CdS in Informatica — a.a. 2007/2008 Esercitazione scritta di **ALGEBRA** (Proff. Cutolo e Rao) m mercoledì 12 marzo 2008

NOME E COGNOME		MATRICOLA		
GRUPPO $\Box I (Rao) \Box IV (Cutolo)$	ESAME: lunedì 1	7 marzo, ore 15, aula D, DMA		
1 Vero o falso? Oppure i dati non sono sufficienti per fornire al Ogni insieme ordinato non vuoto ha elementi massimali. Vero Esistono in \mathbb{S}_9 due cicli α e β di lunghezza 4 tali che $(1\ 2\ 3)^2(1\ 4)$ ($\exists n \in \mathbb{N}$)($\forall m \in \mathbb{N}$)($m \le 100 \Rightarrow n \equiv_m 2$). Vero \square falso \square • ($\exists n \in \mathbb{N}$)($\forall m \in \mathbb{N}$)($m \le 100 \Rightarrow n \equiv_2 m$). Vero \square falso \square • Siano A, B, C insiemi non vuoti. Si ha $(A \setminus B) \setminus C \ne C$. La forma proposizionale $((p \lor q) \land r) \lor (q \lor (p \land r)) \lor ((q \lor p) \land r)$ è u	$(a \circ \Box falso \ \Box da) = \alpha^2 \beta. ver \ dati \ insufficienti \ dati \ insufficienti \ vero \ \Box falso \ \Box$	ati insufficienti □ ro □ falso □ dati insuff. □ □ □ dati insufficienti □		
2 Elencare gli elementi dell'insieme $A=\{x\in\mathbb{N}\mid(x+1)\}$ $A=\{\ldots\ldots\}$ e $ A =\ldots$ Inoltre $ \mathcal{P}(x) $	$(A) \setminus A = \dots$	$10) \wedge (3 x \Rightarrow x \equiv_3 1)\}.$ e $ \mathcal{P}(A) \setminus \{A\} = \dots$		
3 Per definizione, un anello $(R,+,\cdot)$ è un dominio di integrità s	se e solo se			
L'anello booleano $(\mathcal{P}(\mathbb{N}), \Delta, \cap)$ è un dominio di integrità? sì \square n dominio di integrità finito:	,	oppure: \Box non ne esistono		
4 Sapendo che $R=(\mathbb{Z}_6\times\mathbb{Z}_5,\oplus,*)$ è un anello, con le operazione $b,d\in\mathbb{Z}_5,$	ni ⊕ e * definite _l	ponendo, per ogni $a, c \in \mathbb{Z}_6$		
$(a,b)\oplus(c,d)=(a+c+1,b+d-1)$ e $(a,b)*$ si stabilisca: R è commutativo? $sì$ \square no \square , unitario? \square no , opp zero di R è $0_R=\ldots$. In R l'opposto di $r=([0]_6,[3]_5)$ è r è \ldots , oppure \square non $esiste$. $ \mathcal{U}(R)=\{\ldots\ldots\ldots$	ure: $\square si$, $l'unita$	$di R \ e \ 1_R = \dots$ Lo e \square non esiste; l'inverso di		
5 Esistono grafi (semplici) con otto vertici, tutti di grado 3? isomorfismi, ce ne è □ solo uno, oppure □ più di uno?; sono □ oppure □ ce ne sono alcuni connessi ed alcuni non connessi. Ne grafi a giustificazione delle risposte date [Suggerimento: si pens	tutti connessi, opel caso sia possibi	ppure \square tutti non connessi, ile, disegnare qui esempi di		
Nel caso in cui in tali grafi esistano, detto G uno di essi, G ha castabilirlo \square . Anche il grafo complementare \overline{G} di G ha tutti \square sì, tutti di grado , oppure: \square impossibile stabilirlo. Inolt stabilirlo \square , \overline{G} ha cammini euleriani? sì \square no \square impossibile	i vertici dello stere, \bar{G} è connesso?	esso grado? \square no, oppure:		

6 Sapendo che $3 \cdot 7 \cdot 19 = 399$, $3 \cdot 7 \cdot 23 = 483$ e $3 \cdot 7 \cdot 19 \cdot 23 = 9177$, si disegni a destra il diagramma di Hasse dell'insieme $A = \{1, 3, 7, 19, 21, 23, 399, 483, 9177\}$ ordinato per divisibilità. $(A,)$ è totalmente ordinato? sì \square no \square , è un reticolo? sì \square no \square . Se lo è, è un reticolo distributivo? sì \square no \square , complementato? sì \square no \square , booleano? sì \square no \square . Calcolare: sup $\{7, 19\} = \ldots$, oppure: \square sup $\{7, 19\}$ non esiste.; inf $\{23, 399\} = \ldots$, oppure: \square inf $\{23, 399\}$ non esiste.							
