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Problem and goal

Efficient solution of a class of optimization problems that are very large and
are expected to yield sparse solutions

mXin f(x) + mullx]l1 + 72/ Lx]1
st. Ax=b

f : R" — R twice continuously differentiable convex function, L € RIxn
AeR™" beR™ m<n, and 7,75 >0

|Ix]]1 and ||Lx||1 induce sparsity in x and/or in some dictionary Lx

@ Many applications: portfolio optimization, signal/image processing,
classification in statistics and machine learning, inverse problems,
compressed sensing, ...

@ Usually solved by specialized first-order methods, but those methods
may be too expensive or struggle with not-so-well conditioned problems
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Problem and goal (cont'd)

Non-smooth second-order methods:

@ proximal (projected) Newton-type methods

@ semi-smooth Newton methods combined with augmented Lagrangian
methods
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Problem and goal (cont'd)

Non-smooth second-order methods:

@ proximal (projected) Newton-type methods

@ semi-smooth Newton methods combined with augmented Lagrangian
methods

Our goal:

show that Interior Point Methods (IPMs) can be equally or more efficient,
robust and reliable than well-assessed first-order methods, by

@ exploiting problem features in the linear algebra phase of IPMs

@ taking advantage of the expected sparsity of the optimal solution
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Outline of this talk

@ Interior Point Methods (IPMs) for convex programming
@ Interior Point-Proximal Method of Multipliers (IP-PMM)
@ Application to TV-based Poisson Image Restoration

@ Conclusions

NOTE: more applications in V. De Simone, D. di Serafino, J. Gondzio, S. Pougkakiotis &
MV, Sparse Approximations with Interior Point Methods, to appear on SIAM Review, 2022
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Modeling trick

Original formulation

min  f(x) + 7 ||x|[1 + || Lx
in A+l I pin 4 gmen e R g

st. Ax=b
For any a, let |a| = at + a=, where at = max{a,0} and a— = max{—a, 0}
Setd = Lx c R/

New formulation

. r_nicp+ . fixt —x7)+m(e, xT+elx7)+m(efdt +¢Td7)
st Alxt —x7) =

ej € R/ vector of all 1's

v

Larger smooth problem, but IPMs are able to efficiently handle large sets of
linear equality and non-negativity constraints!
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(Primal-dual) IPMs for convex programming

Problem in standard form: min f(x), st. Ax=b, x>0

Basic ideas of IPMs
@ handle non-negativity constraints with a logarithmic barrier in the objective
function

@ approximately solve a sequence of barrier problems by using a (possibly
inexact) Newton method
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(Primal-dual) IPMs for convex programming

Problem in standard form: min f(x), st. Ax=b, x>0

Basic ideas of IPMs
@ handle non-negativity constraints with a logarithmic barrier in the objective
function

@ approximately solve a sequence of barrier problems by using a (possibly
inexact) Newton method

At each iteration k

n
@ barrier problem: min f(x) — Z Inx/, st. Ax=b (ux >0)
X
j=1
@ apply a Newton step to the first-order optimality conditions, i.e. solve the
KKT system (here in augmented form)

—(v2f(Xk) + @;1) AT A X - Vf(Xk) — ATyk = O'k/Lka_le
A Aye| b — Axk

0m,m

Ok = Xk Z; ', Xk = diag(xk), Zx = diag(z«), xk, 2z« >0, 0k >0
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(Primal-dual) IPMs for convex programming (cont'd)

@ The augmented system can be solved either directly (by an appropriate
factorization) or iteratively (by an appropriate Krylov subspace method)
[D’Apuzzo, De Simone & di Serafino, COAP 2010; Gondzio, EJOR 2012;

di Serafino & Orban, SISC 2021]

M. Viola (DMF-V:anvitelli) Linear Algebra in IPMs for L1-regularization 2ggALN



(Primal-dual) IPMs for convex programming (cont’

@ The augmented system can be solved either directly (by an appropriate
factorization) or iteratively (by an appropriate Krylov subspace method)
[D’Apuzzo, De Simone & di Serafino, COAP 2010; Gondzio, EJOR 2012;

di Serafino & Orban, SISC 2021]

@ As py — 0, an optimal solution of the barrier problem converges to an
optimal solution of the original problem [Wright S., book 1997; Forsgren, Gill &
Wright M., SIREV 2002]

