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Introduction

The Linear Least Squares Problem (LS)

min
x∈Rn

∥Ax − b∥2,

where A ∈R
m×n with m ≥ n is large and sparse, b ∈R

m

Why the problem is so difficult?
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The Linear Least Squares Problem (LS)

min
x∈Rn

∥Ax − b∥2,

where A ∈R
m×n with m ≥ n is large and sparse, b ∈R

m

Why the problem is so difficult?

Enormous variability of LS problems even when considering them only
algebraically

The sparsity structure of AT A often harder than expected.

Sparsity structure of AT A is always behind the scene in the
Cholesky/QR approaches even when the normal equations are not
formed.
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Why AT A is always behind the scene and what makes problems?

Undergraduate stuff:

A = QR → AT A = RT QT QR → AT A = RT R

The fill is exactly as predicted by Cholesky of AT A if A has the
strong Hall property

A trivial example of a problem with structure of AT A.

A

A AT

This is only a simple case, but it may help to understand more
complex situations.
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Introduction

Trying to understand difficulties from structural point of view

Denote rows of A by ai, i = 1, . . . , n. Then (adding rank-one terms)

AT A = n∑
i=1

aia
T
i
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A =
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2 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗

⎞⎟⎟⎟⎠
←→↕ . . . ←→↕ (

2 4

2 ∗ ∗
4 ∗ ∗)←→↕ . . .

But the set of operations in the subsequent Cholesky factorization of
AT A is very similar (remember the multifrontal method). ©

A = (a11 vT

v C
) = ( 1

v/a11 I
)(a11

C − vvT /a11

)(1 vT /a11

I
)

Again, fill-in based on cliques (in predefined order)
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Solving LS via normal equations means structurally two layers of
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Normal equations, factorization and implications for us

Solving LS via normal equations means structurally two layers of
cliques

Why and when is this of interest? Why not considering QR
(backward stable) directly?

▸ In complete factorizations is this view probably of less interest
(large fill-in)

▸ In incomplete factorizations used as preconditioners this may be
a relation to think about:

☀ There is apparently no reliable incomplete QR for solving
large least squares. So far, as I hope.

☀ Clique-based view: two levels of approximation possible: (1)
for AT A and (2) for subsequent Cholesky

☀ Motivating example for the approach: rank-one based
preconditioner construction
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Introduction

Motivating example for one-level rank-one updates

Rank-1 (rank-k) modifications of (approximate) factorizations from
some rows of AT A (Tismenetsky (1991); Kaporin (1998); Scott, T.
(2014)) may generate dense contributions for the Schur complement.

Before the update: blue: big entries, red: small entries
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Motivating example for one-level rank-one updates

Rank-1 (rank-k) modifications of (approximate) factorizations from
some rows of AT A (Tismenetsky (1991); Kaporin (1998); Scott, T.
(2014)) may generate dense contributions into the Schur complement.
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Introduction

Motivating example for one-level rank-one updates

Rank-1 (rank-k) modifications of (approximate) factorizations from
some rows of AT A (Tismenetsky (1991); Kaporin (1998); Scott, T.
(2014)) may generate dense contributions into the Schur complement.

How to exploit this in the two-level clique-based approximate construction?
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Introduction

Motivating example for one-level rank-one updates

Rank-1 (rank-k) modifications of (approximate) factorizations from
some rows of AT A (Tismenetsky (1991); Kaporin (1998); Scott, T.
(2014)) may generate dense contributions into the Schur complement.

A note:: the same structure as in incomplete QR with complete Q
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Towards the goal

Back to reality

The talk mentions the approaches to solve the problem caused by one
large clique of A only: implied by a set of dense rows in A.
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Towards the goal

Back to reality

The talk mentions the approaches to solve the problem caused by one
large clique of A only: implied by a set of dense rows in A.

We call this problem sparse-dense

Of course, we could solve just the sparse problem and then update,
but let us try more integrated approaches.

