CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 13 GIUGNO 2024

Svolgere i seguenti esercizi,

______ giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

- Esercizio 1. (i) È vero che vale la proprietà distributiva dell'intersezione rispetto alla differenza simmetrica? Se sì, dimostrarlo; se no, fornire un controesempio.
 - (ii) È vero che vale la proprietà distributiva dell'unione rispetto alla differenza simmetrica? Se sì, dimostrarlo; se no, fornire un controesempio.
 - (iii) Sia S un insieme e sia definita la seguente operazione binaria interna su $\mathcal{P}(S)$

$$\overline{\Delta}: (a,b) \in \mathcal{P}(S) \times \mathcal{P}(S) \mapsto (a \cap b) \cup ((S \setminus a) \cap (S \setminus b)) \in \mathcal{P}(S).$$

Dare la definizione di anello booleano e stabilire se la terna $(\mathcal{P}(S), \overline{\Delta}, \cup)$ è o meno un anello booleano.

- (iv) $(\mathcal{P}(S), \cap, \Delta)$ è un anello booleano? Se sì, a partire da questo, costruire un'algebra di Boole dopo averne dato la definizione.
- Esercizio 2. Sia $T = \mathbb{N} \setminus \{0, 1\}$ e si consideri l'applicazione $f: T \to \mathbb{N}$ che ad ogni $a \in T$ associa il massimo degli esponenti nella decomposizione di a come prodotto di primi distinti, cioè il numero f(a) così definito: scritto a come $\prod_{i=1}^t p_i^{\alpha_i}$, dove $t \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}$, p_1, p_2, \ldots, p_t sono interi primi positivi a due a due distinti e $\alpha_i \in \mathbb{N}^*$ per ogni $i \in \{1, 2, \ldots, t\}$, poniamo $f(a) = \max \{\alpha_1, \alpha_2, \ldots, \alpha_t\}$.
 - (i) Determinare $f(\{0\}), f(\{3\}), \overrightarrow{f}(\{3\});$
 - (ii) f è iniettiva? f è suriettiva? f è biettiva?

Si consideri la relazione d'ordine σ definita in T da:

$$\forall a, b \in T \ (a \ \sigma \ b \iff (a = b \lor f(a) < f(b))).$$

- (iii) Determinare eventuali minimo, massimo, elementi minimali e massimali in (T, σ) ;
- (iv) determinare, se esistono, minoranti ed estremo inferiore in (T, σ) di ciascuno degli insiemi $R = \{8\}, S = \{54\}$ e $U = \{8, 54\}$;
- (v) posto $L = \{12, 16, 18, 70, 243, 10000\}$, disegnare il diagramma di Hasse di (L, σ) e decidere se (L, σ) e $(L \setminus \{12\}, \sigma)$ sono o non sono reticoli.

Esercizio 3. In \mathbb{Z}_{10} , si consideri l'operazione binaria * definita da: $\forall a, b \in \mathbb{Z}_{10} \ (a * b = \bar{5}ab + a + b)$. Dando per noto che $(\mathbb{Z}_{10}, *)$ è un semigruppo commutativo,

- (i) $(\mathbb{Z}_{10}, *)$ ha elemento neutro?
- (ii) Determinare, se ne esistono, tutti gli elementi b di \mathbb{Z}_{10} tali che $\bar{3}*b=\bar{5}$.
- (iii) Determinare gli elementi idempotenti in $(\mathbb{Z}_{10}, *)$.

Esercizio 4. Dopo aver calcolato i quadrati degli elementi di \mathbb{Z}_{11} ,

- (i) determinare gli insiemi $A = \{a \in \mathbb{Z}_{11} \mid x^2 a \text{ è irriducibile in } \mathbb{Z}_{11}[x]\}$ e $B = \{b \in \mathbb{Z}_{11} \mid x^2 b \text{ è riducibile in } \mathbb{Z}_{11}[x]\};$
- (ii) determinare le coppie di elementi $a, b \in \mathbb{Z}_{11}$ tali che, in $\mathbb{Z}_{11}[x]$, il polinomio $g_{a,b} = (x^2 a)(x^2 b) \dots$
 - (a) ... sia irriducibile;
 - (b) ... sia riducibile;
 - (c) ... sia il prodotto di un polinomio di primo grado per uno di terzo grado;
 - (d) ... sia il prodotto di quattro polinomi di primo grado;
- (iii) decomporre il polinomio $x^4 \bar{7}x^2 \bar{1}$ nel prodotto di polinomi irriducibili in $\mathbb{Z}_{11}[x]$.

Esercizio 5. Sia E l'insieme delle relazioni di equivalenza in \mathbb{N} . Vero o falso (e, come sempre, perché?):

- (i) $\forall \alpha \in E(\forall n \in \mathbb{N} (\exists c \in (\mathbb{N}/\alpha)(n \in c))).$
- (ii) $\forall \alpha \in E(\forall c \in (\mathbb{N}/\alpha) (\exists n \in \mathbb{N}(n \in c))).$
- (iii) $\forall \alpha \in E(\forall n \in \mathbb{N} (\exists! c \in (\mathbb{N}/\alpha)(n \in c))).$
- (iv) $\forall \alpha \in E(\forall c \in (\mathbb{N}/\alpha) (\exists ! n \in \mathbb{N}(n \in c))).$
- $(v) \ \forall \alpha, \beta \in E(\exists c \in (\mathbb{N}/\alpha) ((\exists d \in (\mathbb{N}/\beta) (c \cap d \neq \varnothing))).$