CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 21 MAGGIO 2014

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Si consideri l'applicazione $f: n \in \mathbb{N}^{\#} \longmapsto |D(n)| \in \mathbb{N}^{\#}$, dove, per ogni $n \in \mathbb{N}^{\#}$ si è posto $D(n) = \{a \in \mathbb{N} \mid a \mid n\}$.

- (i) f è suriettiva?
- (ii) f è iniettiva?

Sia \mathcal{R} il nucleo di equivalenza di f. Allora:

- (iii) Determinare gli elementi di $[1]_{\mathcal{R}}$, $[7]_{\mathcal{R}}$, $[6]_{\mathcal{R}}$;
- (iv) Dire (giustificando in dettaglio le risposte) se le seguenti implicazioni sono vere o false per ogni $x, y \in \mathbb{N}^{\#}$:
 - (a) $x < y \Rightarrow |D(x)| < |D(y)|$;
 - (b) $|D(x)| < |D(y)| \Rightarrow x < y$;
 - (c) $(x|y \land x \neq y) \Rightarrow |D(x)| < |D(y)|$.

Sia ora Σ la relazione d'ordine definita da: $(\forall x, y \in \mathbb{N}^{\#})(x \Sigma y \iff (f(x) < f(y) \lor x = y))$.

- (v) Σ è totale?
- (vi) Quali sono gli elementi di $\mathbb{N}^{\#}$ che, rispetto a Σ , risultano confrontabili con ogni elemento di $\mathbb{N}^{\#}$?
- (vii) ($\mathbb{N}^{\#}, \Sigma$) ha minimo? Ha massimo?
- (viii) Sia $X = \{1, 2, 3, 4, 5, 6\}$. (X, Σ) è un reticolo? Nel caso, è distributivo? È complementato?

Esercizio 2. Dare la definizione di *anello*; in quali casi un anello si dice *commutativo* o *unitario*? Nell'insieme A delle applicazioni da \mathbb{Z}_9 a \mathbb{Z}_9 si definiscono le operazioni + e \cdot ponendo, per ogni $f, g \in A$,

$$f+q: x \in \mathbb{Z}_9 \mapsto f(x)+q(x) \in \mathbb{Z}_9;$$
 $f \cdot q: x \in \mathbb{Z}_9 \mapsto f(x)q(x) \in \mathbb{Z}_9.$

Risulta che $(A, +, \cdot)$ è un anello commutativo unitario (non è richiesta la verifica di questi fatti).

- (i) Si determini in questo anello:
 - (a) l'elemento neutro rispetto all'addizione;
 - (b) l'opposto di un arbitrario elemento $f \in A$;
 - (c) l'elemento neutro rispetto alla moltiplicazione;
 - (d) l'insieme degli elementi invertibili.

Indicata, per ogni $a \in \mathbb{Z}_9$, con f_a l'applicazione costante $f_a \colon x \in \mathbb{Z}_9 \mapsto a \in \mathbb{Z}_9$,

- (ii) si dimostri che $B := \{f_a \mid a \in \mathbb{Z}_9\}$ è una parte chiusa di \mathbb{Z}_9 rispetto $a + ed \ a \cdot$;
- (iii) si determini l'inverso in A di $f_{\bar{7}}$.

Esercizio 3. Per ogni primo p, sia f_p il polinomio $f_p = x^3 + x + \bar{4} \in \mathbb{Z}_p[x]$. Determinare i primi p tali che f_p sia divisibile per $x - \bar{2}$ in $\mathbb{Z}_p[x]$.

- (i) Per ciascuno di tali primi, decomporre f_p in prodotto di polinomi irriducibili monici.
- (ii) In $\mathbb{Z}_7[x]$, indicare, per ogni intero $n \in \mathbb{N}^{\frac{r}{\#}}$, un polinomio di grado n+1 che sia prodotto di n polinomi irriducibili (non necessariamente distinti).