Notation for the mixed sparse-dense problem: sparse problem with a
few dense rows (structurally a clique)

A = (As

Ad
)

C = (AT
s AT

d )(As

Ad
) = AT

s As +AT
d Ad ≡ Cs +Cd

▸ As ∈ IRms×n is sparse, Ad ∈ IRmd×n is dense, (ms ≫md).
▸ Full column rank of A (not necessarily of As)

13 / 61



Towards the goal

The approaches

1 Combining sparse and dense parts of A
▸ Arbitrary sparse-dense (ASD) approach (Scott., T., 2017)
▸ Solver: iterative approach based on CG (CGLS1)
▸ Specific modifications needed if rank(A) > rank(As): .
▸ In fact, an implicit combination of the dense (large clique) part and the

rest (set of remaining cliques) coupled together inside CG to get

z =M−1r.
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▸ Arbitrary sparse-dense (ASD) approach (Scott., T., 2017)
▸ Solver: iterative approach based on CG (CGLS1)
▸ Specific modifications needed if rank(A) > rank(As): .
▸ In fact, an implicit combination of the dense (large clique) part and the

rest (set of remaining cliques) coupled together inside CG to get

z =M−1r.

2 Transforming Ad to a sparse set of rows at the expense of getting the
problem larger.

▸ Sparsifying the dense part by matrix stretching (Scott, T., 2019)
▸ Hoping to get overall “uniform problem sparsity”
▸ Traps on the way: size increase / ill-conditioning
▸ Attempts with QR factorization in extended space (Scott, T. 2021)
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Towards the goal

The approaches (2)

3 Null-space approach (Scott, T., 2022)
▸ Saddle-point structure
▸ An approach to develop and test construction of null-space bases of

wide matrices

4 Schur complement approach (Scott, T., 2018)
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Towards the goal

The approaches (2)

3 Null-space approach (Scott, T., 2022)
▸ Saddle-point structure
▸ An approach to develop and test construction of null-space bases of

wide matrices

4 Schur complement approach (Scott, T., 2018)

All mentioned approaches have specific strengths, weaknesses and a
potential to be further developed.

We intend to discuss here mainly ideas, not techniques.
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Combining sparse and dense parts of A

1. Combining sparse and dense parts of A

A

A AT
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Combining sparse and dense parts of A

1. Combining sparse and dense parts of A

A

A AT

Woodbury formulas (1949, 1950) rewritten for residual updates
▸ Sometimes such approach interpreted as compute (sparse) and update

(by dense)
▸ But even in this one-clique case we have more possible ways: sparse →

dense, dense → sparse.
▸ Moreover, dense part can be structured. Moreover, our approach is:

incomplete clique, incomplete update

There are ways to overcome rank deficiency of As.
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Combining sparse and dense parts of A

1. Combining sparse and dense parts of A

Example of (hidden) Woodbury-like formulas

Theorem

If Cs = LsLT
s and ξ1 minimizes ∥AsL−T

s z − bs∥2 exactly, the exact least
squares solution of our problem can be written as x = L−T

s (ξ1 + Γ1),
ρd = bd −AdL−T

s ξ1 and

Γ1 = L−1

s AT
d (Imd

+AdL−T
s L−1

s AT
d )−1ρd.
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Example of (hidden) Woodbury-like formulas

Theorem

If Cs = LsLT
s and ξ1 minimizes ∥AsL−T

s z − bs∥2 exactly, the exact least
squares solution of our problem can be written as x = L−T

s (ξ1 + Γ1),
ρd = bd −AdL−T

s ξ1 and

Γ1 = L−1

s AT
d (Imd

+AdL−T
s L−1

s AT
d )−1ρd.

Theorem

If Cs = LsLT
s and ξ1 is an approximate solution to the problem

minz ∥AsL−T
s z − bs∥

2
, the exact least squares solution of the equivalent

problem above can be written as z = ξ1 + Γ1, where ρs = bs −AsL−T
s ξ1,

ρd = bd −AdL−T
s ξ1 and

Γ1 = L−1

s AT
s ρs +L−1

s AT
d (Imd

+AdL−T
s L−1

s AT
d )−1(ρd −AdL−T

s L−1

s AT
s ρs).
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ASD: Arbitrary sparse-dense preconditioning

SCSD8-2r_a (m=60,550; n=8,650): size of Cs
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 size of the matrix of normal equations

This is not only one clique but 50 cliques merged together

They are far from being dense. Can be split into more dense blocks!
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ASD: Moving rows one by one from As to Ad

SCSD8-2r_a: iteration counts + size_p/size(AT A)
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Figure: Problem Meszaros/scsd8 − 2r. Iteration counts (left), and ratio of the
preconditioner size to the size of AT A (right) as the number of dense rows that
are removed from A is increased.
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ASD: Moving rows one by one from As to Ad

