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Problem and goal

Efficient solution of a class of optimization problems that are very large and
are expected to yield sparse solutions

min
x

f (x) + τ1∥x∥1 + τ2∥Lx∥1
s.t. Ax = b

f : Rn → R twice continuously differentiable convex function, L ∈ Rl×n,
A ∈ Rm×n, b ∈ Rm, m ≤ n, and τ1, τ2 > 0

∥x∥1 and ∥Lx∥1 induce sparsity in x and/or in some dictionary Lx

Many applications: portfolio optimization, signal/image processing,
classification in statistics and machine learning, inverse problems,
compressed sensing, ...

Usually solved by specialized first-order methods, but those methods
may be too expensive or struggle with not-so-well conditioned problems
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Problem and goal (cont’d)

Non-smooth second-order methods:

proximal (projected) Newton-type methods

semi-smooth Newton methods combined with augmented Lagrangian
methods

Our goal:

show that Interior Point Methods (IPMs) can be equally or more efficient,
robust and reliable than well-assessed first-order methods, by

exploiting problem features in the linear algebra phase of IPMs

taking advantage of the expected sparsity of the optimal solution
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Outline of this talk

Interior Point Methods (IPMs) for convex programming

Interior Point-Proximal Method of Multipliers (IP-PMM)

Application to TV-based Poisson Image Restoration

Conclusions

NOTE: more applications in V. De Simone, D. di Serafino, J. Gondzio, S. Pougkakiotis &

MV, Sparse Approximations with Interior Point Methods, to appear on SIAM Review, 2022
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Modeling trick

Original formulation

min
x

f (x) + τ1∥x∥1 + τ2∥Lx∥1
s.t. Ax = b

L ∈ Rl×n, A ∈ Rm×n, b ∈ Rm, m ≤ n

For any a, let |a| = a+ + a−, where a+ = max{a, 0} and a− = max{−a, 0}
Set d = Lx ∈ Rl

New formulation

min
x+,x−,d+,d−

f (x+ − x−) + τ1(e
⊤
n x+ + e⊤n x−) + τ2(e

⊤
l d+ + e⊤l d−)

s.t. A(x+ − x−) = b
L(x+ − x−) = d+ − d−

x+, x−, d+, d− ≥ 0
ej ∈ Rj vector of all 1’s

Larger smooth problem, but IPMs are able to efficiently handle large sets of
linear equality and non-negativity constraints!
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(Primal-dual) IPMs for convex programming

Problem in standard form: min
x

f (x), s.t. Ax = b, x ≥ 0

Basic ideas of IPMs

handle non-negativity constraints with a logarithmic barrier in the objective
function

approximately solve a sequence of barrier problems by using a (possibly
inexact) Newton method

At each iteration k

barrier problem: min
x

f (x)− µk

n∑
j=1

ln x j , s.t. Ax = b (µk > 0)

apply a Newton step to the first-order optimality conditions, i.e. solve the
KKT system (here in augmented form)[
−(∇2f (xk) + Θ−1

k ) A⊤

A 0m,m

] [
∆xk
∆yk

]
=

[
∇f (xk)− A⊤yk − σkµkX

−1
k e

b − Axk

]
Θk = XkZ

−1
k , Xk = diag(xk), Zk = diag(zk), xk , zk > 0, σk > 0
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(Primal-dual) IPMs for convex programming (cont’d)

The augmented system can be solved either directly (by an appropriate
factorization) or iteratively (by an appropriate Krylov subspace method)

[D’Apuzzo, De Simone & di Serafino, COAP 2010; Gondzio, EJOR 2012;

di Serafino & Orban, SISC 2021]

As µk → 0, an optimal solution of the barrier problem converges to an
optimal solution of the original problem [Wright S., book 1997; Forsgren, Gill &

Wright M., SIREV 2002]

Polynomial convergence with respect to the number of variables has been
proved for various classes of problems [Nesterov & Nemirovskii, SIAM Studies Appl

Math 1994; Zhang, SIOPT 1994]

Θk contains some very large and some very small elements close to optimality
=⇒ the KKT matrix becomes increasingly ill-conditioned
=⇒ regularization is beneficial
[Friedlander & Tseng, SIOPT 2007; D’Apuzzo, De Simone & di Serafino, COAP 2010;

