CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) — 27 OTTOBRE 2025

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Siano $P \in Q$ predicati unari, e sia φ la formula $(\forall x (P(x) \land Q(x))) \rightarrow (\exists y (P(y)))$.

- (i) Scrivere una formula logicamente equivalente a $\neg \varphi$ in cui non appaia il connettivo \wedge .
- (ii) Dare, quando possibile, un esempio di struttura in cui φ è sempre (cioè per ogni scelta di P e Q) vera e un esempio in cui φ è sempre falsa.

Esercizio 2. Data l'applicazione $f:(a,b)\in\mathbb{N}^*\times\mathbb{N}\mapsto(a^b,ab)\in\mathbb{N}^*\times\mathbb{N}$, dove $\mathbb{N}^*=\mathbb{N}\smallsetminus\{0\}$, determinare:

- (i) $f(\{(2,3)\}), f(\{(1,1)\}) \in f(\{(3,3)\});$
- (ii) $\vec{f}(\{1\} \times \mathbb{N}) \in \vec{f}(\mathbb{N}^* \times \{1\}).$
- (iii) f è iniettiva? È suriettiva? È invertibile?
- (iv) Indicata con \Re_f la relazione di equivalenza associata ad f (cioè il nucleo di equivalenza di f), determinare $[(5,1)]_{\Re_f}$.

Esercizio 3. Si consideri l'insieme ordinato $(\mathbb{N}^* \times \mathbb{N}, \sigma)$, dove, per ogni $a, c \in \mathbb{N}^*$ e $b, d \in \mathbb{N}$,

$$(a,b) \sigma(c,d) \iff ((a,b)=(c,d) \vee ab \text{ è un divisore proprio di } cd).$$

Determinare, in $(\mathbb{N}^* \times \mathbb{N}, \sigma)$:

- (i) eventuali minimo, massimo, elementi minimali, elementi massimali;
- (ii) l'insieme dei minoranti e l'eventuale estremo inferiore di $X := \{(4,1), (2,2)\};$
- (iii) $(\mathbb{N}^* \times \mathbb{N}, \sigma)$ è un reticolo?
- (iv) Sia $L = \{(1, 144), (4, 1), (2, 2), (12, 1), (6, 2), (36, 1), (144, 1), (30, 4)\}$. Si disegni il diagramma di Hasse di (L, σ) . (L, σ) è un reticolo? Se lo è, è distributivo? È complementato? È booleano?

Esercizio 4. In \mathbb{Z}_{25} si consideri l'operazione definita da $a*b=\bar{5}ab+a+b$ per ogni $a,b\in\mathbb{Z}_{25}$.

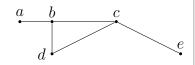
- (i) Determinare in $(\mathbb{Z}_{25}, *)$ l'eventuale elemento neutro e l'insieme di quelli simmetrizzabili. Che tipo di struttura (semigruppo, monoide, gruppo) è $(\mathbb{Z}_{25}, *)$?
- (ii) Determinare, se la domanda ha senso, il simmetrico di $\bar{5}$ in $(\mathbb{Z}_{25}, *)$.

Esercizio 5. Sia $A = \{x \in \mathbb{N} \mid x \le 10\}$ e sia \mathbb{P} l'insieme dei numeri interi positivi primi.

- (i) Elencare gli elementi di $A \cap \mathbb{P}$ e quelli di $A \setminus \mathbb{P}$.
- (ii) Quanti sono i sottoinsiemi di A che contengono solo numeri primi?
- (iii) Quanti sono i sottoinsiemi di A che non contengono nessun numero primo?
- (iv) Quanti sono i sottoinsiemi di A che contengono esattamente due numeri primi e due numeri non primi?
- (v) Vero o falso (e, come per tutte le domande, perché)?
 - a) ogni elemento di A è (primo o) prodotto di primi;
 - b) detti n il numero descritto in (ii) ed m il numero descritto in (iii), $|\mathcal{P}(A)| = n + m$.

Solo per studenti immatricolati prima dell'a.a. 2024/25

Esercizio 6. Disegnare tutti i sottoalberi massimali (alberi di supporto) del grafo a destra. Tra questi stabilire quali sono e quali non sono isomorfi tra loro.



Esercizio 7. (i) Enunciare il teorema di Ruffini ed il teorema generalizzato di Ruffini.

- (ii) Per quali interi primi positivi p, il polinomio $f_p = x^4 + \bar{3}x^3 \bar{5}x^2 + \bar{2}x \bar{10} \in \mathbb{Z}_p[x]$ ha sia $\bar{2}$ che $-\bar{2}$ come radici?
- (iii) Detto q il minimo di tali primi, decomporre f_q in prodotto di polinomi irriducibili in $\mathbb{Z}_q[x]$.
- (iv) Esiste un polinomio associato ad f_q in $\mathbb{Z}_q[x]$ che abbia termine noto $\bar{3}$? In caso di risposta affermativa, determinarlo.