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Standard matrix functions

Let A be a diagonalizable n × n matrix, with spectral decomposition

A = VΛV−1, where Λ = diag(λ1, . . . , λn).

If f : C→ C is a function defined on the spectrum of A, the matrix
function f (A) is defined as

f (A) = Vf (Λ)V−1, where f (Λ) = diag(f (λ1), . . . , f (λn)).

For a general matrix A, a matrix function can be defined via the Jordan
canonical form.
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Generalized matrix functions

Generalized matrix functions (GMFs) are an extension of standard matrix
functions to the rectangular case, defined using the SVD instead of a
spectral decomposition [Hawkins–Ben-Israel, 1973].

Given an m × n matrix A with SVD A = UΣV T and a function
f : R+ → R, a generalized matrix function of A, denoted by f �(A), is
defined as

f �(A) = Uf �(Σ)V T ∈ Rm×n,

where f �(Σ) is diagonal with entries

f �(Σ)ii =

{
f (σi ) if σi > 0,
0 otherwise.

This definition does not depend on the value of f at z = 0, so we can
always assume that f (0) = 0 and f is odd.
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Examples

For f (z) = z , f �(A) = A.

For f (z) = z3, f �(A) = AATA.

For f (z) = z−1, f �(A)T is the Moore-Penrose pseudoinverse A+.

If f is odd and we define A =

 0 A

AT 0

, then

f (A) =

 0 f �(A)

f �(AT ) 0

 .
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Rational Krylov subspaces

Expressions of the form f (A)b can be efficiently computed using
polynomial and rational Krylov subspaces.

Given a sequence of poles {ξj}j≥1 ⊂ (C ∪∞) \ Λ(A), the associated
rational Krylov subspace is

Qk(A,b) = qk−1(A)−1Kk(A,b),

where qk−1(z) =
k−1∏
j=1

(z − ξj) and Kk(A,b) is the Krylov subspace

Kk(A,b) = span{b,Ab, . . . ,Ak−1b}.

An orthonormal basis Vk of Qk(A,b) can be computed with the rational
Arnoldi algorithm, which requires the solution of k − 1 shifted linear
systems with the matrix A.

Igor Simunec (SNS) Computation of GMFs with rational Krylov methods 6 / 20



Outline

1. Background
Generalized matrix functions
Rational Krylov subspaces

2. Computation of GMFs
Golub-Kahan bidiagonalization
Rational Krylov methods
Short term recurrence
Error bounds

3. Numerical results

Igor Simunec (SNS) Computation of GMFs with rational Krylov methods 6 / 20



Computation of f �(A)b via GK bidiagonalization

In [Arrigo-Benzi-Fenu, 2016] the following method is proposed for the efficient
computation of f �(A)b.

Perform k steps of Golub-Kahan bidiagonalization on A. This
produces a k × k bidiagonal matrix Bk and matrices Pk , Qk with
orthonormal columns, such that Bk = PT

k AQk .
Approximate f �(A)b with

yk = Pk f
�(Bk)QT

k b = Pk f
�(Bk)e1‖b‖2.

Another efficient method based on Chebyshev interpolation is proposed
in [Aurentz-Austin-Benzi-Kalantzis, 2019].

Both methods have very good performance for analytic functions such as
sin(z), sinh(z).
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Computation of f �(A)b via rational Krylov

The matrices Pk and Qk constructed in the Golub-Kahan bidiagonalization
process are orthonormal bases of the polynomial Krylov subspaces

spanQk = Kk(ATA,b) and spanPk = Kk(AAT ,Ab).

In this talk we present a new class of methods, obtained by replacing
Kk(ATA,b) and Kk(AAT ,Ab) with the corresponding rational Krylov
subspaces.

Let Qk and Pk be matrices with orthonormal columns such that

spanQk = Qk(ATA,b) and spanPk = Qk(AAT ,Ab).

Defining Bk = PT
k AQk , we can approximate f �(A)b with

yk = Pk f
�(Bk)QT

k b = Pk f
�(Bk)e1‖b‖2.
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Computational remarks

A basis Qk of Qk(ATA,b) can be computed by solving k − 1 shifted
linear systems with ATA.

Since Qk(AAT ,Ab) = AQk(ATA,b), we can obtain Pk and Bk with
a thin QR decomposition of AQk .

In the Golub-Kahan bidiagonalization, Bk is bidiagonal, so the next
columns of Pk , Qk and Bk can be computed with a short term
recurrence.

In the rational case, Bk is upper triangular but not bidiagonal.

However, we can still compute the columns of Pk and Bk with a short
recurrence by exploiting the quasiseparable structure of Bk , i.e. that
all the blocks in its strictly upper triangular part have rank 1.
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Short term recurrence

Let

Bk =



d1 β1 γ1 . . . ∗
. . .