7 Si completi la tabella a destra, riferita alle relazioni binarie definite in \mathbb{Z} ponendo, per ogni $n, m \in \mathbb{Z}$,							
$n \alpha m \iff (n,m) \neq (1,2)$ la relazione			$\frac{\beta}{\beta}$	~	δ		
$n \beta m \iff ((n \neq 2) \lor (m = 2))$	è	$\begin{vmatrix} \alpha \\ si \end{vmatrix}$ no	1 '1	sì no	$\begin{vmatrix} si \\ no \end{vmatrix}$		
$n \gamma m \iff 2n^3 + 3 \equiv_0 2m^3 - 6$	riflessiva	51 110	51 110	51 110	51 110		
	antiriflessiva						
$n \delta m \iff 3n^3 + 3 \equiv_9 3m^3 + 6.$	simmetrica						
Se tra queste relazioni ne esiste almeno una che sia di equivalenza se ne scelga una, la si chiami ρ , dunque	antisimmetrica						
	transitiva						
$\rho = \dots$, e si indichi:	di ordine stretto						
$ \mathbb{Z}/\rho = \dots$; $[0]_{\rho} \ \dot{\mathbf{e}} \ \Box \ \text{finito o } \Box \ \text{infinito?};$	di ordine largo						
$[14]_{\rho} \cap \{n \in \mathbb{Z} \mid -10 < n < 0\} = \{\dots \dots \}.$	di equivalenza						
8 Determinare gli insiemi $S = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid 197x + 14y = 1\}$ e $T = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid 197x - 6y = 1\}$. $S = \{\ldots \}$; $T = \{\ldots \}$; $T = \{\ldots \}$. Sapendo che 197 non è multiplo di alcun intero compreso tra 2 e 100, che $6^3 \equiv_{197} 19$ e che $6^4 \equiv_{197} -83$, si calcoli $ \mathcal{U}(\mathbb{Z}_{197}) = \ldots$, e si determinino i periodi nel gruppo $\mathcal{U}(\mathbb{Z}_{197})$ di $[14]_{197}$ (risposta:) e di $[-6]_{197}$ (risposta:). Calcolare poi $(14^{38673} - 4)(-6)^{21715}$ mod $197 = \ldots$							
9 Siano $h = x^6 - x^5 + 4x^4 - x^3 + x^2 + 2x - 6$ e $k = 2x^5 - 2x^4 + 5x^3 - 5x^2 + 2x - 2$, polinomi in $\mathbb{Q}[x]$. Posto $f = h(k^5 + 1)$ e $g = 10^9 k$, si calcoli il massimo comun divisore monico d tra f e g : $d = \dots \dots \dots \dots \dots \dots \dots \dots$							
Esistono $s,t\in\mathbb{Q}[x]$ tali che $sf+tg=d^2+hd$? sì \square no \square impossibile stabilirlo \square . Si decompongano d,h e g come prodotto di un'eventuale costante e di polinomi monici irriducibili: $d=\ldots$							
$g=\ldots$ Si determini, se esiste, il minimo numero naturale primo p tale che h_p , cioè h riguardato come polinomio a coefficienti in \mathbb{Z}_p , sia prodotto di polinomi di primo grado: \square tale p non esiste, oppure: $p=\ldots$ e h_p si decompone in prodotto di fattori irriducibili in $\mathbb{Z}_p[x]$ come:							
$h_p = \dots \dots \dots \dots \dots \dots \dots \dots$							
h_p è divisibile in $\mathbb{Z}_p[x]$ per un polinomio irriducibile di secondo grado? sì \square no \square							
Quali e quante sono, in \mathbb{Z}_p , le radici di h_p ? Le radici sono ; il loro numero è							