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On finite p-groups with subgroups of breadth 1

GIOVANNI CUTOLO, HOWARD SMITH AND JAMES WIEGOLD

Abstract. We consider finite p-groups G in which every cyclic subgroup has at most p conju-

gates. We show that the derived subgroup of such a group has order at most p2. Further, if the

stronger condition holds that all subgroups have at most p conjugates then the central factor
group has order p4 at most.

Introduction

As is well known, sizes of conjugacy classes provide critical information on the structure of finite
groups. One classical research topic in this context is the investigation of the relations between the
maximum size of a conjugacy class (of elements, or of subgroups) and the size of the central factor
group, the size of the commutator subgroup or, in the case of p-groups, the nilpotency class—[1]
contains references to publications in this area. (Throughout this paper p will always denote a
prime.)

In agreement with standard terminology, if G is a finite p-group, x ∈ G and H ≤ G, we
define the breadth of x in H as that number b, denoted by brH(x), such that pb = |H : CH(x)|.
The maximum value of brG(x), where x runs over G is the breadth br(G) of G. Similarly, the
subgroup breadth (or, shortly, the s-breadth) of H in G is the integer b = sbrG(H) such that
pb = |G : NG(H)|. The maximum value of sbrG(H), where H runs over the set of all subgroups
of G, is called the subgroup breadth sbr(G) of G, while the cyclic breadth (or c-breadth) cbr(G)
of G is the maximum value of of sbrG(H), where H runs over the set of cyclic subgroups only. We
shall use ◦(g) to denote the order of a group-element g.

We know from [1], Proposition 1.4, that (finite) p-groups with c-breadth 1 have nilpotency
class 3 at most, hence they are metabelian. The primary aim of this note is to record the fact that
the derived subgroup of such a group is extremely constrained in size. Indeed, our main result is
the following.

Theorem A. Let p be a prime and G be a finite p-group of c-breadth 1. Then |G′| ≤ p2.
Moreover, if p > 2 then expG′ = exp

(
G/Z(G)

)
= p.

By contrast with this result, it is obviously impossible to bound the size of the central factor
group of a finite p-group in terms of the cyclic breadth only, for extraspecial p-groups have c-
breadth 1 but arbitrarily big central factor group. On the other hand it is possible to bound
|G/Z(G)| in terms of the (usually bigger) subgroup breadth of G, as was first recognized by
I.D. Macdonald [4]. Macdonald’s bounds were not meant to be sharp.

One of the problems discussed in the Ph.D. thesis of D. Kraus [3] is that of determining the struc-
ture of finite 2-groups G satisfying sbr(G) = 1. She showed that such groups satisfy |G/Z(G)| ≤ 16
and this is the best possible bound (in the process of proving this she also showed that |G′| ≤ 4).
Kraus’s argument uses some machine-aided computation that allows her to exclude a number of
critical cases; we present here a proof of Kraus’s result that avoids such computation. We will
also show that the corresponding bound is slightly better for odd primes: if G is a finite p-group,
where p is an odd prime, and sbr(G) = 1 then |G/Z(G)| ≤ p3. Thus, we shall prove:

Theorem B. Let p be a prime and G be a finite p-group of s-breadth 1.
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(i) If p = 2 then |G/Z(G)| ≤ 16.
(ii) If p > 2 then |G/Z(G)| ≤ p3.

For every prime p there exists exactly one p-group of s-breadth 1, order p4 and class 3; these
groups are listed in [1]. For every such group G we have |G/Z(G)| = p3 and |G′| = p2. As
already mentioned, it is also easy to find examples of 2-groups with s-breadth 1 whose central
factor group has order 16, one such group being the direct product D8 ×Q8 of the dihedral and
the quaternion groups of order 8. Thus the bounds in Theorems A and B are the best possible.
As a matter of fact, granted that if |G′| = p then G has class 2, all structures for G′ which are not
excluded by Theorem A occur in groups with c-breadth 1 and prescribed class 2 or 3. By contrast,
if sbr(G) = 1, we shall see that G′ can be cyclic of order 4 only if G has class 3 (Corollary 1.6).

Finally, the authors wish to thank Debbie Kraus for her valuable assistance.

1. Proof of Theorem A

We start by establishing the bound on the exponents in Theorem A, in the case where p is odd.

Lemma 1.1. Let G be a finite p-group of c-breadth 1.

(i) If p > 2 then expG′ = exp
(
G/Z(G)

)
= p.

(ii) If p = 2 then expG′ and exp
(
G/Z(G)

)
are at most 4, and G2 is abelian.

Proof. As observed in the introduction, G has class 3 at most, and so G′ is abelian. Our proof
splits into three cases according to the value of p. If p > 3 then G is regular, hence the result
follows immediately from [1], Lemma 1.6. If p = 3 we still have that G3 is in the kern of G, by
the same lemma, hence

(
γ3(G)

)
3 = [G′, G3] = 1 and for every x, y ∈ G we have

[x, y3] = [x, y]3[x, y, y]3 = [x, y]3 ∈ 〈x〉. (∗)
We may assume that (G′)9 = 1. Suppose that [a, b]3 6= 1 for some a, b ∈ G such that ◦(a) ≥ ◦(b),
and also assume that b has been chosen of minimal order with respect to satisfying this condition.
By (∗) we have [a, b]3 ∈ 〈a〉 ∩ 〈b〉. Let q be the least power of 3 such that bq ∈ 〈a〉, then anq = bq

for some n ∈ N. As [a, b] = [a, a−nb] the minimality of ◦(b) and the fact that 〈a〉 ∩ 〈b〉 6= 1 yield

(a−nb)q 6= 1. Now (see, for instance, [5], p. 49) (a−nb)3 = a−3nb3[b, a−n]3[b, a, a]n
2

[b, a, b]−5n, and
so (a−nb)9 = a−9nb9 since G3 is abelian as a subgroup of the kern of G. If 9 divides q then
(a−nb)q = a−nqbq = 1 and we have a contradiction. It follows that q = 3. But then b3 ∈ 〈a〉 and
(∗) yields [a, b]3 = [a, b3] = 1, a contradiction. Therefore expG′ = 3. By (∗) we also have that
G3 ≤ Z(G). Thus (i) is proved.