. . .
. . .

...

dk−2 βk−2 γk−2

dk−1 βk−1

dk


.

We have

Aqk = AQkek = PkBkek = dkpk + xk , where xk = [Pk−1 0 ]Bkek .

Using the fact that the submatrices of Bk in the strictly upper triangular
part have rank at most 1, we can compute xk with the recursive relation

xk =
γk−2
βk−2

xk−1 + βk−1pk−1.
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Algorithm

Algorithm 1: Short recurrence rational Krylov approximation of f �(A)b
Input: A ∈ Rn×n,b ∈ Rn, f , {ξ1, . . . , ξk−1}
Output: yk ∈ Qk(AAT ,Ab) s.t. yk ≈ f �(A)b

1 q1 = b/‖b‖2
2 w1 = (I − ATA/ξ1)−1ATAq1 // can use other choices
3 Compute q2 by orthogonalizing w1 against q1

4 Compute the QR decomposition [p1,p2]
[
d1 β1
0 d2

]
= [q1,q2]

5 Define B2 =
[
d1 β1
0 d2

]
and x2 = β1p1

6 for j = 2, . . . , k − 1 do
7 w j = (I − ATA/ξj)

−1ATAq j // can use other choices
8 Compute q j+1 by orthogonalizing w j against [q1, . . . ,q j ]

9 Compute pj+1, dj+1, βj , γj−1 with short recurrence

10 Bj+1 =
[
Bj s j+1
0 dj+1

]
, where sj+1 =

[
γj−1
βj−1

(Bj )1:j−1,j

βj

]
11 Pk = [p1, . . . ,pk ]
12 Compute f �(Bk), e.g. via an SVD of Bk

13 yk = Pk f
�(Bk)e1‖b‖2
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Error bound

Let A ∈ Rm×n, and let σ1, σn be the first and n-th singular values of A,
where we use the notation σn := 0 when n > m.

Theorem
Let yk ∈ Qk(AAT ,Ab) be the approximation to f �(A)b obtained after k
steps of a rational Krylov method, with qk−1(z) =

∏k−1
j=1 (z − ξj) as

denominator polynomial. Then

‖f �(A)b − yk‖2 ≤ 2‖b‖2 min
p∈Pk−1

‖f (z)− qk−1(z2)−1p(z2)z‖∞,[σn,σ1].

The bound can be also reformulated as

‖f �(A)b − yk‖2 ≤ 2σ1‖b‖2 min
p∈Pk−1

∥∥∥ f (
√
z)√
z
− p(z)

qk−1(z)

∥∥∥
∞,[σ2n ,σ21 ]

.
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How to deal with σn = 0

When A ∈ Rm×n with n > m, we have σn = 0 and the matrix Bk can have
arbitrarily small singular values even if σm > 0.

Example. Consider A =
[
1 0

]
and b =

[
ε 1

]T
, for small ε > 0. Then

we have Q1 = b/‖b‖2 = 1√
1+ε2

b and P1 = Ab/‖Ab‖2 = 1. So we get

B1 = PT
1 AQ1 = ε√

1+ε2
, which can be arbitrarily close to zero.

We can overcome this difficulty with the identity

f �(A)b = (A+)T f �(AT )Ab,

by first computing w = f �(AT )Ab with a rational Krylov method on AT

and then recovering f �(A)b as the solution of the least squares problem

f �(A)b = (A+)Tw = arg min
y
‖ATy −w‖2.

The projected matrix now has singular values in the interval [σm, σ1].
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Numerical results

We performed experiments on random matrices with prescribed singular
values to investigate the sharpness of the error bounds.

We compare the following methods:
polynomial Krylov method;
extended Krylov method, with alternating poles at 0 and ∞;
Shift-and-Invert Krylov method, with repeated pole ξ = −σminσmax;
rational Krylov method with asymptotically optimal poles for
Laplace-Stieltjes functions, from [Massei-Robol, 2020].

The poles for the fourth method were chosen according to the bound

‖f �(A)b − yk‖2 ≤ 2σ1‖b‖2 min
p∈Pk−1

∥∥∥ f (
√
z)√
z
− p(z)

qk−1(z)

∥∥∥
∞,[σ2n ,σ21 ]

.
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Convergence – Polynomial
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Convergence of the polynomial Krylov method, for a 2000× 2000 matrix
whose singular values are the Chebyshev points of the second kind for the
interval [10−1, 10].
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Convergence – Rational

0 5 10 15
10−12

10−8

10−4

100

optimal

bound

S&I

bound

extended

0 10 20
10−11

10−7

10−3

optimal

bound

S&I

bound

extended

Convergence of rational Krylov methods for f �(A)b, where A is a
2000× 2000 matrix with logspaced singular values in the interval [1, 10]
(left) or [10−1, 10] (right), and f (z) =

√
z log(1 +

√
z).
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Convergence – Rectangular
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Convergence of the asymptotically optimal rational Krylov method for
f �(A)b, where A is a rectangular 1000× 1500 matrix whose singular values
are Chebyshev points of the second kind in the interval [10−2, 10].