@ Polynomial convergence with respect to the number of variables has been
proved for various classes of problems [Nesterov & Nemirovskii, SIAM Studies Appl
Math 1994; Zhang, SIOPT 1994]
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(Primal-dual) IPMs for convex programming (con

@ The augmented system can be solved either directly (by an appropriate
factorization) or iteratively (by an appropriate Krylov subspace method)
[D’Apuzzo, De Simone & di Serafino, COAP 2010; Gondzio, EJOR 2012;

di Serafino & Orban, SISC 2021]

@ As py — 0, an optimal solution of the barrier problem converges to an
optimal solution of the original problem [Wright S., book 1997; Forsgren, Gill &
Wright M., SIREV 2002]

@ Polynomial convergence with respect to the number of variables has been
proved for various classes of problems [Nesterov & Nemirovskii, SIAM Studies Appl
Math 1994; Zhang, SIOPT 1994]

@ O contains some very large and some very small elements close to optimality
—> the KKT matrix becomes increasingly ill-conditioned
= regularization is beneficial
[Friedlander & Tseng, SIOPT 2007; D'Apuzzo, De Simone & di Serafino, COAP 2010;
Gondzio, EJOR 2012]
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Regularization in IPMs

Use regularization to improve the spectral properties of the KKT matrix

@ Dual regularization — (2,2) block:
Omm + Oklm, 6k >0 ([Adly] full rank)
@ Primal regularization — (1,1) block:
V2f(xk) + Ot + prln,  px >0 (eigs bounded away from 0)
A natural way of introducing regularization is through the use of proximal point

methods [Altman & Gondzio, OMS 1999; Friedlander & Orban, Math Program Comput
2012; Pougkakiotis & Gondzio, COAP 2021]
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Interior Point - Proximal Method of Multipliers (IP-PMM)

Merge IPM with PMM [Pougkakiotis & Gondzio, COAP 2021]

Problem formulation (equivalent to the standard one):
min f(x), st. Ax=b, x* >0, x” free
X

ZCA{1,...,n}, F={1,...,n}\T

Iteration k: given an estimate (x of a primal solution x* and an estimate 7 for an
optimal Lagrange multiplier vector y* associated to Ax = b

@ PMM: minimize the proximal penalty function (p«, 0« > 0)

1
L 06 Gome) = £ = i (Ax = b) + 5 [|Ax = bl + Flx — Gl

@ |IP-PMM: solve the PMM subproblem by applying one or more iters of IPM,
i.e. alter the proximal penalty function with a barrier

Ly 50 ™ (0 G i) = Lpptbn (6 Ceomi) — pe »_ Inx!

JET
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IP-PMM: Newton system

By writing the optimality conditions, applying a Newton step and performing
straightforward computations we get the (symmetric indefinite) regularized
augmented system

—(V2f(xk) + =k + pxln) AT [Ax |k
A Oklm| |Ay| |k

_ o 0
= [ FLF Ozl ]

OF iz (XE)HZE)

NOTE: The (algorithmic) regularization in IP-PMM allows one to retrieve
the solution of the original problem J
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TV-based Poisson image restoration

mmin DKL(W) + >\||LW||1

s.t. e,TW:r, w >0

Dra(w) =377, (gj In sy + (Dw +ay — gj)
L € R'™*" discrete TV operator, r = ij:l(gf — )

Object to be restored: w € R”, measured data: g € N7, with entries g that
are realizations of m independent random variables G’ ~ Poisson((Dw + a)’)
@ D € R™*" modeling the imaging system, d¥ > 0 for all i,j, >°7", d¥ =1 for
all j; we assume periodic boundary conditions = BCCB structure

a € RT modeling the background radiation detected by the sensors

Maximum-likelihood approach = minimization of Kullback-Leibler (KL)
divergence (highly ill-conditioned problem) == TV regularization

@ Non-negative image intensity, total image intensity preserved —>
non-negativity + single linear constraint
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TV-based Poisson image restoration (cont'd)

Smooth problem reformulation
min  f(x) = Dxr(w) + ¢ u,
st. Ax=b, x>0
d=Lw, u=[d")", (@), x=[w', v’

T AT AT
_|len 0/ 0
A= [ L - ]
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TV-based Poisson image restoration: Newton system

—He AT] [AX]  [rx o B
o [ A 6kI:| |:Ay:| - |:r2,k:|’ He = (Vf(xk) + O, + pil)

My

= use preconditioned MINimum RESidual (MINRES) method

@ Block-diagonal preconditioner:
Hi 0

. . Hydi | fH,
0 AH;IAT ey i« diagonal approx of Hj

My =

Theorem

The eigenvalues of I\ﬁk_ My lie in the union of the intervals
1
I*_|:_/8H_17_a/{|7 I+_|:m71:|a
~1
HHZ .