Now consider the case when p = 2. Since G2 is contained in the kern of G we know that
G2 ≤ Z2(G) and G′ ≤ Z(G2). Then [G,G4] = [G,G2]2 = [G2, G2]. Moreover, G2 is a Dedekind
group; if it were hamiltonian then again (G′)2 ≤

(
Z(G2)

)
2 = 1, hence the commutator equalities

just found would yield the contradiction (G2)′ = 1. Therefore G2 is abelian; the same equalities
now show that G4 ≤ Z(G). Finally, for all a, b ∈ G we have 1 = [a, b2]2 = ([a, b]2[a, b, b])2 = [a, b]4.
Thus the proof is complete. �

Note that the exponent of G′ and G/Z(G) can actually be 4 in a 2-group with c-breadth 1, the
easiest example being provided by the generalized quaternion group of order 16, whose subgroup
breadth is 1. This group has class 3; we shall discuss below, in some detail, 2-groups of c-breadth 1
and class 2 (see Example 1.4 and Proposition 1.5).

Next we bound the rank of the derived subgroups of the groups that we are dealing with. The
next lemma (together with the previous one and the fact that our groups are metabelian) proves
Theorem A in the case when p is odd; as so often happens with problems on conjugacy classes in
finite p-groups, the case when p = 2 requires separate arguments.

Lemma 1.2. Let G be a finite p-group of c-breadth 1. Then G′ has rank two at most.

Proof. We know that G′ is abelian, thus, even if p = 2, we may factor out (G′)p and assume
that G′ has exponent p. This implies that, for every g ∈ G, if N = NG(〈g〉) and C = CG(g)
then|[〈g〉, N ]| ≤ p, hence |N/C| ≤ p; therefore |G : C| ≤ p2. This means that br(G) ≤ 2; also
note that brG(g) = 2 is possible, but in this case necessarily [g,G] ∩ 〈g〉 = [g,N ] 6= 1. Now, it is
known that if br(G) = 2 then either |G′| = p2 or |G/Z(G)| = |G′| = p3 (see [1], Lemma 1.1 (v)
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for the relevant references), so we assume that the latter equalities hold. If G has class 3 then
G = 〈a, b〉Z(G), for some a, b ∈ G. Let g = [a, b]. Then G′ = 〈g〉[g,G]. But brG(g) = sbrG(〈g〉),
because gp = 1, hence |G′| ≤ p2, a contradiction.

Thus G has class 2, and it follows that G/Z(G) is elementary abelian, because an abelian
group of order p3 and exponent p2 cannot be isomorphic to the central factor group of any group.
Let Z = Z(G). If x, y, g are generators of G modulo Z then G′ = 〈[x, y]〉 × 〈[y, g]〉 × 〈[g, x]〉, in
particular brG(g) = 2 for all g ∈ Gr Z; for such g we also have gp 6= 1, as brG(g) > sbrG(〈g〉).

Consider first the special case when expG = 4. For every x ∈ Gr Z we have that x has order
four and there exists y ∈ G such that [x, y] = x2. Again, y /∈ Z, so [y, t] = y2 for some t ∈ G. If
x2 6= y2 then t /∈ 〈x, y〉Z and G = 〈x, y, t〉Z. In this case [x,G] = 〈x2, [x, t]〉, hence [x, t] /∈ 〈x2〉,
and [xy,G] = 〈[xy, y], [xy, t]〉 = 〈x2, [x, t]y2〉. But y2 = (xy)2 ∈ [xy,G] and it follows easily that
y2 = x2. This proves that Q := 〈x, y〉 ' Q8. Let g ∈ G r QZ. The same argument used for x
and y shows that 〈g, h〉 ' Q8 for some element h that can certainly be chosen in Q. But then
[h,G] = 〈[h,Q], [g, h]〉 = 〈h2〉 and brG(h) = 1, a contradiction. Thus expG 6= 4.

Let q = (expG)/p. Then gq ∈ [g,G] for every g ∈ G r Z and, even if p = 2, now we can say
that the mapping given by g 7→ gq is an endomorphism of G, two facts that we will use repeatedly.
Suppose that expZ = expG, let z be an element of Z of maximal order pq and let S = 〈zq〉. Then
|(G/S)′| = p2 and there exists g ∈ GrZ such that zq /∈ [g,G], because otherwise br(G/S) = 1 and
hence |(G/S)′| = p by a result in [2]. As gq ∈ [g,G] then 〈zg〉∩[zg,G] = 〈zg〉∩[g,G] = 1, which is a
contradiction. Hence expZ ≤ q. Let a be an element of G of order pq. There exists b ∈ G such that
[a, b] = aq. We claim that b can be chosen such that bq = 1. Indeed, if bq ∈ 〈a〉 then bq = anq for
some integer n, as ◦(a) ≥ ◦(b); in this case (a−nb)q = 1 and we can substitute a−nb for b. Otherwise
bq /∈ 〈a〉; in this case there exists g ∈ G such that [b, g] = bq 6= 1; as [a, b] ∈ 〈a〉 then g /∈ 〈a, b〉Z
and so G′ = 〈[a, b]〉 × 〈[b, g]〉 × 〈[a, g]〉. Now [ab,G] = 〈[a, b], [a, g][b, g]〉, hence bq = [b, g] /∈ [ab,G].
On the other hand, both aq = [a, b] and aqbq = (ab)q are in [ab,G], hence bq ∈ [ab,G]; this
contradiction establishes our claim. A similar argument applies for every c ∈ G r 〈a, b〉Z: we
have G = 〈a, b, c〉Z and [ac,G] = 〈[a, c], [a, b][c, b]〉, so that [a, b] /∈ [ac,G]. If ◦(c) < ◦(a) then
(ac)q = aq = [a, b], which is impossible as (ac)q ∈ [ac,G]; therefore ◦(c) = ◦(a) = pq. It follows
that 〈b〉Z is the set of all elements of G of order at most q. Hence, by arguing for c as we did for a,
we obtain that 1 6= [c, b1] = cq for some b1 ∈ 〈b〉Z, thus [c, b] = ctq for some t ∈ {1, 2, . . . , p − 1}.
Now [ac,G] contains aqcq = (ac)q as well as aqctq = [ac, b]; if t 6= 1 then [a, b] = aq ∈ [ac,G],
a contradiction again. Therefore t = 1. What we have proved amounts to saying that b induces
on G the (nontrivial, universal) power automorphism given by g 7→ g1+q. We may assume that b
has been chosen of minimal order in the coset bZ. Now 1 6= [g, b] ∈ 〈b〉 ∩ 〈g〉 for some g ∈ G, but
then, since 〈gp, b〉 is abelian and ◦(gp) ≥ ◦(b) it is easy to find an integer n such that bgnp has
order less than ◦(b). This is in contradiction with our choice of b, thus the proof is complete. �

Now that Theorem A has been proved for odd primes we may concentrate on 2-groups.

Lemma 1.3. Let G be a finite 2-group such that cbr(G) = 1. Then |G′| ≤ 4.

Proof. In view of the previous lemmas we may assume that the abelian group G′ has exponent 4
and order eight. Let Z = Z(G). Suppose first that br(G) = 2. Then |G/Z| = 8, by a result already
mentioned on p-groups of breadth 2 ([1], Lemma 1.1 (v)), so G/Z is either elementary abelian or
dihedral, because no other group of order eight can be isomorphic to the central factor group of
any group. In the former case exp(G′) = exp(G/Z) = 2 and we have a contradiction. In the latter

case G = 〈a, b〉Z, where a2, b2 ∈ Z. Let c = [a, b], then G′ = 〈c〉G. Now 1 = [a2, b] = cac and
1 = [a, b2] = ccb, hence ca = cb = c−1, so 〈c〉 C G and G′ = 〈c〉 has order four. Thus the lemma
is proved in this case and we may assume that br(G) = 3. Then there exists a ∈ G such that
G′ = [a,G]. Since |G : NG(〈a〉)| ≤ 2 we have |NG(〈a〉) : CG(a)| ≥ 4; it follows that a4 6= 1 and
there exists b ∈ NG(〈a〉) such that [a, b] has order four. As a2 lies in the kern of G it normalizes 〈b〉,
hence 1 6= [a, b]2 = [a2, b] ∈ 〈a〉∩〈b〉. Note that [a, b]2 has order two, so we have [a, b]2 = a2α = b2

β

for some α, β ∈ N, and α > 1. We may assume that b has been chosen of minimal order subject to
the stated conditions. Suppose first that 〈a, b〉 has class 2, that is, [a, b, b] = 1. Then [a, b] ∈ 〈a4〉,
as [a, b] has order four, hence α > 2. If α ≥ β let b1 = ba2α−β

. Then

b2
β

1 = b2
β

a2α [a2α−β
, b]2

β−1(2β−1) = [a, b]2
α−1

= 1.
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This contradicts the minimality of the order of b. Hence we may assume that α < β. Let 2u

and 2v be the indices of 〈a〉 ∩ 〈b〉 in 〈a〉 and 〈b〉 respectively, then u < v and a2u = b−λ2v for some

odd integer λ. Moreover, u > 1, because [a2, b] 6= 1, hence v > 2. Let a1 = abλ2v−u , then

a2u

1 = a2ubλ2v [bλ2v−u , a]2
u−1(2u−1) = [b, a]λ2v−1(2u−1) = 1.

It follows that 〈a1〉 ∩ 〈b〉 = 1, hence 〈a1〉 ∩ 〈a〉 = 1, then [a1, b
2] = [a, b2] /∈ 〈a1〉. This is a

contradiction, because b2 is in the kern of G. Therefore [a, b, b] 6= 1; this means that a has
order eight and a2 ∈ [a,G], hence a is inverted (that is, mapped via conjugation to its own
inverse) by an element of G. Let x be such an inverter. Then br〈a〉(x) = 2, hence brG(x) is
either 2 or 3. If brG(x) = 2 then G = 〈a〉CG(x), hence brCG(x)(xa) = brCG(x)(a) = brG(a) = 3,
so that xa is an inverter of a of breadth 3. Therefore a must have an inverter of breadth 3, call it
again x. By repeating the above argument for x in place of a, we see that x has order eight and
x2 ∈ G′. Also, x2 /∈ 〈a2〉, as a2 is inverted by x, hence G′ = 〈a2, x2〉 centralizes a. Thus far we have
proved that every element of breadth 3 in G has an inverter of breadth 3 and centralises G′. But
this leads to a contradiction, since x does not centralise a2 and yet a2 ∈ G′. This contradiction
proves the lemma. �

With this final lemma we have completed the proof of Theorem A.
Before closing the discussion on 2-groups with c-breadth 1 we take a closer look at groups G

such that G′ is cyclic of order four. We already know that there are such groups G having s-
breadth 1 and class 3, the generalised quaternion group of order 16 providing an example. Also
the case occurs where cbr(G) = 1 and G has class 2. An example is the following, but we shall
see that it is, in a sense, essentially unique; a consequence will be that such groups cannot have
s-breadth 1.

