On linear algebra in interior point methods for solving ℓ_1 -regularized optimization problems

Marco Viola

Department of Mathematics and Physics University of Campania "L. Vanvitelli" marco.viola@unicampania.it

Joint work with V. De Simone – University of Campania (IT) D. di Serafino – University of Naples Federico II (IT) J. Gondzio and S. Pougkakiotis – University of Edinburgh (UK)

Due Giorni di Algebra Lineare e Applicazioni

Centro Congressi Federico II, Napoli (IT)

February 14-15, 2022

PRI

Università degli Studi della Campania *Luigi Vanvitelli*

Dipartimento di Matematica e Fisica

Problem and goal

Efficient solution of a class of optimization problems that are very large and are expected to yield sparse solutions

 $\min_{\substack{x \\ \text{s.t.}}} f(x) + \tau_1 \|x\|_1 + \tau_2 \|Lx\|_1 \\ \text{s.t.} \quad Ax = b$

 $f: \mathbb{R}^n \to \mathbb{R}$ twice continuously differentiable convex function, $L \in \mathbb{R}^{l \times n}$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m \le n$, and $\tau_1, \tau_2 > 0$

 $||x||_1$ and $||Lx||_1$ induce sparsity in x and/or in some dictionary Lx

- Many applications: portfolio optimization, signal/image processing, classification in statistics and machine learning, inverse problems, compressed sensing, ...
- Usually solved by specialized first-order methods, but those methods may be too expensive or struggle with not-so-well conditioned problems

э

Non-smooth second-order methods:

- proximal (projected) Newton-type methods
- semi-smooth Newton methods combined with augmented Lagrangian methods

Non-smooth second-order methods:

- proximal (projected) Newton-type methods
- semi-smooth Newton methods combined with augmented Lagrangian methods

Our goal:

show that Interior Point Methods (IPMs) can be equally or more efficient, robust and reliable than well-assessed first-order methods, by

- exploiting problem features in the linear algebra phase of IPMs
- taking advantage of the expected sparsity of the optimal solution

イロト 不得 とくきとくきとう

- Interior Point Methods (IPMs) for convex programming
- Interior Point-Proximal Method of Multipliers (IP-PMM)
- Application to TV-based Poisson Image Restoration
- Conclusions

NOTE: more applications in V. De Simone, D. di Serafino, J. Gondzio, S. Pougkakiotis & **MV**, *Sparse Approximations with Interior Point Methods*, to appear on SIAM Review, 2022

Modeling trick

Original formulation

 $\min_{\substack{x \\ \text{s.t.}}} f(x) + \tau_1 \|x\|_1 + \tau_2 \|Lx\|_1 \\ L \in \mathbb{R}^{l \times n}, \ A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m, \ m \le n$

For any *a*, let $|a| = a^+ + a^-$, where $a^+ = \max\{a, 0\}$ and $a^- = \max\{-a, 0\}$ Set $d = Lx \in \mathbb{R}^l$

New formulation

$$\min_{\substack{x^+, x^-, d^+, d^- \\ \text{s.t.}}} f(x^+ - x^-) + \tau_1(e_n^\top x^+ + e_n^\top x^-) + \tau_2(e_l^\top d^+ + e_l^\top d^-) A(x^+ - x^-) = b L(x^+ - x^-) = d^+ - d^- x^+, x^-, d^+, d^- \ge 0$$

$$e_i \in \mathbb{R}^j \text{ vector of all 1's}$$

Larger smooth problem, but IPMs are able to efficiently handle large sets of linear equality and non-negativity constraints!

M. Viola (DMF-V:anvitelli)

Linear Algebra in IPMs for L1-regularization

LN

4 / 18

(Primal-dual) IPMs for convex programming

Problem in standard form: $\min_{x} f(x)$, s.t. Ax = b, $x \ge 0$

Basic ideas of IPMs

- handle non-negativity constraints with a logarithmic barrier in the objective function
- approximately solve a sequence of barrier problems by using a (possibly inexact) Newton method

(Primal-dual) IPMs for convex programming

Problem in standard form: $\min_{x} f(x)$, s.t. Ax = b, $x \ge 0$

Basic ideas of IPMs

- handle non-negativity constraints with a logarithmic barrier in the objective function
- approximately solve a sequence of barrier problems by using a (possibly inexact) Newton method