_1
2

where aH = )\min(l:l\k), BH = )\max(ﬁk) and i’l\k = Flk

[Bergamaschi, Gondzio, Martinez, Pearson & Pougkakiotis, NLAA 2021]
If Hy = diag(Hx), then ay < 1 < By
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TV-based Poisson image restoration: Newton sys (cont'd)

—He AT| [Ax] _ [r« o »
[+ [ A 6kl:| |:Ay:| - |:r2,k:|7 Hy —(V f(Xk)—|—@k _|_ka)

o VPf(x) = {VZDSL(W) 8} . V2Dy(w) = DT U(w)?D
where U(w) = diag (Dﬁ a)

D may be dense, but its action on a vector can be computed via FFT

@ Hi = U(wi)> + 0O, " + pl, in practice performs better than Hi = diag(Hx)
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-based Poisson image restoration

Test images

@ 256 x 256, grayscale

cameraman house

-

@ Poisson noise and Gaussian blur (GB), motion blur (MB), out-of-focus blur (OF)

Comparison of IP-PMM with Primal-Dual Algorithm with Linesearch (PDAL)

MATLAB, implementation details in [De Simone, di Serafino, Gondzio, Pougkakiotis & MV,
to appear on SIREV, 2022]

Performance metrics
@ RMSE(w) = %Hw — W||2, W original image

@ PSNR(w) = 20 log;o(max; W' /RMSE(w))
@ MSSIM = structural similarity measure, the higher the better
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TV-based Poisson image restoration: results

%103 cameraman - GB

cameraman - MB

cameraman - OF
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TV-based Poisson image restoration: results (cont'd)

| IP-PMM | PDAL
Problem | RMSE | PSNR | MSSIM | RMSE | PSNR | MSSIM
cameraman - GB 4.85e—2 | 2.63e+1 | 833e—1 | 5.02e—2 | 2.60e+1 | 8.22e—1
cameraman - MB | 5.52e—2 | 2.52e+1 8.11e—1 5.59e—2 | 2.5le+1 | 7.77e—1
cameraman - OF 5.14e—2 | 2.58e+1 7.98¢e—1 | 5.26e—2 | 2.56e+1 | 7.62e—1
house - GB 9.71e—2 | 2.03e+1 7.51e—1 | 9.88e—2 | 2.0le+1 | 6.92e—1
house - MB 2.70e—2 | 3.14e+1 8.67e—1 2.77e—2 | 3.11le+1 | 8.43e—1
house - OF 3.80e—2 | 2.84e+1 | 8.33e—1 | 4.09e—2 | 2.78e+1 | 7.70e—1
peppers - GB 1.23e—1 | 1.82e+1 | 7.46e—1 | 1.25e—1 | 1.8le+1 | 6.57e—1
peppers - MB 8.76e—2 | 2.12e+1 | 8.90e—1 | 8.78e—2 | 2.1le+1 | 8.72e—1
peppers - OF 9.47e—2 | 2.05e+1 | 8.0le—1 | 9.70e—2 | 2.03e+1 | 6.60e—1
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TV-based Poisson image restoration: results (cont'd) - MB

blurry and noisy Restored image - IP-PMM Restored image - PDAL

4

blurry and noisy Restored image - IP-PMM Restored image - PDAL
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Conclusions

@ Specialized IPMs for quadratic and general convex nonlinear optimization
problems with sparse solutions have been developed

@ By a proper choice of linear algebra solvers, IPMs can efficiently solve larger
but smooth optimization problems coming from a standard reformulation of
the original ones

@ Computational experiments on diverse applications provide evidence that |IPMs
can offer a noticeable advantage over state-of-the-art first-order methods,
especially when dealing with not-so-well conditioned problems

@ This work may provide a basis for an in-depth analysis of the application of
IPMs to many sparse approximation problems

Main reference: V. De Simone, D. di Serafino, J. Gondzio, S. Pougkakiotis, MV,
Sparse Approximations with Interior Point Methods, to appear on SIAM Review,
2022
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Thanks for your attention!

Enjoy your stay in Naples!
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