k =1, Ly = B By + B,B] is called a Hodge Laplacian, Ly € Matymxm

dim ker Ly = number of connected dim ker Ly = number of 1-dim. holes
components

Hodge Laplacians
on Graphs
L.H. Lim

r

Cheeger constant, Fiedler vector &
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- Problem Statement

Outline:
Let us assume weighted generalizations of the boundary operators:

Problem State-

B, — DfB,W, B, — W*B,D, et
m W is the diagonal matrix of weights of edges;

m D, (W) is the diagonal matrix of weights of vertices;
m D,(W) is the diagonal matrix of weights of triangles.

T - set of trian-
glesin X, T =
Ka(X)

Probem Statement

Given the weighted connected graph G with the simplicial complex
X =(V,&, T)and k one-dimensional holes, find the smallest
perturbation AW of edges’ weights that increases the number of
1-dimensional holes in the graph G.
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Problem Statement

Target Functional

Consider the perturbation AW = ¢E: Outline:

mW+cE >0. Why connectedness?

The target functional:

Problem State-
ment

m o(L;) contains non-zero

1k L@ 12\ part of o(Lo); llell = & &7
2 2 (A, BY; = Tr(ATB)
(e, E) = Z)‘ 5 max (07 1- H) m due to W, L; can be
Nl discontinuous upon A
control ker L connectedness complete edge
elimination;
where \; € o(L,(W + <E)), te o
€ o(Lo(W + eE)). = complete edge
2 ( 0( * )) elimination =

dimensionality reduction.
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Gradient Flow Approach
Inner and Outer Iterations

Outline:
The optimization task:

argmin_F, (e, E), where [|[E|| =1, W+4+¢cE >0

Gradient Flow
Optimization: Inner Iteration

Assume ¢ is fixed, then one optimizes for E:

min  Fi(e, E) E(t) = —VEeFi(e, E(t))
IEl=1 | — [El=1 o
onstraine ra
W + &‘E t O W + 8E t 0 partitioning & \?Ia
matrix differential
. . . . . . equations
For the case of simple eigenvalue A(t) with corresponding unit eigenvector | e. mdreotss,
. . D. Edel: N
x, we use the derivative formula: N, Guglietms,

d d and C. Lubich,
—t)={( —L(t T EERE
S0 = (GO
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Gradient Flow Approach
Inner and Outer Iterations

Outline:
Constraints are taken in the account through projections to corresponding

manifolds (in Frobenius norm):
Gradient Flow

m W+ cE >0+« P, —non-negativity projector;

m |[E|| =1 E(t) = —VeFi(e, E(t)) + KE(t) — trajectory’s
projection on the unit sphere.

Optimization: Inner Iteration Constrained graph
partitioning via

matrix differential

E(t) = —VEP+Fk(€, E(t)) + HIPJ,_E(t) equations
E. Andreotti,
minimizer E*(g) = tILn;o E(t) N gjg’l":;‘ﬁl
m if P, support is conserved, Fi (e, E(t)) monotonically decreases; e f";“h’
m P, limits the control of the rank of the minimizer E*(e). e
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Gradient Flow Approach
Outer Iteration

Outline:

m inner iteration is Euler integrated conserving monotonicity;

® inner iteration converges to a local minimizer E*(¢); Cradent Fow

m outer iteration conducts a search for the minimal € such that
Fi(e, E*(€)) = 0;
m due to the intrinsic structure of the target functional:

m outer iteration is started with small ¢;

m quasi-homotopic transition: the minimizer E*(e) is used as an initial
point in Euler integration for the inner iteration when ¢ is modified to
a nearby value;

m forward phase: increase € until Fi(e, E*(g)) = 0;

m backward phase: decrease € while Fi(e, E*(¢)) = 0 holds.
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lllustrative Example

Outline:
m the set of triangles T in the simplicial
complex consists of 3 triangles, [1,2, 3],
[4, 57 6] and [47 6, 7]1 ‘Nu‘rr‘wcri‘ca\r
experiments
Example

m weights of the edges are randomly
sampled, w; ~ U [1, 3]

m weight of the vertex in matrix D,
equals the sum of all adjacent edges; Ui, b] — uniform

distribution on

m weight of the triangle is a minimal [a, b] segment
weight of included edges:

w([i,J, k]) = min{w; jj, Wi «], Wi i}
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Example:
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Numerical
experiments
Example
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Example

Triangulation

Stability of Hodge Laplacian on Graphs —Anton Savostianov (GSSI)

(n — 4) points are randomly thrown on
the unit square;

Delauney triangulation of sampled and
corner points is calculated;

edges randomly added or removed to
reach the target sparsity v;

weights of the edges are randomly

sampled, w; ~ U [1,3].

Outline:

Numerical
experiments

Triangulations
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execution time, seconds

102
10!

10°

Example

Triangulation

=== v =035 '_.'
@
1016 1018 1020 1022

1016 1018 1020 1022

=== v =055

101.6 101.8 102.0 102.2
number of edges, m

102.4

102.4

Stability of Hodge Laplacian on Graphs —Anton Savostianov (GSSI)

10°

1071

perturbation, €

100.0

10—0.5

=== v =035
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o -

S =l 1 1
v =045

101.6 101.8 1020 102,2 102.4

cee =055 + r
H
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number of edges, m

Outline:

Numerical
experiments

Triangulations
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Thank you for attention
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- Inheritance of the Spectrum

Theorem (HOL's Inheritance of the Spectrum) Outline
Given the Classical Laplacian Ly and the Hodge Laplacian Ly for graph G, one gets:
o1 (Lo) € o4 (La);
if 0% p € oy(Lo) C oi(Ly), then eigenvectors are related as follows:
if x is an eigenvector for Lo with p-eigenvalue, then y = —=B x is an AR e
eigenvector for Ly with the same eigenvalue spectrum

if uis an eigenvector for Ly with p-eigenvalue and u ¢ ker By, then
v = \/iﬁBlu is an eigenvector for Ly with the same eigenvalue

w € o (Ly) and p ¢ o (Lo), then its corresponding eigenvector u is in ker By
and the eigen-properties hold for the second term in the Ly:

ByB u = pu
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- Inheritance of the Spectrum

Outline:

« o(Ly)

STe(ox[o[o[x (o] « o(BB)
[o[oo M o[oJE0] « o(B.5))
es E

Figure: lllustration for the Combinatorial Spectrum Inheritance
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- Th-Limit to the Continuous Case

Outline:
One can show the convergence of the discrete L; to the continuous L as
|V| — oo for:
= w([i,j]) = d(x;, %)
= W([I]) = Z[i,j]ef: W([’?J])
m w(li,j, k]) = w(li, j)w([i, KD w(l, k]) S
Eigenma_p:
N Ote . ngapti‘roeg‘Cda\"scovery
& edge flow
The elimination of the edge here eliminates also triangle and vertex. e
Such setup is less sensible for the current work’s topological stability NL Snen,
deﬁr”tlon I1.G. Kevrekidis
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