Example 1.4. Let G be the group in the variety of nilpotent groups of class at most 2 generated
by a, b and subject to the extra relations a4 = b4 = c2, where c = [a, b], thus |G| = 64. Then
G′ = 〈c〉 has order four, hence br(G) = 2, and cbr(G) = 1. Indeed, G2 = 〈a2, b2, c〉 is abelian;
if x ∈ G2 then x = g2ci for some g ∈ G and integer i, hence x is centralised by the maximal
subgroup G2〈g〉 and brG(x) ≤ 1; if x ∈ G r G2 then x = aibjck for some i, j, k ∈ N such that i
and j are not both even. Then x4 = a4ib4jc2ij = c2ic2jc2ij = c2, it follows that sbrG(〈x〉) = 1.
Therefore cbr(G) = 1. On the other hand sbr(G) = 2. Indeed, it is clear that no subgroup of G
can have subgroup breadth greater than 2, for such a subgroup would have to be at least three-
generator, hence its normalizer would have at least order 24, but V := 〈a2b2, a2c〉, has (subgroup)
breadth 2. In fact, V ' V4 and we have V a = 〈a2b2c2, a2c〉 and V b = 〈a2b2c2, a2c−1〉; since c2 /∈ V
(and hence c2 /∈ V a∪V b) it follows that V , V a and V b are pairwise distinct. It can be shown that
the conjugacy class of V is the only one in G having size 4.

Proposition 1.5. Let G be a finite 2-group of class 2 such that cbr(G) = 1. If G′ is cyclic of
order four then G has a central factor isomorphic to the group in Example 1.4.

Proof. There exist a, b ∈ G such that c := [a, b] generates G′. We assume that the pair (a, b)
has been chosen such that b has minimal order. Thus ◦(a) ≥ ◦(b), actually ◦(abn) ≥ ◦(b) for all
n ∈ N. Since G2 is contained in the kern of G we have c2 = [a2, b] = [a, b2] ∈ 〈a〉 ∩ 〈b〉. Therefore

c2 = b2
λ

= a2λ+µ for some λ, µ ∈ N. By minimality of ◦(b) we have

1 6= (a2µb)2λ = a2λ+µb2
λ

[b, a2µ ]2
λ−1(2λ−1) = c2

λ+µ−1

,

hence λ+ µ− 1 ≤ 1. On the other hand we have 1 6= c2 = [a, b2], so that b2 /∈ 〈a, c〉; thus λ > 1.
Hence λ = 2 and µ = 0, that is, c2 = a4 = b4, and it follows that H := 〈a, b〉 is isomorphic to the
group of Example 1.4. It is also clear that H is a central factor of G. �

Corollary 1.6 (see [3], Theorem 3.5.1). If G is a 2-group of class 2 and subgroup breadth 1 then
G′ has exponent 2.

Proof. This follows from the previous proposition, since the group of Example 1.4 has s-breadth 2.
�
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Going back to groups of class 3, it is worth remarking that there exist 2-groups G of class 3
such that G′ is cyclic of order four and cbr(G) = 1 which are essentially different from the
quaternion group of order 16. For instance, the group G (of class 3 and size 28) generated by
a, b, c, x, y subject to the relations a8 = x2 = y2 = 1, c = [a, b], a4 = b4 = c2 = [c, a] = [x, y],
[a, x] = [a, y] = [b, x] = [b, y] = [b, c] = 1 is such that cbr(G) = 1, G′ = 〈c〉 has order four and
|G/Z(G)| = 32.

2. Proof of Theorem B

As anticipated in the introduction, the principal aim of this section will be that of finding a sharp
bound for the size of the central factor group of a finite p-group with subgroup breadth 1. We
observed that no such (upper) bound exists for groups with cyclic breadth 1.

We begin with two simple and useful lemmas.

Lemma 2.1. Let C be a nonabelian 2-group such that C2 ≤ Z(C). Assume that there exist two
nontrivial subgroups U , V of C such that every noncentral cyclic subgroup of C contains either U
or V . Then every noncentral element of C has order four.

Proof. Let x be an element of minimal order in C r Z(C). Let y ∈ C r Z(C) and suppose that
◦(y) > ◦(x). Then A := 〈x, y2〉 is abelian of exponent ◦(y2), hence A = 〈y2〉 × 〈x1〉 for some x1

which necessarily lies outside Z(C). Minimality of ◦(x) implies that x1 has the same order as x,
hence A = 〈y2〉 × 〈x〉. Now let y′ be a power of y such that ◦(y′) = ◦(x). Then the three cyclic
noncentral subgroups: 〈y〉, 〈y′x〉 and 〈x〉 have pairwise different socles. This is excluded by the
hypothesis, hence we see that all elements of C r Z(C) have the same order, say 2λ+1. Clearly

expZ(C) ≤ 2λ+1, hence expC = 2λ+1 and λ > 0. If λ > 1 the mapping θ : a ∈ C 7→ a2λ ∈ C is an
endomorphism, since C2 ≤ Z(C). Let a and b be any two elements of C which are independent
modulo Z(C). Then the socles of 〈a〉, 〈b〉 and 〈ab〉 are 〈aθ〉, 〈bθ〉 and 〈(ab)θ〉 respectively, and
they are pairwise different. As before, this is a contradiction. Therefore λ = 1 and the lemma is
proved. �

Lemma 2.2. Let G be a finite p-group of s-breadth 1 and assume that G has a noncentral
element a of order p. Let b ∈ GrCG(a) and C = CG(H), where H = 〈a, b〉. Then every subgroup
of C which is not normal in G contains [a, b]. Moreover, if there are such subgroups in C then
|G′| = p2 and H ′ = 〈[a, b]〉 has order p.