At each iteration k

- barrier problem: $\min_{x} f(x) \mu_k \sum_{j=1}^{n} \ln x^j$, s.t. Ax = b $(\mu_k > 0)$
- apply a Newton step to the first-order optimality conditions, i.e. solve the KKT system (here in augmented form)

$$\begin{bmatrix} -(\nabla^2 f(x_k) + \Theta_k^{-1}) & A^\top \\ A & 0_{m,m} \end{bmatrix} \begin{bmatrix} \Delta x_k \\ \Delta y_k \end{bmatrix} = \begin{bmatrix} \nabla f(x_k) - A^\top y_k - \sigma_k \mu_k X_k^{-1} e \\ b - A x_k \end{bmatrix}$$

$$\Theta_k = X_k Z_k^{-1}$$
, $X_k = \operatorname{diag}(x_k)$, $Z_k = \operatorname{diag}(z_k)$, $x_k, z_k > 0$, $\sigma_k > 0$

(Primal-dual) IPMs for convex programming (cont'd)

The augmented system can be solved either directly (by an appropriate factorization) or iteratively (by an appropriate Krylov subspace method)
 [D'Apuzzo, De Simone & di Serafino, COAP 2010; Gondzio, EJOR 2012; di Serafino & Orban, SISC 2021]

(Primal-dual) IPMs for convex programming (cont'd)

- The augmented system can be solved either directly (by an appropriate factorization) or iteratively (by an appropriate Krylov subspace method)
 [D'Apuzzo, De Simone & di Serafino, COAP 2010; Gondzio, EJOR 2012; di Serafino & Orban, SISC 2021]
- As $\mu_k \rightarrow 0$, an optimal solution of the barrier problem converges to an optimal solution of the original problem [Wright S., book 1997; Forsgren, Gill & Wright M., SIREV 2002]
- Polynomial convergence with respect to the number of variables has been proved for various classes of problems [Nesterov & Nemirovskii, SIAM Studies Appl Math 1994; Zhang, SIOPT 1994]

イロト 不得 とくきとくきとう

(Primal-dual) IPMs for convex programming (cont'd)

- The augmented system can be solved either directly (by an appropriate factorization) or iteratively (by an appropriate Krylov subspace method)
 [D'Apuzzo, De Simone & di Serafino, COAP 2010; Gondzio, EJOR 2012; di Serafino & Orban, SISC 2021]
- As $\mu_k \rightarrow 0$, an optimal solution of the barrier problem converges to an optimal solution of the original problem [Wright S., book 1997; Forsgren, Gill & Wright M., SIREV 2002]
- Polynomial convergence with respect to the number of variables has been proved for various classes of problems [Nesterov & Nemirovskii, SIAM Studies Appl Math 1994; Zhang, SIOPT 1994]

Θ_k contains some very large and some very small elements close to optimality
 ⇒ the KKT matrix becomes increasingly ill-conditioned
 ⇒ regularization is beneficial
 [Evice]ander & Tsong, SIOPT 2007; D'Apuzza, Do Simona & di Serafina, COAP 2010;

[Friedlander & Tseng, SIOPT 2007; D'Apuzzo, De Simone & di Serafino, COAP 2010; Gondzio, EJOR 2012]

3

Use regularization to improve the spectral properties of the KKT matrix

• Dual regularization \rightarrow (2,2) block:

$$0_{m,m} + \delta_k I_m$$
, $\delta_k > 0$ ([A δI_m] full rank)

• Primal regularization ightarrow (1,1) block:

 $abla^2 f(x_k) + \Theta_k^{-1} +
ho_k I_n, \quad
ho_k > 0 \quad (\text{eigs bounded away from 0})$

A natural way of introducing regularization is through the use of proximal point methods [Altman & Gondzio, OMS 1999; Friedlander & Orban, Math Program Comput 2012; Pougkakiotis & Gondzio, COAP 2021]

Interior Point - Proximal Method of Multipliers (IP-PMM)

Merge IPM with PMM [Pougkakiotis & Gondzio, COAP 2021]

Problem formulation (equivalent to the standard one):

$$\min_{x} f(x), \quad \text{s.t.} \quad Ax = b, \quad x^{\mathcal{I}} \ge 0, \quad x^{\mathcal{F}} \text{ free}$$
$$\mathcal{I} \subseteq \{1, \dots, n\}, \ \mathcal{F} = \{1, \dots, n\} \setminus \mathcal{I}$$

Iteration k: given an estimate ζ_k of a primal solution x^* and an estimate η_k for an optimal Lagrange multiplier vector y^* associated to Ax = b