SCSD8-2r_a: timings
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Figure: Problem Meszaros/scsd8 − 2r. Time to compute the preconditioner
(left) and time for CGLS (right) as the number of dense rows that are removed
from A is increased.
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Experimental evaluation of ASD

Dense rows not exploited Dense rows exploited
Identifier size_p T _p Its T _i md size_ps T _p Its T _i

lp_fit2p 17,985 0.26 ‡ ‡ 25 4,940 0.09 1 0.01
scsd8-2r 51,885 0.25 90 0.11 50 51,855 0.05 7 0.02
scagr7-2r 197,067 3,34 244 0.53 7 152,977 0.06 1 0.01
scfxm1-2r 227,835 0.59 187 0.51 58 227,823 0.14 33 0.23
neos1 789,471 † † † 74 789,471 5.27 132 3.71
neos2 † † † † 90 795,323 5.46 157 4.84
stormg2-125 395,595 0.27 ‡ ‡ 121 7,978,135 0.22 16 0.29
PDE1 † † † † 1 1,623,531 12.7 696 1.28
neos † † † † 20 2,874,699 4.93 232 15.0
stormg2_1000 3,157,095 19.1 ‡ ‡ 121 3,125,987 19.1 18 2.92
cont1_l † † † † 1 11,510,370 4.82 1 0.33
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2. Matrix stretching

Stretching: a specific sparsification by splitting dense rows into sparse
pieces.
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Stretching: a specific sparsification by splitting dense rows into sparse
pieces.

The problem is augmented both by rows and columns.

A

Â

Such strategy called stretching discussed (among others) by Grcar
(1990), Vanderbei (1991), Gondzio (1991), Alvarado (1997), Adler
(2000), Adler, Björck (2000), Duff, Scott (2005).

Up to now it has not been an approach of choice
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2. Matrix stretching

An example of one-row stretching

(Ase Asf

e f
)Ð→ ⎛⎜⎝

Ase Asf 0√
2 e 0 1

0
√

2 f −1

⎞⎟⎠
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An example of one-row stretching
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e f
)Ð→ ⎛⎜⎝

Ase Asf 0√
2 e 0 1

0
√

2 f −1

⎞⎟⎠
Behind: splitting and an orthogonal transformation.

The transformation can be used for more rows and more parts

But, there are problems with stretching. The first of them: how many
parts? Grcar (1990):“ the main challenge ... lies in determinining the
appropriate choice of the number of rows ... to split into ... ”

Our answer: Dense cliques should be compatible with the remaining
(sparse) part As of A.
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2. Matrix stretching

How to do this: back to cliques

AT A = n∑
i=1

ai
T

ai, ai, i = 1, . . . , n are rows of A.
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ai, ai, i = 1, . . . , n are rows of A.
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⇒ Pattern of aj is not needed to get the pattern of AT A.

A =
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ai, ai, i = 1, . . . , n are rows of A.

What if a pattern of a row aj is contained in the pattern of a row ai

(dominated by ai)?

⇒ Pattern of aj is not needed to get the pattern of AT A.

A =
⎛⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

ai ∗ ∗ ∗

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

aj ∗ ∗

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎠
, Â ∶ A without the row aj

AT A and ÂT Â have the same sparsity patterns.

24 / 61



Matrix stretching

The idea: split aj into (noncontiguous) subvectors dominated by rows
in As!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5

∗ ∗ ∗∗ ∗ ∗∗ ∗∗
aj ∗ ∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Matrix stretching

The idea: split aj into (noncontiguous) subvectors dominated by rows
in As!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

∗ ∗ ∗∗ ∗ ∗∗ ∗∗
aj1 ∗ ∗ ∗ ∗
aj2 ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Covering a row by other rows can be casted as a minimum cover problem
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Matrix stretching

Segments made to be disjoint.
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Matrix stretching

Segments made to be disjoint.

Finding segments to be stretched: can be formulated as vertex cover
of a related bipartite graph

There are efficient heuristics to do this.

