On linear algebra in interior point methods for solving ℓ_{1}-regularized optimization problems

Marco Viola

Department of Mathematics and Physics University of Campania "L. Vanvitelli" marco.viola@unicampania.it

Joint work with
V. De Simone - University of Campania (IT)
D. di Serafino - University of Naples Federico II (IT)
J. Gondzio and S. Pougkakiotis - University of Edinburgh (UK)

Due Giorni di Algebra Lineare e Applicazioni
Centro Congressi Federico II, Napoli (IT)
February 14-15, 2022

Università
degli Studi

- della Campania

Luigi Vanvitelli

Problem and goal

Efficient solution of a class of optimization problems that are very large and are expected to yield sparse solutions

$$
\begin{array}{cl}
\min _{x} & f(x)+\tau_{1}\|x\|_{1}+\tau_{2}\|L x\|_{1} \\
\text { s.t. } & A x=b
\end{array}
$$

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ twice continuously differentiable convex function, $L \in \mathbb{R}^{1 \times n}$, $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, m \leq n$, and $\tau_{1}, \tau_{2}>0$
$\|x\|_{1}$ and $\|L x\|_{1}$ induce sparsity in x and/or in some dictionary $L x$

- Many applications: portfolio optimization, signal/image processing, classification in statistics and machine learning, inverse problems, compressed sensing, ...
- Usually solved by specialized first-order methods, but those methods may be too expensive or struggle with not-so-well conditioned problems

Problem and goal (cont'd)

Non-smooth second-order methods:

- proximal (projected) Newton-type methods
- semi-smooth Newton methods combined with augmented Lagrangian methods

Problem and goal (cont'd)

Non-smooth second-order methods:

- proximal (projected) Newton-type methods
- semi-smooth Newton methods combined with augmented Lagrangian methods

Our goal:

show that Interior Point Methods (IPMs) can be equally or more efficient, robust and reliable than well-assessed first-order methods, by

- exploiting problem features in the linear algebra phase of IPMs
- taking advantage of the expected sparsity of the optimal solution

Outline of this talk

- Interior Point Methods (IPMs) for convex programming
- Interior Point-Proximal Method of Multipliers (IP-PMM)
- Application to TV-based Poisson Image Restoration
- Conclusions

NOTE: more applications in V. De Simone, D. di Serafino, J. Gondzio, S. Pougkakiotis \& MV, Sparse Approximations with Interior Point Methods, to appear on SIAM Review, 2022

Modeling trick

Original formulation

$$
\begin{array}{cl}
\min _{x} & f(x)+\tau_{1}\|x\|_{1}+\tau_{2}\|L x\|_{1} \\
\text { s.t. } & A x=b
\end{array}
$$

For any a, let $|a|=a^{+}+a^{-}$, where $a^{+}=\max \{a, 0\}$ and $a^{-}=\max \{-a, 0\}$ Set $d=L x \in \mathbb{R}^{\prime}$

New formulation

$$
\begin{array}{cl}
\min _{x^{+}, x^{-}, d^{+}, d^{-}} & f\left(x^{+}-x^{-}\right)+\tau_{1}\left(e_{n}^{\top} x^{+}+e_{n}^{\top} x^{-}\right)+\tau_{2}\left(e_{l}^{\top} d^{+}+e_{l}^{\top} d^{-}\right) \\
\text {s.t. } & A\left(x^{+}-x^{-}\right)=b \\
& L\left(x^{+}-x^{-}\right)=d^{+}-d^{-} \\
& x^{+}, x^{-}, d^{+}, d^{-} \geq 0 \quad e_{j} \in \mathbb{R}^{j} \text { vector of all } 1^{\prime} \mathrm{s}
\end{array}
$$

Larger smooth problem, but IPMs are able to efficiently handle large sets of linear equality and non-negativity constraints!

