CdL in Informatica — a.a. 2005/2006 Esercitazione scritta di **ALGEBRA** (Proff. Cutolo e Rao) venerdì 17 marzo 2006

NOME E COGNOME	MATRICOLA
GRUPPO $\Box I (Rao) \Box IV (Cutolo)$	PREFERENZA PER L'ESAME □ urgenti □ non urgenti
1 Si completi la definizione: un anello booleano è	è un anello
– gruppo di cardinalità 183:	
modulo 3, 4, 5: $n \mod 3 = \ldots$, $n \mod 4 = \ldots$ $n^{-1} \mod 5 = \ldots$ Sia m un multiplo positivo di 15 e sia $r = 1$ stabilirlo \square , $r = 2$ sì \square no \square impossibile stabilirlo \square ,	$c=20620007,\ d=a+5$. Calcolare i resti di $n=ab+c^c$, $n \mod 5=\ldots$. Calcolare l'inverso di $n \mod 5$. $n \mod m$. Si ha: $r=m+1$ sì \square no \square impossibile bilirlo \square , $r=4$ sì \square no \square impossibile stabilirlo \square , $r=-8$ sì \square no \square impossibile stabilirlo \square , $r=-8$ sì \square no \square impossibile stabilirlo \square .
3 Sia S un insieme con almeno tre elementi. Sia tale che $(\mathcal{P}(S), A)$ sia un grafo (semplice).	a A l'unico dei quattro insiemi A_1, A_2, A_3, A_4 qui indicat
$A_1 = \{X \subseteq \mathcal{P}(S) \mid X \le 2\}$ $A_3 = \{\{X, Y\} \subseteq \mathcal{P}(S) \mid X \cap Y = \emptyset \ne X \cup \{X\} \}$	$A_{2} = \{ \{X, Y\} \subseteq \mathcal{P}(S) \mid X \cap Y \neq \emptyset \}$ $\downarrow Y \} \qquad A_{4} = \{ \{X, Y\} \subseteq \mathcal{P}(S) \mid X \neq \emptyset \neq Y \}.$
Sia poi B l'unico dei quattro insiemi $B_1, B_2, B_3,$	B_4 qui indicati tale che $\big(\mathcal{P}(S),B\big)$ sia un grafo (semplice)
$B_1 = \{ \{X, Y\} \subseteq \mathcal{P}(S) \mid X \cup Y = \emptyset \}$ $B_3 = \{ \{X, Y\} \subseteq \mathcal{P}(S) \mid X \cap Y \neq \emptyset \neq X \}$	$B_2 = \{ \{X, Y\} \subseteq \mathcal{P}(S) \mid X \cap Y = \emptyset \}$ \$\times Y \} B_4 = \{ X \in \mathcal{P}(S) \ \varticles \neq X \}.
$A = \dots,$ $(\mathcal{P}(S), A)$ è connesso? sì \square no \square impossibile $(\mathcal{P}(S), B)$ è connesso? sì \square no \square impossibile $(\mathcal{P}(S), A)$ è una foresta? sì \square no \square impossibile $(\mathcal{P}(S), B)$ è una foresta? sì \square no \square impossibile $(\mathcal{P}(S), B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ è una grafo? sì \square no \square impossibile $(\mathcal{P}(S), A \cup B)$ imposibi	le stabilirlo le stabilirlo ibile stabilirlo ibile stabilirlo ibile stabilirlo cossibile stabilirlo
$(\mathcal{P}(S), B)$?	zio lasciato libero a destra $(\mathcal{P}(S), A)$ nel caso in cui $ S = 3$.
a Φ in cui appaiano (oltre alle variabili proposiz (\neg) e disgiunzione (\lor) . Cercare di rispondere con	$(\neg r)$ \Longrightarrow $(r \Rightarrow (q \land p))$. Scrivere una formula equivalente ionali ed eventuali parentesi) i soli connettivi di negazione n una formula breve quanto possibile.
$\Psi \iff \dots \dots$	
	$-3^4bk=3^6$, dove $a=1144$ e $b=4643$. $h=\ldots$. e le soluzioni intere dell'equazione congruenziale $9ax\equiv_{3b}6$

6

Sia (S, ρ) un insieme ordinato, rappresentato dal diagramma di Hasse a sinistra. (S, ρ) è un reticolo? $si \square no \square$. Sia ρ' l'ordinamento duale di ρ . (S, ρ') è un reticolo? $si \square no \square$.

Disegnare a destra il diagramma di Hasse di (S, ρ') .

7 Sia S un insieme tale che |S|=300, e siano $a,b,c,d\in S$. Decidere se esiste una relazione di equivalenza \sim in S tale che:

$$|[a]_{\sim}| = 170, \qquad |[b]_{\sim}| = 129, \qquad |[c]_{\sim}| \ge 140, \qquad |[d]_{\sim}| < 120.$$

Una tale equivalenza $\sim \square$ esiste \square non esiste \square non è possibile stabilirlo.

Nel caso una tale equivalenza esista, completare la tabella e rispondere alle ulteriori domande:

	$a \sim b$	$a \sim c$	$a \sim d$	$b \sim c$	$b \sim d$	$c \sim d$	$d \sim a$	$d \sim d$
vero								
falso								
impossibile stabilirlo								

$ [c]_{\sim} = \ldots$, oppure: \square impossibile stabilirlo;	$ [d]_{\sim} = \ldots$, oppure: \square impossibile stabilirlo;
$ S/\sim =\ldots$, oppure: \square impossibile stabilirlo.	

8 Si considerino i polinomi $f = 2x^8(x^5 + 7x^3 - 1)$ e $g = x^5 + 7x^3 + 8$ nell'anello $\mathbb{Q}[x]$. Senza usare l'algoritmo euclideo si calcoli il massimo comun divisore monico d tra f e g:

Si calcolino poi il massimo comun divisore monico d_1 tra f + g e f ed il massimo comun divisore monico d_2 tra f + g e g:

Esiste una coppia (h,k) di polinomi in $\mathbb{Q}[x]$ tale che (f+g)h+gk=g+1? sì \square no \square . Nel caso, tra le coppie con questa proprietà ne esiste anche una tale che il grado di h sia maggiore di 100? sì \square no \square impossibile stabilirlo \square

9 Si forniscano, se esistono, esempi di:

_	un polinomio irriducibile di grado 4 in $\mathbb{Q}[x]$:	on	esiste
_	un polinomio irriducibile di grado 5 in $\mathbb{R}[x]$: \square n	on	esiste
_	un polinomio irriducibile di grado 3 in $\mathbb{C}[x]$: \square n	on	esiste
_	un polinomio riducibile di grado 6 in $\mathbb{Q}[x]$ privo di radici in $\mathbb{Q}:\dots\dots\square$	on	esiste
	un polinomio riducibile di grado 3 in $\mathbb{Z}_{31}[x]$ privo di radici in \mathbb{Z}_{31} : \square n		