12345678910111213

14

1234567812 10

36 / 61



Matrix stretching

aj → F , A→ (Â
F
)
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Matrix stretching

aj → F , A→ (Â
F
)

Splitting F to more rows and stretching

(Â
F
)Ð→ (Â 0

F̂ S
)

(ÂT F̂ T

0 ST )(Â 0

F̂ S
) = (ÂT Â + F̂ T F̂ ST F̂

F̂ T S ST S
)

ST S is tridiag (−1 2 −1)
▸ Saddle-point problem?
▸ Scaling?
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Matrix stretching

Ad subsequent experimental results

Matrix transformed by the stretching parameter-free based on the
minimum set cover heuristic
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Matrix stretching

Ad subsequent experimental results

Matrix transformed by the stretching parameter-free based on the
minimum set cover heuristic

Achieved simultaneously sparsity of normal equations, Cholesky factor
size, reasonable iteration counts if used for preconditioning

This (set cover-based) stretching compared against ad hoc splits.

38 / 61



Matrix stretching

Number of entries: AT A and Cholesky factor versus number of parts

Red dot means the result for the set cover-based stretching
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Figure: Comparison of the entries in the stretched normal matrix (left) and its
Cholesky factor (right) for problem LP_AGG with one dense row appended.
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Matrix stretching

Figure: For problem LP_AGG with one dense row appended, the sparsity pattern of
L̂ + L̂T of the Cholesky factor of the stretched normal matrix for ad hoc
stretching (left) and set cover-based stretching (right).
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Matrix stretching

The sizes really transfer into the iteration counts
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Figure: Comparison of the iteration counts (left) and preconditioner size (right)
for the matrix LPAGG. The curve corresponds to the number of entries varying
with the number of parts into which is the dense row stretched. CGLS
preconditioned by HSL_MI35.
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Matrix stretching

Problems with ill-conditioning

Ill-conditioning in practice is in agreement with (non-optimistic)
theoretical bounds.
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Problems with ill-conditioning

Ill-conditioning in practice is in agreement with (non-optimistic)
theoretical bounds.

Adlers-Björck theory (see Adlers, Björck, 2000; Scott, T., 2019)

Theorem

An upper bound for the condition number of the stretched matrix (p
stretched rows, k parts) Â with γ = 1/2√p k∣∣Ad∣∣2 is

κ2(Â) ≤ κ2(A)k (1 + 2p k∣∣Ad∣∣22∣∣A∣∣2
2

)(k + 1 + σn(A)2∣∣Ad∣∣22 ) .
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Problems with ill-conditioning

Ill-conditioning in practice is in agreement with (non-optimistic)
theoretical bounds.

Adlers-Björck theory (see Adlers, Björck, 2000; Scott, T., 2019)

Theorem

An upper bound for the condition number of the stretched matrix (p
stretched rows, k parts) Â with γ = 1/2√p k∣∣Ad∣∣2 is

κ2(Â) ≤ κ2(A)k (1 + 2p k∣∣Ad∣∣22∣∣A∣∣2
2

)(k + 1 + σn(A)2∣∣Ad∣∣22 ) .

Do we really need to stretch everything?
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Matrix stretching

Condition number increase when stretching more rows
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Figure: Condition number estimate (right) and iteration count (left) for problem
sctap1-2b as the number of dense rows increases.
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Figure: Condition number estimate (right) and iteration count (left) for problem
sctap1-2b as the number of dense rows increases.

Do we really need to stretch everything (hide all nasty cliques)?
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Hiding cliques: partial summary

Combined approach? What can we do?

Some cliques can be moved to the dense part (that can be itself
structured, banded, block triangular etc.) This processing is cheap.
Can be even approximate. And the interaction can be combined
within a preconditioner.
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Hiding cliques: partial summary

Combined approach? What can we do?

Some cliques can be moved to the dense part (that can be itself
structured, banded, block triangular etc.) This processing is cheap.
Can be even approximate. And the interaction can be combined
within a preconditioner.

Some cliques can be stretched or embedded. Only some, in order to
keep condition number increase only moderate.

There are other motivations for stretching, partial stretching.

But, first consider an example that motivated our interest in
stretching + direct methods.
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Stretching and QR

QR factorization for an unstretched system (A → R)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Stretching and QR

QR factorization for stretched system (A → R)
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∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→
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∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Matrix stretching and QR

Despite the sharp contrast between stretched/unstretched, but in our
experiments more theoretical than really cutting down efficiency in
practice (our experience)

A flavor of other motivations.

Like solving rank deficient problems.