Proof. Let c ∈ C; then 〈c〉 is maximal in U := 〈a, c〉 = 〈a〉 × 〈c〉. If U 6= U b then UG =
⋂p−1
i=0 U

bi ,
because U has breadth 1 in G, and hence UG = 〈c〉, since [c, b] = 1. Thus 〈c〉 C G in this case. So,
if we assume that 〈c〉 is not normal in G, then U = U b. In this case U/〈c〉 is a chief factor of U〈b〉,
so [a, b] ∈ 〈c〉. Since 〈c〉 6 G it also follows that G′ > 〈[a, b]〉, hence |G′| = p2 by Theorem A. The
lemma follows, since now [a, b] ∈ C ∩H = Z(H) and [a, b]p = [ap, b] = 1. �

In the situation of Lemma 2.2 we can often draw the conclusion that C is in fact a Dedekind
group, as the next lemma shows. However we shall see that this is not always the case.

Lemma 2.3. Let C be a finite p-group, and assume that C has an element u of order p such that,
for all non-normal cyclic subgroups 〈c〉 of C,

(i) u ∈ 〈c〉, if p > 2; and
(ii) u ∈ 〈c4〉, if p = 2.

Then C is a Dedekind group.

Proof. Let C be a counterexample of the least possible order. There exist g, h ∈ C such that h does
not normalise 〈g〉. Hence u ∈ 〈g〉 (and u ∈ 〈g4〉, if p = 2), and 〈g, h〉 is a counterexample, hence
C = 〈g, h〉 by minimality. Every subgroup of order p in C which is different from 〈u〉 is normal
and hence central; it follows that 〈u〉 too is central. Therefore, if Z(C) is cyclic then C has only
one subgroup of order p. Since C is not Dedekind, this means that C is a generalized quaternion
group of order greater than eight (see, e.g., [6], 5.3.6). But in this case C has a nonnormal cyclic
subgroup of order four, which is excluded by the hypothesis. Hence Z(C) is not cyclic, so C has
two (distinct) central subgroups A and B, each of order p, such that A 6= 〈u〉 6= B. Since C/A
and C/B inherit the hypothesis from C, they are both Dedekind, by minimality of |C|. As C is
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not abelian, it follows that p = 2, C has class 2 and C ′ has exponent 2. Since C is 2-generator
|C ′| = 2. There are only two possibilities for the socle of a noncentral cyclic subgroup X of C: it
is either C ′ (if X C C) or 〈u〉 (if X 6 C). By Lemma 2.1 this implies that all noncentral elements
of C have order four. But C has a nonnormal cyclic subgroup, which must have order greater
than four, by hypothesis. This is a contradiction, and the proof is complete. �

Easy examples of non-Dedekind 2-groups in which all nonnormal subgroups contain the same
element of order two are the generalized quaternion groups of order greater than eight and the
nonabelian semidirect product of two cyclic groups of order four. This explains the necessity of
treating the cases p = 2 and p > 2 separately in the previous lemma.

We can use Lemma 2.3 to refine Lemma 2.2.

Corollary 2.4. Let G be a finite p-group of s-breadth 1 and assume that G has a noncentral
element a of order p. Let b ∈ Gr CG(a) and H = 〈a, b〉. If C := CG(H) is not a Dedekind group
then p = 2 and [a, b] is not a square in H.

Proof. Suppose that C is not Dedekind, and let u = [a, b]. Then p = 2 and we may choose c ∈ C
such that 〈c〉 6 C and c2 = u, as follows from Lemma 2.2 and 2.3. Now suppose that u = h2

for some h ∈ H. Then hc has order two, so |[hc,G]| ≤ 2, because G has s-breadth 1. We have
[hc, C] = [c, C] 6= 1, hence [hc,G] = [c, C], and |[c, C]| = 2. Lemma 2.2 yields |H ′| = 2 and
H ′ ≤ 〈c〉. If h /∈ Z(H), then H ′ = [h,H] = [hc,H] = [c, C], so [c, C] ≤ 〈c〉. This is impossible, as
〈c〉 6 C. Thus h ∈ Z(H), hence hc ∈ C. Lemma 2.2 shows that all elements of order two in C
are central, hence hc ∈ Z(C), but then c ∈ Z(C), a contradiction. �

Corollary 2.5. Let G be a finite 2-group of s-breadth 1 and assume that G has a subgroup H '
D8. Then G = HC, where C = CG(H) is a Dedekind group, and |G/Z(G)| ≤ 16.

Proof. H is generated by two involutions, each of which has breadth 1 in G. Therefore C has
index 4 in G and G = HC. Since the generator of H ′ is a square in H, Corollary 2.4 shows that
C is a Dedekind group. The result follows. �

We are now in a position to address the proof of Theorem B. The odd-prime case is settled by
the following result.

Theorem 2.6. Let p be an odd prime and let G be a finite p-group such that sbr(G) = 1. Then
|G/Z(G)| ≤ p3.

Proof. Let Z = Z(G) and suppose that G has the minimum possible size for a counterexample.
If N C G and N ∩G′ = 1 then N ≤ Z and Z(G/N) = Z/N , hence G/N still is a counterexample
and N = 1 by minimality of |G|. We know from Theorem A that G′ is elementary abelian and
|G′| ≤ p2.

Assume first that |G′| = p. Then there exists a two-generator subgroup H ≤ G such that
H ′ = G′ and so G = HC, where C = CG(H). Also, there exists a ∈ H such that 〈a〉 6 H, hence
〈a〉 ∩G′ = 1. But ap ∈ Z, therefore ap = 1. Now Corollary 2.4 shows that C is abelian. Therefore
C = Z, hence |G/Z| = p2 in this case.