- PMM: minimize the proximal penalty function $(\rho_k, \delta_k > 0)$ $\mathcal{L}_{\rho_k, \delta_k}^{PMM}(x; \zeta_k, \eta_k) = f(x) - \eta_k^\top (Ax - b) + \frac{1}{2\delta_k} \|Ax - b\|_2^2 + \frac{\rho_k}{2} \|x - \zeta_k\|_2^2$
- IP-PMM: solve the PMM subproblem by applying one or more iters of IPM, i.e. alter the proximal penalty function with a barrier $\mathcal{L}^{IP-PMM}_{\rho_k,\delta_k}(x;\zeta_k,\eta_k) = \mathcal{L}^{PMM}_{\rho_k,\delta_k}(x;\zeta_k,\eta_k) \mu_k \sum \ln x^j$

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

2ggALN

By writing the optimality conditions, applying a Newton step and performing straightforward computations we get the (symmetric indefinite) regularized augmented system

$$\begin{bmatrix} -(\nabla^2 f(x_k) + \Xi_k + \rho_k I_n) & A^\top \\ A & \delta_k I_m \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} r_{1,k} \\ r_{2,k} \end{bmatrix}$$
$$\Xi_k = \begin{bmatrix} 0_{|\mathcal{F}|,|\mathcal{F}|} & 0_{|\mathcal{I}|,|\mathcal{F}|} \\ 0_{|\mathcal{F}|,|\mathcal{I}|} & (X_k^{\mathcal{I}})^{-1} (Z_k^{\mathcal{I}}) \end{bmatrix}$$

NOTE: The (algorithmic) regularization in IP-PMM allows one to retrieve the solution of the original problem

TV-based Poisson image restoration

$$\begin{split} \min_{w} & D_{\mathcal{K}L}(w) + \lambda \| Lw \|_{1} \\ \text{s.t.} & e_{n}^{\top}w = r, \ w \geq 0 \\ D_{\mathcal{K}L}(w) &= \sum_{j=1}^{m} \left(g^{j} \ln \frac{g^{j}}{(Dw+a)^{j}} + (Dw+a)^{j} - g^{j} \right) \\ L \in \mathbb{R}^{l \times n} \text{ discrete TV operator, } r &= \sum_{j=1}^{m} (g^{j} - a^{j}) \end{split}$$

- Object to be restored: w ∈ ℝⁿ, measured data: g ∈ ℕ₀^m, with entries g^j that are realizations of m independent random variables G^j ~ Poisson((Dw + a)^j)
- $D \in \mathbb{R}^{m \times n}$ modeling the imaging system, $d^{ij} \ge 0$ for all $i, j, \sum_{i=1}^{m} d^{ij} = 1$ for all j; we assume periodic boundary conditions \Rightarrow BCCB structure
- $a \in \mathbb{R}^m_+$ modeling the background radiation detected by the sensors
- Maximum-likelihood approach ⇒ minimization of Kullback-Leibler (KL) divergence (highly ill-conditioned problem) ⇒ TV regularization
- Non-negative image intensity, total image intensity preserved \implies non-negativity + single linear constraint

Smooth problem reformulation

$$\min_{x} f(x) \equiv D_{KL}(w) + c^{\top} u,$$

s.t. $Ax = b, x \ge 0$

$$d = Lw, \quad u = [(d^+)^\top, \ (d^-)^\top]^\top, \quad x = [w^\top, \ u^\top]^\top$$
$$A = \begin{bmatrix} e_n^\top & 0_l^\top & 0_l^\top \\ L & -l_l & l_l \end{bmatrix}$$

TV-based Poisson image restoration: Newton system

•
$$\underbrace{\begin{bmatrix} -H_k & A^{\top} \\ A & \delta_k I \end{bmatrix}}_{M_k} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} r_{1,k} \\ r_{2,k} \end{bmatrix}, \quad H_k = (\nabla^2 f(x_k) + \Theta_k^{-1} + \rho_k I)$$

⇒ use preconditioned MINimum RESidual (MINRES) method

• Block-diagonal preconditioner:

$$\widetilde{M}_{k} = \begin{bmatrix} \widetilde{H}_{k} & 0 \\ 0 & A \widetilde{H}_{k}^{-1} A^{\top} + \delta_{k} I \end{bmatrix}, \quad \widetilde{H}_{k} \text{ diagonal approx of } H_{k}$$

Theorem

The eigenvalues of $\widetilde{M}_{k}^{-1}M_{k}$ lie in the union of the intervals $I_{-} = \left[-\beta_{H} - 1, -\alpha_{H} \right], \qquad I_{+} = \left[\frac{1}{1 + \beta_{H}}, 1 \right],$ where $\alpha_{H} = \lambda_{\min}(\widehat{H}_{k}), \beta_{H} = \lambda_{\max}(\widehat{H}_{k}) \text{ and } \widehat{H}_{k} = \widetilde{H}_{k}^{-\frac{1}{2}}H_{k}\widetilde{H}_{k}^{\frac{1}{2}}.$

[Bergamaschi, Gondzio, Martínez, Pearson & Pougkakiotis, NLAA 2021]

If
$$\widetilde{H}_k = \operatorname{diag}(H_k)$$
, then $\alpha_H \leq 1 \leq \beta_H$ and $\beta_H \in \mathbb{R}^{n-1}$ is the set of $\beta_H \in \mathbb{R}^{n-1}$.