47 / 61



Schur complement approach

The Schur complement approach

Fully embedded in the Schur complement approach that combines a
direct solver, modifications, regularization to get a preconditioner:

System matrix varying α

K(α) = (Cs(α) AT
d

Ad −Imd

) .
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The Schur complement approach

Fully embedded in the Schur complement approach that combines a
direct solver, modifications, regularization to get a preconditioner:

System matrix varying α

K(α) = (Cs(α) AT
d

Ad −Imd

) .

Once the dense rows are clearly detected, the preconditioned iterative
method can be extremely successful in solving some hard problems.
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Partial stretching versus Schur complement approach

A variation of stretching for rank-deficient problems: stretch only the
rows needed to have As full column rank.

Matrix Meth m̃ ñ nnz(R̃s) flops its ratio

aircraft PStr 10517 6754 4.719×10
4 9.33×10

5 9 4.947×10
−12

Regu 11271 3754 3.754×10
3 3.37×10

4 7 5.476×10
−7

sc205-2r PStr 64023 36813 3.175×10
5 8.25×10

6 6 9.983×10
−9

Regu 97636 35213 2.704×10
5 1.21×10

7 7 1.002×10
−8

scagr7-2b PStr 15127 11023 1.186×10
5 5.03×10

6 7 2.129×10
−12

Regu 23590 9743 6.027×10
4 3.67×10

6 8 3.979×10
−9

scagr7-2br PStr 50999 37167 4.673×10
5 1.88×10

7 7 1.046×10
−10

Regu 79526 32847 2.273×10
5 1.28×10

7 8 3.470×10
−8

scrs8-2r PStr 32820 19493 4.242×10
5 4.66×10

7 7 3.311×10
−12

Regu 42055 14364 8.200×10
4 2.84×10

6 16 3.532×10
−7

Significantly better (quality) than just regularization (and the Schur
complement approach)
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Null-space approach

Another trick to annihilate large cliques: use them for the null-space
projection

50 / 61



Null-space approach

Another trick to annihilate large cliques: use them for the null-space
projection

Note that we emphasize here only one motivation for the null-space
approach!!! There are other ones.
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Null-space approach

Another trick to annihilate large cliques: use them for the null-space
projection

Note that we emphasize here only one motivation for the null-space
approach!!! There are other ones.

Is it possible to make this transformation such that the structure of
the transformed system is not fully destroyed (filled)?
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Null-space approach

Optimization motivation of the null-space approach

minimize f(u)
subject to B u = g, (1)
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minimize f(u)
subject to B u = g, (1)

Getting the saddle-point problem for the direction vector u.

(H BT

B 0k,k
)(ū

v
) = (f −Hû

g
) , ū = u−û, H ∈R

n×n, B ∈R
k×n (full rank).

(2)
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Null-space approach

Optimization motivation of the null-space approach

minimize f(u)
subject to B u = g, (1)

Getting the saddle-point problem for the direction vector u.

(H BT

B 0k,k
)(ū

v
) = (f −Hû

g
) , ū = u−û, H ∈R

n×n, B ∈R
k×n (full rank).

(2)

The second equation is equivalent to finding z ∈ Rn−k such that
ū = Zz, columns of Z ∈R

n×(n−k) form a basis for N(B).
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Null-space approach

Algorithm

Dual variable (null-space) method for solving the saddle-point
problem

1. Find Z with columns forming a basis for N(B)
2. Find û such that Bû = g.
3. Solve ZT HZz = ZT (f −Hû).
4. Set x = û +Zz.
5. Solve BBT v = B(f −Hu) for v ∈R

k.
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Null-space approach

Standard null-space method uses the fact that the bottom right block
of the saddle-point matrix is zero
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Null-space approach

Standard null-space method uses the fact that the bottom right block
of the saddle-point matrix is zero

Saddle-point from the LS problem
The LS problem can be written as solving the following system

(Cs AT
d

Ad −I
)( x

Adx
) = (c

0
) . (3)

We will show how the problem with nonzero C can be overcome.

Use more general notation as

A(u
v
) = (H BT

B −C
)(u

v
) = (f

g
) , (4)
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The null space approach to solve sparse/dense LS problems

Theorem

Consider the saddle-point problem above, rank(B) = r ≤ k, H, C SPSD,
N (H) ∩N (B) = {0}, N (C) ∩N (BT ) = {0}. Then the solution of the
system above with generally nonzero C can be obtained by solving a
transformed saddle point problem of the order n + k with a symmetric
principal leading matrix of order n − r.