Now suppose that |G′| = p2. Then G′ = 〈a〉 × 〈b〉 for some a and b of order p. If G has
class 2, both 〈a〉 and 〈b〉 are normal. If we let A/〈a〉 = Z(G/〈a〉) and B/〈b〉 = Z(G/〈b〉) then
|G/A| = |G/B| = p2 by the previous paragraph. Moreover Z = A ∩ B, thus, in order to prove
that |G/Z| ≤ p3 we only need to exclude that G = AB. If this is the case then every g ∈ G
has the form g = uv for some u ∈ A and v ∈ B and [g,G] = [u,A][v,B] is one of 1, 〈a〉,
〈b〉 and G′, so [g,G] 6= 〈ab〉. It follows that Z(G/〈ab〉) = Z/〈ab〉. However, this is impossible,
since the first part of this proof shows that Z(G/〈ab〉) has index p2. This contradiction shows
that G 6= AB, hence |G/Z| = p3 if G has class 2. If G has class 3, then let x ∈ G′ r γ3(G).
Then C := CG(G′) = CG(x), hence |G/C| = p. Let x ∈ H ≤ C and suppose H 6 C. Then
G = CNG(H), because sbrG(H) = 1 = sbrC(H). So G′ = 〈x〉G ≤ H and H C G. Therefore
C/〈x〉 is a Dedekind group, hence abelian. Thus C ′ ≤ 〈x〉. Since x was arbitrarily chosen in
G′ r γ3(G) and G′ is elementary abelian it follows that C is abelian. Let g ∈ G r C. Then
Z = CC(g). Since brG(g) ≤ 2 we have proved that |G/Z| ≤ p3 in this case as well. �
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It is perhaps worth noting that the proof also shows that |G/Z(G)| = p2 if (and only if) |G′| = p.
This is, however, a property shared by all p-groups whose central factor group has size at most p3.

For any prime p, there are p-groups G of s-breadth 1 and class 3, hence such that |G′| = p2

and |G/Z(G)| = p3; examples of this type are given in [1]. Also the case where G has class 2,
sbr(G) = 1, |G′| = p2 and so |G/Z(G)| = p3 occurs for any odd prime p: an example is given by
G =

(
(〈a〉o 〈b〉)× 〈c〉

)
o 〈d〉, where a has order p2 while b, c, d have order p, ap = [a, b], c = [a, d]

and 〈ap, b, c, d〉 is abelian.
The rest of the paper will be concerned with 2-groups. A special case that we have already

settled is that of 2-groups with a dihedral subgroup of order eight, in Corollary 2.5. It is important
to remark that groups with s-breadth 1 having a central factorisation like that in Corollary 2.5
actually occur. Indeeed, it is not hard to see that the nondirect central product W of D8 and Q8

has s-breadth 1 (the same holds for the corresponding direct product). This group has the property
that W ′ = Z(W ) has order 2, hence |W/Z(W )| = 16. Thus in the case of 2-groups the bound for
the size of the central factor group is not as good as that for p-groups of odd order, even in the
special case when the derived subgroup has order two—whereas Theorem 2.6 gives the smallest
conceivable bound, namely p2, in the corresponding case when p is odd. However, the presence
of a quotient isomorphic to W is the only obstruction to having such a small central factor group
also when p = 2.

Proposition 2.7. Let G be a 2-group such that sbr(G) = 1 and |G′| = 2. Then either |G/Z(G)| =
4 or G has a central subgroup N such that G/N is isomorphic to the central (non direct) product
of D8 and Q8. In the latter case |G/Z(G)| = 16.

Proof. Let N be a normal subgroup of G which is maximal with respect to satistfying N ∩G′ = 1.
Let F = G/N . Since Z(F ) = Z(G)/N it will be enough to show that either |F/Z(F )| ≤ 4 or
F is isomorphic to the central product D8Q8. Clearly F ′ is contained in all nontrivial normal
subgroups of F ; thus Z(F ) is cyclic. Assume that |F/Z(F )| > 4, then F has elements a, b such

that 〈a〉b 6= 〈a〉. Let H = 〈a, b〉; then F = HC where C = CF (H), because |F ′| = 2. If a2 6= 1
then F ′ ≤ 〈a2〉 because F 2 ≤ Z(F ), and we have the contradiction 〈a〉 C F . Therefore a2 = 1,
hence C is a Dedekind group by Lemma 2.2. Since Z(F ) is cyclic and |F/Z(F )| > 4 = |F/C| it
follows that C ' Q8. Next, H2 ≤ Z(F ) = Z(C). Hence |H| ≤ 8 and so H ' D8. The proof is
complete. �

Corollary 2.5 shows that if G is a 2-group of s-breadth 1 such that |G/Z(G)| > 16 then G
has no dihedral subgroup of order eight. In this case the involutions in G, together with 1, must
form an abelian subgroup of exponent 2: otherwise G would have a dihedral subgroup of order
greater than eight, but such dihedral 2-groups have s-breadth greater than 1. We will find strong
constraints on the structure of G under the hypothesis that this subgroup is not central.

Lemma 2.8. Let G be a finite 2-group of s-breadth 1, and assume that G has no dihedral subgroup
of order eight. Let a be a noncentral involution in G and let b ∈ G r CG(a). If H = 〈a, b〉 and
C = CG(H) then H = V o 〈b〉, where V = 〈a, ab〉 is noncyclic of order four, and |C/Z(C)| ≤ 4.
Moreover, 〈b2〉 C G and b2 is not a square in C, and:

(i) if C is not abelian, all elements of C r Z(C) have order four;
(ii) if C is hamiltonian then b has order four and C ′ = H ′ = 〈aab〉;
(iii) if C is not a Dedekind group then b has order eight and C ′ = 〈aabb4〉.
Proof. Let V = 〈a, ab〉. If [a, ab] 6= 1 then V is dihedral. Since brG(a) = 1 then V ' D8, and this
is excluded by hypothesis. Thus [a, ab] = 1 and V is noncyclic of order four. Also, H = V 〈b〉.
It is easy to check that H ∩ C = Z(H) = 〈aab, b2〉 and H ′ = 〈aab〉. If b2 = x2 for some x ∈ C
then x−1b has order two and 〈a, x−1b〉 ' D8, a contradiction. Hence b2 is not a square in C; as
a special case, b2 6= 1. More precisely, b2 /∈ V , otherwise |H| = 8 and, again, H ' D8. Also note
that 〈b2〉 = 〈b〉 ∩ 〈b〉a = 〈b〉G, because G has s-breadth 1, hence 〈b2〉 C G. Now assume that C
is hamiltonian. Then Z(C) has exponent 2 and so b has order four, as b2 ∈ Z(C); it follows that
H = V o 〈b〉. Let z be the nontrivial element of C ′. Then z 6= b2, because z is a square in C.
Arguing as above but with ab in place of b we also have that z 6= (ab)2 = aabb2. Let c ∈ CrZ(C);
what we have just noticed shows that (bc)2 = b2z /∈ 〈aab, z〉 ≤ [bc,G]. If z 6= aab this implies the
contradiction sbrG(〈bc〉) > 1. Therefore z = aab, hence C ′ = H ′. Thus (ii) is proved.
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Part (i) of the statement is obvious when C is a Dedekind group, hence from now on we may
assume that C is not Dedekind and prove (i) and (iii) and that V ∩ 〈b〉 = 1 in this case. By
Lemma 2.2, all subgroups of C not containing u := aab are normal in G; moreover, it follows from
Lemma 2.3 that there exists c ∈ C such that u = c2 and 〈c〉 6 C, and u is not a square in H, by
Corollary 2.4. This latter fact shows that u /∈ 〈b〉. Since V ∩ 〈b〉 ≤ V ∩Z(H) = 〈u〉 it follows that
V ∩〈b〉 = 1. Next we shall show that |C ′| = 2. Assume that this is false, so C ′ = G′ has order four.
Suppose that X is either 〈b2〉 or a subgroup of order two in C ′ ∩ Z(G) different from 〈u〉. Then
X C G. Denote by bars images modulo X. Then ā is an involution in ¯̄G, not centralised by b̄, and
either ¯̄H ' D8 or | ¯̄G′| = 2. Lemma 2.2 and Corollary 2.5 show that C∗ := CḠ( ¯̄H) is a Dedekind
group. Actually, both C∗ and ¯̄C are hamiltonian, since ¯̄C ′ 6= 1, as |C ′| = 4, and ¯̄C ≤ C∗. Assume
first b4 6= 1, and let b1 be a power of b of order four. Then b1 ∈ Z(C) and d := b1c is an element
of order four in C, because b21 6= u = c2. Since d2 6= u we also have 〈d〉 C G, so d2 ∈ Z(G), and
d /∈ Z(C), so 〈d2〉 = [d,C] ≤ C ′. Thus we may set X = 〈d2〉 and argue modulo X as shown above.
We obtain b̄2 ∈ Z(C∗) and so b̄4 = 1, that is: b4 = d2 = ub21. As u /∈ 〈b〉 this is a contradiction,
hence b4 = 1. Now set X = 〈b2〉 and follow the argument again. Let ¯̄Z = Z( ¯̄C). As b2 is not a
square in C, if g ∈ Z and so ḡ2 = 1 then g2 = 1 and hence g ∈ Z(C)—recall from Lemma 2.2
that all elements of order two in C are central. It also follows that C4 = 1, because ¯̄C2 ≤ ¯̄Z.
By [2], since |C ′| = 4 there exists x ∈ C such that brC(x) = 2, and hence brC(xb) = 2 also. From
cbr(G) = 1 it follows easily that 〈x〉∩G′ 6= 1 6= 〈xb〉∩G′, hence x2, x2b2 ∈ C ′. So we have b2 ∈ C ′,
and hence b2 = [x, y] for some y ∈ C. Thus x, y /∈ Z, hence x̄ and ȳ both have order four. But
they commute; it follows that y ∈ 〈x〉Z ≤ CC(x), a contradiction. This shows that |C ′| = 2. Then
all noncentral cyclic subgroups of C contain either C ′ (if normal) or 〈u〉 (if not normal), hence all
elements of C r Z(C) have order four, by Lemma 2.1.

Let d ∈ CC(c) r 〈c〉Z(C). Then ◦(d) = 4; moreover d2 6= u, otherwise (cd)2 = 1, hence
cd ∈ Z(C) and d ∈ 〈c〉Z(C). Thus 〈d〉 C G, so C ′ = 〈d2〉. The same argument can be repeated
for cd in place of d, thus showing that 〈(cd)2〉 = C ′ = 〈d2〉 and (cd)2 = d2. This is false, so we
deduce that CC(c) = 〈c〉Z(C). But |C : CC(c)| = 2, as |C ′| = 2, hence |C/Z(C)| = 4. Finally, we
establish (iii). Firstly b8 = 1, because C4 = 1. [bc,G] contains both u = [bc, a] and C ′ = [bc, C],
hence [bc,G] = G′. As sbr(G) = 1, this implies that 〈bc〉∩G′ 6= 1. Now, C has a noncentral normal
subgroup 〈y〉, otherwise u would be the square of all noncentral elements of C and C would be
hamiltonian. Then C ′ = 〈y2〉 and G′ = 〈u, y2〉. If b4 = 1 then ub2 = (bc)2 ∈ G′, hence b2 ∈ G′.
But, as we know, b2 6= u, moreover b2 6= y2, because b2 is not a square in C. Then b2 = uy2, but
this implies (ab)2 = ub2 = y2, which is another contradiction: by arguing for ab as we did for b
we see that (ab)2 cannot be a square in C. This contradiction proves that b has order eight. It
follows that C ′ = 〈ub4〉 and the proof is complete. �

It is worth remarking that case (iii) above actually occurs, and in this case the structure of G
is prescribed. Indeed, let H = V o 〈b〉 as in Lemma 2.8, with ◦(b) = 8, and K = 〈d〉o 〈c〉, where,
d and c have order 4 and dc = d−1. Then form the central product HK, by letting b4 = c2d2

and c2 = aab, the generator of H ′. Finally let G0 = HK × E, where E is an elementary abelian
2-group. It can be checked that sbr(G0) = 1. Of course, H has a noncentral involution, a,
and CG0

(H) = 〈b2〉KE is not a Dedekind group (and G0 has no subgroups isomorphic to D8).
Conversely, by using Lemma 2.8 and its proof, a relatively short extra argument proves that in
case (iii) the subgroup HC has exactly the structure just described for G0. After having completed
the proof of Theorem B one can use the information that |G/Z(G)| ≤ 16 to deduce that G = HC.
Thus G is isomorphic to the group G0 just defined.