Igor Simunec (SNS) Computation of GMFs with rational Krylov methods 17 / 20



Loss of orthogonality
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Effects of the loss of orthogonality in the rational Golub-Kahan algorithm
for the approximation of f �(A)b, where f (z) =

√
z and A is a 2000× 2000

matrix with logspaced singular values in the interval [10−1, 102].
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Conclusions

We have proposed a class of rational Krylov methods for the
computation of f �(A)b.

The projected matrix Bk and the Krylov basis Pk can be computed
with a short recurrence by exploiting the quasiseparable structure
of Bk .

We have proved error bounds that relate the convergence rate of these
methods to rational approximation of f on [σn, σ1].

Our numerical experiments indicate that the bounds can accurately
predict convergence, and show that the rational Krylov methods
converge faster than the polynomial ones when f has low regularity.
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Thank you for your attention!

Our preprint on arXiv:

A. A. Casulli, I. Simunec, Computation of generalized matrix functions
with rational Krylov methods, arXiv:2107.12074.
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Backup slides
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Practical polynomial error bound

Assume σ1 > 0, let 1 < ρ ≤ σ1 + σn
σ1 − σn

, and denote by Eρ the ellipse with

vertices at 1
2(σ2n + σ21)± 1

4(ρ+ 1
ρ)(σ2n − σ21) and foci at σ2n and σ21.

Theorem (Bernstein)
Let the function g be analytic in the interior of the ellipse Eρ, and assume
that max

z∈Eρ
|g(z)| ≤ M. Then

min
p∈Pk

‖g(z)− p(z)‖∞,[σ2n ,σ21 ] ≤
2M
ρ− 1

ρ−k .

If the function f (
√
z/
√
z) is analytic in the interior of Eρ, we get

‖f �(A)b − yk‖2 ≤ 4Mσ1‖b‖2
ρ

ρ− 1
ρ−k ,

where M = max
z∈Eρ

∣∣f (
√
z/
√
z)
∣∣ and 1 < ρ ≤ σ1 + σn

σ1 − σn
.
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Shift-and-Invert bound

Let yk be the approximation to f �(A)b from the Shift-and-Invert Krylov
method with the single pole ξ = −σminσmax. Then

‖f �(A)b − yk‖2 ≤ 2‖b‖2M
√
σmax

σmin
exp

(
− 2k

√
σmin

σmax

)
,

where

M = ‖h(z)‖∞,[0,−ξ−1], h(z) =
f (
√
z−1 + ξ)√
z−1 + ξ

.

The function h has the property that

f (
√
z)√
z

= h((z − ξ)−1).
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Proof sketch of polynomial error bound

If f = p2k−1 is an odd polynomial of degree ≤ 2k − 1, then it is not hard
to see that yk = f �(A)b.

For a general f , take an approximating odd polynomial p2k−1 ∈ P2k−1.
Then, defining hk = f − p2k−1, we have

‖f �(A)b − yk‖2 ≤ ‖h�k(A)b‖2 + ‖Pkh
�
k(Bk)QT

k b‖2.

Since we have

‖h�k(A)‖2 ≤ ‖hk‖∞,[σmin{m,n},σ1],

‖h�k(Bk)‖2 ≤ ‖hk‖∞,[σn,σ1],

we obtain
‖f �(A)b − yk‖2 ≤ 2‖b‖2‖hk‖∞,[σn,σ1].

The statement follows by minimizing over the polynomial p2k−1.
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Polynomial vs Rational – Convergence
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Comparison between polynomial and rational Krylov for f �(A)b, where A is
the 8490× 8490 adjacency matrix of the directed graph p2p-Gnutella30
and b is the vector of all ones. Left: f1(z) = sinh(z). Right: f2(z) = z1/3.
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Polynomial vs Rational – Execution time

function
polynomial rational

k tk Ek k tk Ek

sinh(z) 11 0.0103 1.54e-10 55 10.0469 6.41e-08

z1/3 2000 41.9933 2.48e-03 32 5.6455 1.16e-09

Number of iterations k , execution time tk in seconds required to achieve
tolerance tol = 10−9, and actual error Ek at iteration k . The execution
times are for the short recurrence implementations, obtained as an average
over 10 runs.
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