(Primal-dual) IPMs for convex programming

Problem in standard form: $\min _{x} f(x)$, s.t. $A x=b, x \geq 0$

Basic ideas of IPMs

- handle non-negativity constraints with a logarithmic barrier in the objective function
- approximately solve a sequence of barrier problems by using a (possibly inexact) Newton method

(Primal-dual) IPMs for convex programming

Problem in standard form: $\min _{x} f(x)$, s.t. $A x=b, \quad x \geq 0$

Basic ideas of IPMs

- handle non-negativity constraints with a logarithmic barrier in the objective function
- approximately solve a sequence of barrier problems by using a (possibly inexact) Newton method

At each iteration k

- barrier problem: $\min _{x} f(x)-\mu_{k} \sum_{j=1}^{n} \ln x^{j}, \quad$ s.t. $A x=b \quad\left(\mu_{k}>0\right)$
- apply a Newton step to the first-order optimality conditions, i.e. solve the KKT system (here in augmented form)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-\left(\nabla^{2} f\left(x_{k}\right)+\Theta_{k}^{-1}\right) & A^{\top} \\
A & 0_{m, m}
\end{array}\right]\left[\begin{array}{l}
\Delta x_{k} \\
\Delta y_{k}
\end{array}\right]=\left[\begin{array}{c}
\nabla f\left(x_{k}\right)-A^{\top} y_{k}-\sigma_{k} \mu_{k} X_{k}^{-1} e \\
b-A x_{k}
\end{array}\right]} \\
& \Theta_{k}=X_{k} Z_{k}^{-1}, X_{k}=\operatorname{diag}\left(x_{k}\right), Z_{k}=\operatorname{diag}\left(z_{k}\right), x_{k}, z_{k}>0, \sigma_{k}>0
\end{aligned}
$$

(Primal-dual) IPMs for convex programming (cont'd)

- The augmented system can be solved either directly (by an appropriate factorization) or iteratively (by an appropriate Krylov subspace method) [D'Apuzzo, De Simone \& di Serafino, COAP 2010; Gondzio, EJOR 2012; di Serafino \& Orban, SISC 2021]

(Primal-dual) IPMs for convex programming (cont'd)

- The augmented system can be solved either directly (by an appropriate factorization) or iteratively (by an appropriate Krylov subspace method) [D'Apuzzo, De Simone \& di Serafino, COAP 2010; Gondzio, EJOR 2012; di Serafino \& Orban, SISC 2021]
- As $\mu_{k} \rightarrow 0$, an optimal solution of the barrier problem converges to an optimal solution of the original problem [Wright S., book 1997; Forsgren, Gill \& Wright M., SIREV 2002]
- Polynomial convergence with respect to the number of variables has been proved for various classes of problems [Nesterov \& Nemirovskii, SIAM Studies Appl Math 1994; Zhang, SIOPT 1994]

(Primal-dual) IPMs for convex programming (cont'd)

- The augmented system can be solved either directly (by an appropriate factorization) or iteratively (by an appropriate Krylov subspace method)
[D'Apuzzo, De Simone \& di Serafino, COAP 2010; Gondzio, EJOR 2012; di Serafino \& Orban, SISC 2021]
- As $\mu_{k} \rightarrow 0$, an optimal solution of the barrier problem converges to an optimal solution of the original problem [Wright S., book 1997; Forsgren, Gill \& Wright M., SIREV 2002]
- Polynomial convergence with respect to the number of variables has been proved for various classes of problems [Nesterov \& Nemirovskii, SIAM Studies Appl Math 1994; Zhang, SIOPT 1994]
- Θ_{k} contains some very large and some very small elements close to optimality \Longrightarrow the KKT matrix becomes increasingly ill-conditioned
\Longrightarrow regularization is beneficial
[Friedlander \& Tseng, SIOPT 2007; D'Apuzzo, De Simone \& di Serafino, COAP 2010;
Gondzio, EJOR 2012]

Regularization in IPMs

Use regularization to improve the spectral properties of the KKT matrix

- Dual regularization $\rightarrow(2,2)$ block:

$$
\left.\left.0_{m, m}+\delta_{k} I_{m}, \quad \delta_{k}>0 \quad \text { ([A } \delta I_{m}\right] \text { full rank }\right)
$$

- Primal regularization $\rightarrow(1,1)$ block:

$$
\nabla^{2} f\left(x_{k}\right)+\Theta_{k}^{-1}+\rho_{k} I_{n}, \quad \rho_{k}>0 \quad \text { (eigs bounded away from } 0 \text {) }
$$