Gondzio, EJOR 2012]
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Regularization in IPMs

Use regularization to improve the spectral properties of the KKT matrix

Dual regularization → (2,2) block:

0m,m + δk Im, δk > 0 ([A δIm] full rank)

Primal regularization → (1,1) block:

∇2f (xk) + Θ−1
k + ρk In, ρk > 0 (eigs bounded away from 0)

A natural way of introducing regularization is through the use of proximal point
methods [Altman & Gondzio, OMS 1999; Friedlander & Orban, Math Program Comput

2012; Pougkakiotis & Gondzio, COAP 2021]
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Interior Point - Proximal Method of Multipliers (IP-PMM)

Merge IPM with PMM [Pougkakiotis & Gondzio, COAP 2021]

Problem formulation (equivalent to the standard one):

min
x

f (x), s.t. Ax = b, xI ≥ 0, xF free

I ⊆ {1, . . . , n}, F = {1, . . . , n} \ I

Iteration k: given an estimate ζk of a primal solution x∗ and an estimate ηk for an
optimal Lagrange multiplier vector y∗ associated to Ax = b

PMM: minimize the proximal penalty function (ρk , δk > 0)

LPMM
ρk ,δk (x ; ζk , ηk) = f (x)− η⊤

k (Ax − b) +
1

2δk
∥Ax − b∥22 +

ρk
2
∥x − ζk∥22

IP-PMM: solve the PMM subproblem by applying one or more iters of IPM,
i.e. alter the proximal penalty function with a barrier

LIP−PMM
ρk ,δk

(x ; ζk , ηk) = LPMM
ρk ,δk (x ; ζk , ηk)− µk

∑
j∈I

ln x j
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IP-PMM: Newton system

By writing the optimality conditions, applying a Newton step and performing
straightforward computations we get the (symmetric indefinite) regularized
augmented system[

−(∇2f (xk) + Ξk + ρk In) A⊤

A δk Im

] [
∆x
∆y

]
=

[
r1,k
r2,k

]

Ξk =

[
0|F|,|F| 0|I|,|F|
0|F|,|I| (XI

k )
−1(ZI

k )

]

NOTE: The (algorithmic) regularization in IP-PMM allows one to retrieve
the solution of the original problem
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TV-based Poisson image restoration

min
w

DKL(w) + λ∥Lw∥1
s.t. e⊤n w = r , w ≥ 0

DKL(w) =
∑m

j=1

(
g j ln g j

(Dw+a)j
+ (Dw + a)j − g j

)
L ∈ Rl×n discrete TV operator, r =

∑m
j=1(g

j − aj)

Object to be restored: w ∈ Rn, measured data: g ∈ Nm
0 , with entries g j that

are realizations of m independent random variables G j ∼ Poisson((Dw + a)j)

D ∈ Rm×n modeling the imaging system, d ij ≥ 0 for all i , j ,
∑m

i=1 d
ij = 1 for

all j ; we assume periodic boundary conditions ⇒ BCCB structure

a ∈ Rm
+ modeling the background radiation detected by the sensors

Maximum-likelihood approach =⇒ minimization of Kullback-Leibler (KL)
divergence (highly ill-conditioned problem) =⇒ TV regularization

Non-negative image intensity, total image intensity preserved =⇒
non-negativity + single linear constraint
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TV-based Poisson image restoration (cont’d)

Smooth problem reformulation

min
x

f (x) ≡ DKL(w) + c⊤u,

s.t. Ax = b, x ≥ 0

d = Lw , u = [(d+)⊤, (d−)⊤]⊤, x = [w⊤, u⊤]⊤

A =

[
e⊤n 0⊤l 0⊤l
L −Il Il

]
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TV-based Poisson image restoration: Newton system[
−Hk A⊤

A δk I

]
︸ ︷︷ ︸

Mk

[
∆x
∆y

]
=

[
r1,k
r2,k

]
, Hk = (∇2f (xk) + Θ−1

k + ρk I )

=⇒ use preconditioned MINimum RESidual (MINRES) method

Block-diagonal preconditioner:

M̃k =

[
H̃k 0

0 A H̃−1
k A⊤ + δk I

]
, H̃k diagonal approx of Hk

Theorem

The eigenvalues of M̃−1
k Mk lie in the union of the intervals

I− =

[
− βH − 1,−αH

]
, I+ =

[
1

1 + βH
, 1

]
,

where αH = λmin(Ĥk), βH = λmax(Ĥk) and Ĥk = H̃
− 1

2
k Hk H̃

1
2
k .