54 / 61



The null space approach to solve sparse/dense LS problems

Theorem

Consider the saddle-point problem above, rank(B) = r ≤ k, H, C SPSD,
N (H) ∩N (B) = {0}, N (C) ∩N (BT ) = {0}. Then the solution of the
system above with generally nonzero C can be obtained by solving a
transformed saddle point problem of the order n + k with a symmetric
principal leading matrix of order n − r.

Transformation uses the nonsingular matrix E = (Z Y ) ∈ Rn×n,

Z ∈ Rn×n−r is such that BE = (0k,n−r Br), Br ∈ Rk×r, Br ≠ 0.

54 / 61



The null space approach to solve sparse/dense LS problems

Theorem

Consider the saddle-point problem above, rank(B) = r ≤ k, H, C SPSD,
N (H) ∩N (B) = {0}, N (C) ∩N (BT ) = {0}. Then the solution of the
system above with generally nonzero C can be obtained by solving a
transformed saddle point problem of the order n + k with a symmetric
principal leading matrix of order n − r.

Transformation uses the nonsingular matrix E = (Z Y ) ∈ Rn×n,

Z ∈ Rn×n−r is such that BE = (0k,n−r Br), Br ∈ Rk×r, Br ≠ 0.

Lemma

Consider A = (As

Ad
) , As ∈ Rms×n, Ad ∈ Rmd×n. If A is of full rank, then

Cs = AT
s As is positive definite on N (Ad).
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The null space approach to solve sparse/dense LS problems

Theorem

Consider the saddle-point problem above, rank(B) = r ≤ k, H, C SPSD,
N (H) ∩N (B) = {0}, N (C) ∩N (BT ) = {0}. Then the solution of the
system above with generally nonzero C can be obtained by solving a
transformed saddle point problem of the order n + k with a symmetric
principal leading matrix of order n − r.

Transformation uses the nonsingular matrix E = (Z Y ) ∈ Rn×n,

Z ∈ Rn×n−r is such that BE = (0k,n−r Br), Br ∈ Rk×r, Br ≠ 0.

Lemma

Consider A = (As

Ad
) , As ∈ Rms×n, Ad ∈ Rmd×n. If A is of full rank, then

Cs = AT
s As is positive definite on N (Ad).

Are we able to construct a suitable Z for a wide matrix?
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The null space approach to solve sparse/dense LS problems

Sparse Z for a wide (possibly dense) matrix: example

An example of BP = QR

B = (1 2 3 10 4) , BP = (10 2 3 1 4) ,

Z̃1 =
⎛⎜⎜⎜⎜⎜⎝
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An example of BP = QR

B = (1 2 3 10 4) , BP = (10 2 3 1 4) ,

Z̃1 =
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−1

−1
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⎞⎟⎟⎟⎟⎟⎠
.

Z = PZ̃ (this does not change suitability of Z)

Z1 is OK, Z2 is not OK

QR factorization with threshold pivoting to keep locality: this
pivoting offers a suitable compromise.
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The null space approach to solve sparse/dense LS problems

Threshold thresh = 1
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LPAGG (615 × 488, UFL Sparse Matrix Collection) + 10 dense rows.
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The null space approach to solve sparse/dense LS problems

Threshold thresh = 0.9
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The null space approach to solve sparse/dense LS problems

Threshold thresh = 0.73
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LPAGG (615 × 488, UFL Sparse Matrix Collection) + 10 dense rows.
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The null space approach to solve sparse/dense LS problems

Threshold thresh = 0.2
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LPAGG (615 × 488, UFL Sparse Matrix Collection) + 10 dense rows.
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ASD: still a lot of theoretical challenges (different substitutions and
combinations).

Stretching - a cute idea but needs to be developed (ill-conditioning,
motivations in saddle-point approach?)

Towards the double layer of cliques?

Null-space approach: a viable way to get over the singularity of As.

Many more questions than expected at the beginning.
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Last but not least

Thank you for your attention!

Great thanks to the organizers!

Thanks also to our institution and the Doctoral school (in CZ) supported by

ESF in Doctoral school for education in mathematical methods and tools in

HPC project, CZ.02.2.69/0.0/0.0/16_018/0002713.
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