A natural way of introducing regularization is through the use of proximal point methods [Altman \& Gondzio, OMS 1999; Friedlander \& Orban, Math Program Comput 2012; Pougkakiotis \& Gondzio, COAP 2021]

Interior Point - Proximal Method of Multipliers (IP-PMM)

Merge IPM with PMM [Pougkakiotis \& Gondzio, COAP 2021]

Problem formulation (equivalent to the standard one):

$$
\min _{x} f(x), \quad \text { s.t. } A x=b, \quad x^{\mathcal{I}} \geq 0, \quad x^{\mathcal{F}} \text { free }
$$

$\mathcal{I} \subseteq\{1, \ldots, n\}, \mathcal{F}=\{1, \ldots, n\} \backslash \mathcal{I}$

Iteration k : given an estimate ζ_{k} of a primal solution x^{*} and an estimate η_{k} for an optimal Lagrange multiplier vector y^{*} associated to $A x=b$

- PMM: minimize the proximal penalty function $\left(\rho_{k}, \delta_{k}>0\right)$

$$
\mathcal{L}_{\rho_{k}, \delta_{k}}^{P M M}\left(x ; \zeta_{k}, \eta_{k}\right)=f(x)-\eta_{k}^{\top}(A x-b)+\frac{1}{2 \delta_{k}}\|A x-b\|_{2}^{2}+\frac{\rho_{k}}{2}\left\|x-\zeta_{k}\right\|_{2}^{2}
$$

- IP-PMM: solve the PMM subproblem by applying one or more iters of IPM, i.e. alter the proximal penalty function with a barrier $\mathcal{L}_{\rho_{k}, \delta_{k}}^{I P-P M M}\left(x ; \zeta_{k}, \eta_{k}\right)=\mathcal{L}_{\rho_{k}, \delta_{k}}^{P M M}\left(x ; \zeta_{k}, \eta_{k}\right)-\mu_{k} \sum_{j \in \mathcal{I}} \ln x^{j}$

IP-PMM: Newton system

By writing the optimality conditions, applying a Newton step and performing straightforward computations we get the (symmetric indefinite) regularized augmented system

$$
\begin{gathered}
{\left[\begin{array}{cc}
-\left(\nabla^{2} f\left(x_{k}\right)+\bar{\Xi}_{k}+\rho_{k} I_{n}\right) & A^{\top} \\
A & \delta_{k} I_{m}
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
r_{1, k} \\
r_{2, k}
\end{array}\right]} \\
\Xi_{k}=\left[\begin{array}{cc}
0_{|\mathcal{F}|,|\mathcal{F}|} & 0_{|\mathcal{I}|,|\mathcal{F}|} \\
0_{|\mathcal{F}|,|\mathcal{I}|} & \left(X_{k}^{\mathcal{I}}\right)^{-1}\left(Z_{k}^{\mathcal{I}}\right)
\end{array}\right]
\end{gathered}
$$

NOTE: The (algorithmic) regularization in IP-PMM allows one to retrieve the solution of the original problem

TV-based Poisson image restoration

$$
\begin{gathered}
\min _{w} \quad D_{K L}(w)+\lambda\|L w\|_{1} \\
\text { s.t. } e_{n}^{\top} w=r, w \geq 0 \\
D_{K L}(w)=\sum_{j=1}^{m}\left(g^{j} \ln \frac{g^{j}}{(D w+a)^{j}}+(D w+a)^{j}-g^{j}\right) \\
L \in \mathbb{R}^{\prime \times n} \text { discrete TV operator, } \quad r=\sum_{j=1}^{m}\left(g^{j}-a^{j}\right)
\end{gathered}
$$

- Object to be restored: $w \in \mathbb{R}^{n}$, measured data: $g \in \mathbb{N}_{0}^{m}$, with entries g^{j} that are realizations of m independent random variables $G^{j} \sim \operatorname{Poisson}\left((D w+a)^{j}\right)$
- $D \in \mathbb{R}^{m \times n}$ modeling the imaging system, $d^{i j} \geq 0$ for all $i, j, \sum_{i=1}^{m} d^{i j}=1$ for all j; we assume periodic boundary conditions \Rightarrow BCCB structure
- $a \in \mathbb{R}_{+}^{m}$ modeling the background radiation detected by the sensors
- Maximum-likelihood approach \Longrightarrow minimization of Kullback-Leibler (KL) divergence (highly ill-conditioned problem) \Longrightarrow TV regularization
- Non-negative image intensity, total image intensity preserved \Longrightarrow non-negativity + single linear constraint