M. Viola (DMF-V:anvitelli)

Linear Algebra in IPMs for L1-regularization

2ggALN

12 / 18

•
$$\begin{bmatrix} -H_k & A^\top \\ A & \delta_k I \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} r_{1,k} \\ r_{2,k} \end{bmatrix}, \quad H_k = (\nabla^2 f(x_k) + \Theta_k^{-1} + \rho_k I)$$

•
$$\nabla^2 f(x) = \begin{bmatrix} \nabla^2 D_{KL}(w) & 0 \\ 0 & 0 \end{bmatrix}, \quad \nabla^2 D_{KL}(w) = D^\top U(w)^2 D$$

where $U(w) = \text{diag}\left(\frac{\sqrt{g}}{Dw + a}\right)$

D may be dense, but its action on a vector can be computed via FFT

•
$$\widetilde{H}_k = U(w_k)^2 + \Theta_k^{-1} + \rho_k I$$
, in practice performs better than $\widetilde{H}_k = \text{diag}(H_k)$

TV-based Poisson image restoration: test setting

Test images

• 256×256 , grayscale

• Poisson noise and Gaussian blur (GB), motion blur (MB), out-of-focus blur (OF)

Comparison of IP-PMM with Primal-Dual Algorithm with Linesearch (PDAL) MATLAB, implementation details in [De Simone, di Serafino, Gondzio, Pougkakiotis & **MV**, to appear on SIREV, 2022]

Performance metrics

- RMSE(w) = $\frac{1}{\sqrt{n}} ||w \overline{w}||_2$, \overline{w} original image
- $PSNR(w) = 20 \log_{10}(\max_i \overline{w}^i / RMSE(w))$
- MSSIM = structural similarity measure, the higher the better

イロン イロン イヨン イヨン

TV-based Poisson image restoration: results

M. Viola (DMF-V:anvitelli)

Linear Algebra in IPMs for L1-regularization

15/1

	IP-PMM		PD	PDAL	
Problem	RMSE	PSNR MSSIN	/ RMSE PSI	NR MSSIM	
cameraman - GB cameraman - MB cameraman - OF	5.52e-2 2	.63e+1 8.33e- .52e+1 8.11e- .58e+1 7.98e-	1 5.59e-2 2.51e	e+1 7.77e-1	
house - GB house - MB house - OF	2.70e-2 3	.03e+1 7.51e- .14e+1 8.67e- .84e+1 8.33e-	1 2.77e-2 3.11e	e+1 8.43e-1	
peppers - GB peppers - MB peppers - OF	8.76e-2 2	.82e+1 7.46e- .12e+1 8.90e- .05e+1 8.01e-	1 8.78e-2 2.11e	e+1 8.72e-1	

TV-based Poisson image restoration: results (cont'd) - MB

blurry and noisy

blurry and noisy

blurry and noisy

Restored image - IP-PMM

Restored image - IP-PMM

Restored image - IP-PMM

Linear Algebra in IPMs for L1-regularization

Restored image - PDAL

Restored image - PDAL

Restored image - PDAL

17 / 18

- Specialized IPMs for quadratic and general convex nonlinear optimization problems with sparse solutions have been developed
- By a proper choice of linear algebra solvers, IPMs can efficiently solve larger but smooth optimization problems coming from a standard reformulation of the original ones
- Computational experiments on diverse applications provide evidence that IPMs can offer a noticeable advantage over state-of-the-art first-order methods, especially when dealing with not-so-well conditioned problems
- This work may provide a basis for an in-depth analysis of the application of IPMs to many sparse approximation problems

Main reference: V. De Simone, D. di Serafino, J. Gondzio, S. Pougkakiotis, **MV**, *Sparse Approximations with Interior Point Methods*, to appear on SIAM Review, 2022

イロン イ団 とく ヨン イヨン

Thanks for your attention!

Enjoy your stay in Naples!

M. Viola (DMF-V:anvitelli)

Linear Algebra in IPMs for L1-regularization