[Bergamaschi, Gondzio, Mart́ınez, Pearson & Pougkakiotis, NLAA 2021]

If H̃k = diag(Hk), then αH ≤ 1 ≤ βH
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TV-based Poisson image restoration: Newton sys (cont’d)

[
−Hk A⊤

A δk I

] [
∆x
∆y

]
=

[
r1,k
r2,k

]
, Hk = (∇2f (xk) + Θ−1

k + ρk I )

∇2f (x) =

[
∇2DKL(w) 0

0 0

]
, ∇2DKL(w) = D⊤U(w)2D

where U(w) = diag

( √
g

Dw + a

)
D may be dense, but its action on a vector can be computed via FFT

H̃k = U(wk)
2 +Θ−1

k + ρk I , in practice performs better than H̃k = diag(Hk)
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TV-based Poisson image restoration: test setting

Test images

256× 256, grayscale
cameraman house peppers

Poisson noise and Gaussian blur (GB), motion blur (MB), out-of-focus blur (OF)

Comparison of IP-PMM with Primal-Dual Algorithm with Linesearch (PDAL)

MATLAB, implementation details in [De Simone, di Serafino, Gondzio, Pougkakiotis & MV,
to appear on SIREV, 2022]

Performance metrics

RMSE(w) = 1√
n
∥w − w∥2, w original image

PSNR(w) = 20 log10(maxi w
i/RMSE(w))

MSSIM = structural similarity measure, the higher the better
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TV-based Poisson image restoration: results
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TV-based Poisson image restoration: results (cont’d)

IP-PMM PDAL

Problem RMSE PSNR MSSIM RMSE PSNR MSSIM

cameraman - GB 4.85e−2 2.63e+1 8.33e−1 5.02e−2 2.60e+1 8.22e−1
cameraman - MB 5.52e−2 2.52e+1 8.11e−1 5.59e−2 2.51e+1 7.77e−1
cameraman - OF 5.14e−2 2.58e+1 7.98e−1 5.26e−2 2.56e+1 7.62e−1

house - GB 9.71e−2 2.03e+1 7.51e−1 9.88e−2 2.01e+1 6.92e−1
house - MB 2.70e−2 3.14e+1 8.67e−1 2.77e−2 3.11e+1 8.43e−1
house - OF 3.80e−2 2.84e+1 8.33e−1 4.09e−2 2.78e+1 7.70e−1

peppers - GB 1.23e−1 1.82e+1 7.46e−1 1.25e−1 1.81e+1 6.57e−1
peppers - MB 8.76e−2 2.12e+1 8.90e−1 8.78e−2 2.11e+1 8.72e−1
peppers - OF 9.47e−2 2.05e+1 8.01e−1 9.70e−2 2.03e+1 6.60e−1
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TV-based Poisson image restoration: results (cont’d) - MB
blurry and noisy Restored image - IP-PMM Restored image - PDAL

blurry and noisy Restored image - IP-PMM Restored image - PDAL

blurry and noisy Restored image - IP-PMM Restored image - PDAL
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Conclusions

Specialized IPMs for quadratic and general convex nonlinear optimization
problems with sparse solutions have been developed

By a proper choice of linear algebra solvers, IPMs can efficiently solve larger
but smooth optimization problems coming from a standard reformulation of
the original ones

Computational experiments on diverse applications provide evidence that IPMs
can offer a noticeable advantage over state-of-the-art first-order methods,
especially when dealing with not-so-well conditioned problems

This work may provide a basis for an in-depth analysis of the application of
IPMs to many sparse approximation problems

Main reference: V. De Simone, D. di Serafino, J. Gondzio, S. Pougkakiotis, MV,
Sparse Approximations with Interior Point Methods, to appear on SIAM Review,
2022
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Thanks for your attention!
Enjoy your stay in Naples!
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