TV-based Poisson image restoration (cont'd)

Smooth problem reformulation

$$
\begin{array}{cl}
\min _{x} & f(x) \equiv D_{K L}(w)+c^{\top} u \\
\text { s.t. } & A x=b, \quad x \geq 0
\end{array}
$$

$$
\begin{gathered}
d=L w, \quad u=\left[\left(d^{+}\right)^{\top},\left(d^{-}\right)^{\top}\right]^{\top}, \quad x=\left[w^{\top}, u^{\top}\right]^{\top} \\
A=\left[\begin{array}{ccc}
e_{n}^{\top} & 0_{l}^{\top} & 0_{l}^{\top} \\
L & -I_{l} & I_{l}
\end{array}\right]
\end{gathered}
$$

TV-based Poisson image restoration: Newton system

$\underbrace{\left[\begin{array}{cc}-H_{k} & A^{\top} \\ A & \delta_{k} I\end{array}\right]}_{M_{k}}\left[\begin{array}{l}\Delta x \\ \Delta y\end{array}\right]=\left[\begin{array}{l}r_{1, k} \\ r_{2, k}\end{array}\right], \quad H_{k}=\left(\nabla^{2} f\left(x_{k}\right)+\Theta_{k}^{-1}+\rho_{k} I\right)$
\Longrightarrow use preconditioned MINimum RESidual (MINRES) method

- Block-diagonal preconditioner:

$$
\tilde{M}_{k}=\left[\begin{array}{cc}
\widetilde{H}_{k} & 0 \\
0 & A \tilde{H}_{k}^{-1} A^{\top}+\delta_{k} I
\end{array}\right], \quad \widetilde{H}_{k} \text { diagonal approx of } H_{k}
$$

Theorem

The eigenvalues of $\tilde{M}_{k}^{-1} M_{k}$ lie in the union of the intervals

$$
I_{-}=\left[-\beta_{H}-1,-\alpha_{H}\right], \quad I_{+}=\left[\frac{1}{1+\beta_{H}}, 1\right],
$$

where $\alpha_{H}=\lambda_{\min }\left(\widehat{H}_{k}\right), \beta_{H}=\lambda_{\max }\left(\widehat{H}_{k}\right)$ and $\widehat{H}_{k}=\widetilde{H}_{k}^{-\frac{1}{2}} H_{k} \widetilde{H}_{k}^{\frac{1}{2}}$.
[Bergamaschi, Gondzio, Martínez, Pearson \& Pougkakiotis, NLAA 2021]

$$
\text { If } \widetilde{H}_{k}=\operatorname{diag}\left(H_{k}\right) \text {, then } \alpha_{H} \leq 1 \leq \beta_{H}
$$

TV-based Poisson image restoration: Newton sys (cont'd)

- $\left[\begin{array}{cc}-H_{k} & A^{\top} \\ A & \delta_{k} l\end{array}\right]\left[\begin{array}{l}\Delta x \\ \Delta y\end{array}\right]=\left[\begin{array}{l}r_{1, k} \\ r_{2, k}\end{array}\right], \quad H_{k}=\left(\nabla^{2} f\left(x_{k}\right)+\Theta_{k}^{-1}+\rho_{k} l\right)$
- $\nabla^{2} f(x)=\left[\begin{array}{cc}\nabla^{2} D_{K L}(w) & 0 \\ 0 & 0\end{array}\right], \quad \nabla^{2} D_{K L}(w)=D^{\top} U(w)^{2} D$
where $U(w)=\operatorname{diag}\left(\frac{\sqrt{g}}{D w+a}\right)$
D may be dense, but its action on a vector can be computed via FFT
- $\widetilde{H}_{k}=U\left(w_{k}\right)^{2}+\Theta_{k}^{-1}+\rho_{k} l$, in practice performs better than $\widetilde{H}_{k}=\operatorname{diag}\left(H_{k}\right)$

TV-based Poisson image restoration: test setting

Test images

- 256×256, grayscale

- Poisson noise and Gaussian blur (GB), motion blur (MB), out-of-focus blur (OF)

Comparison of IP-PMM with Primal-Dual Algorithm with Linesearch (PDAL) MATLAB, implementation details in [De Simone, di Serafino, Gondzio, Pougkakiotis \& MV, to appear on SIREV, 2022]

Performance metrics

- $\operatorname{RMSE}(w)=\frac{1}{\sqrt{n}}\|w-\bar{w}\|_{2}, \bar{w}$ original image
- $\operatorname{PSNR}(w)=20 \log _{10}\left(\max _{i} \bar{w}^{i} / \operatorname{RMSE}(w)\right)$
- MSSIM = structural similarity measure, the higher the better

TV-based Poisson image restoration: results

TV-based Poisson image restoration: results (cont'd)

	IP-PMM			PDAL		
Problem	RMSE	PSNR	MSSIM	RMSE	PSNR	MSSIM
cameraman - GB	$4.85 e-2$	$2.63 e+1$	$8.33 e-1$	$5.02 \mathrm{e}-2$	$2.60 \mathrm{e}+1$	$8.22 \mathrm{e}-1$
cameraman - MB	$5.52 e-2$	$2.52 e+1$	$8.11 e-1$	$5.59 \mathrm{e}-2$	$2.51 \mathrm{e}+1$	$7.77 \mathrm{e}-1$
cameraman - OF	$5.14 e-2$	$2.58 \mathrm{e}+1$	$7.98 \mathrm{e}-1$	$5.26 \mathrm{e}-2$	$2.56 \mathrm{e}+1$	$7.62 \mathrm{e}-1$
house - GB	$9.71 e-2$	$2.03 e+1$	$7.51 e-1$	$9.88 \mathrm{e}-2$	$2.01 \mathrm{e}+1$	$6.92 \mathrm{e}-1$
house - MB	$2.70 e-2$	$3.14 e+1$	$8.67 e-1$	$2.77 \mathrm{e}-2$	$3.11 \mathrm{e}+1$	$8.43 \mathrm{e}-1$
house - OF	$3.80 \mathrm{e}-2$	$2.84 \mathrm{e}+1$	$8.33 \mathrm{e}-1$	$4.09 \mathrm{e}-2$	$2.78 \mathrm{e}+1$	$7.70 \mathrm{e}-1$
peppers - GB	$1.23 e-1$	$1.82 e+1$	$7.46 e-1$	$1.25 \mathrm{e}-1$	$1.81 \mathrm{e}+1$	$6.57 \mathrm{e}-1$
peppers - MB	$8.76 e-2$	$2.12 e+1$	$8.90 \mathrm{e}-1$	$8.78 \mathrm{e}-2$	$2.11 \mathrm{e}+1$	$8.72 \mathrm{e}-1$
peppers - OF	$9.47 e-2$	$2.05 \mathrm{e}+1$	$8.01 \mathrm{e}-1$	$9.70 \mathrm{e}-2$	$2.03 \mathrm{e}+1$	$6.60 \mathrm{e}-1$

TV-based Poisson image restoration: results (cont'd) - MB

blurry and noisy

blurry and noisy

Restored image - IP-PMM

Restored image - IP-PMM

Restored image - IP-PMM

Restored image - PDAL

Restored image - PDAL

Restored image - PDAL

Conclusions

- Specialized IPMs for quadratic and general convex nonlinear optimization problems with sparse solutions have been developed
- By a proper choice of linear algebra solvers, IPMs can efficiently solve larger but smooth optimization problems coming from a standard reformulation of the original ones
- Computational experiments on diverse applications provide evidence that IPMs can offer a noticeable advantage over state-of-the-art first-order methods, especially when dealing with not-so-well conditioned problems
- This work may provide a basis for an in-depth analysis of the application of IPMs to many sparse approximation problems

Main reference: V. De Simone, D. di Serafino, J. Gondzio, S. Pougkakiotis, MV, Sparse Approximations with Interior Point Methods, to appear on SIAM Review, 2022

Thanks for your attention!

 Enjoy your stay in Naples!