Lemma 2.9. Let G be a 2-group with s-breadth 1 and suppose that G has a noncentral element
of order two. Then |G/Z(G)| ≤ 16.

Proof. Let a be noncentral involution in G, hence Ca := CG(a) has index 2 in G. Suppose,
for a contradiction, that |G/Z(G)| > 16. Then G has no dihedral subgroup of order eight, by
Corollary 2.5, hence we may adopt the notation and conclusions of Lemma 2.8. We will often
use this lemma throughout this proof, without further notice. Note that C = Ca ∩ Cb, where
Cb := CG(b) has index at most 4 in G, since |G′| = 4 by Theorem A and Proposition 2.7.
Therefore |G : C| ≤ 8. We know from Lemma 2.8 that |C/Z(C)| ≤ 4. If |G : C| ≤ 4 then G = HC
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and Z(C) ≤ Z(G), hence |G/Z(G)| ≤ 16, a contradiction. Thus we may assume |G : C| = 8. Then
G = CaCb. Moreover a /∈ NG(〈b〉), so there exists x ∈ NCa(〈b〉) r Cb; note that G = C〈a, b, x〉.
Also note that since [b, x] ∈ 〈b〉 while u = aab /∈ 〈b〉 and |G′| = 4 we must have [b, x] = b0
and G′ = 〈u〉 × 〈b0〉, where b0 generates the socle of 〈b〉. Suppose first that C is abelian. Then
CC(x) ≤ Z(G); since |G/Z(G)| > 16 it follows that G = CCx, where Cx = CG(x), because
|G : Cx| ≤ |G′| = 4. In this latter case b = cb1 for some c ∈ C and b1 ∈ Cx. If H1 = 〈a, b1〉
then it is easily checked that [a, b1] 6= 1 6= [x, c] and x, c ∈ CG(H1). Therefore, at the expense of
substituting b1 for b if needed, we may assume that C is not abelian. Denoting by bars images
modulo 〈b2〉 (we know that 〈b2〉 C G), we have ¯̄H ' D8, hence ¯̄C1 := CḠ( ¯̄H) is a Dedekind group,
and |G : C1| = 4 by Corollary 2.5. Then C is a maximal subgroup of C1; as x centralises a and
normalises 〈b〉 it follows that C1 = C〈x〉. Moreover C ′ � 〈b2〉 (see Lemma 2.8), so ¯̄C is hamiltonian
and ¯̄C1 = ¯̄C × ¯̄X, where | ¯̄X| = 2. Since x was defined up to multiplication by elements of C there
is no loss in assuming x ∈ X, hence x2 ∈ 〈b2〉. Two cases are possible: either b has order four and
C is hamiltonian, or b has order eight and C is not a Dedekind group. In the latter case we may
further assume x2 = 1, for [b, x] = b4 in this case; if x2 = b4 we may substitute xb2 for x, while if
x2 = b2 we have (xb)2 = x2b2b4 = 1 and so 〈a, xb〉 ' D8, a contradiction. In the case when C is
hamiltonian we cannot have x2 = 1, otherwise 〈x, b〉 ' D8, hence x2 = b2.

In either case let A = 〈a, x〉 = 〈a〉 × 〈x〉. We have A ∩ V = 〈a〉, hence ab /∈ A and Ab 6= A.
For all c ∈ C we have Ac ∩ V = 〈a〉; since A has just two conjugates, Ac = A. It follows that
[C, x] ≤ A ∩ G′ ≤ 〈x2〉, hence C normalises 〈x〉. As a matter of fact [C, x] = 1: this is obvious
when C is not hamiltonian (as x2 = 1). In the other case it is enough to check that [c, x] = 1 if
c ∈ C is such that c2 6= 1, that is, c2 = u. If [c, x] 6= 1, then [c, x] = x2, hence (cx)2 = u, and
we have (abcx)2 = (ab)2(cx)2[ab, cx] = ub2ub2 = 1, so 〈a, abcx〉 ' D8, a contradiction once again.
Therefore [C, x] = 1 in either case.

If C is hamiltonian, now consider S := 〈a, cx〉, where c is an element of order four in C, so
(cx)2 = ub2 6= 1. Clearly S is abelian; since u = aab and 〈a, u, b2〉 has rank 3 we have u, ab /∈ S.
Then Sb 6= S. Let d be an element of C not centralising c, so [cx, d] = [c, d] = u. Then Sd 6= S.
On the other hand a /∈ Sb, hence Sd 6= Sb. We have found three different conjugates of S, and
this is a contradiction.

If C is not hamiltonian, let U = 〈c, x〉, where c ∈ C is such that 〈c〉 6 C; hence c2 = u. Also U is
abelian, and b4 /∈ U because 〈u, x, b4〉 has rank 3. As xb = xb4 it follows that U 6= U b. On the other

hand, if d is an element of C not normalising 〈c〉, then U∩HC = U b∩HC = 〈c〉 6= 〈c〉d = Ud∩HC,
hence Ud is different from both U and U b, thus providing a contradiction. Now the proof is
complete. �

Theorem 2.10. Let G be a 2-group with s-breadth 1. Then |G/Z(G)| ≤ 16.

Proof. We may assume that G has the least possible order for a counterexample, so that all
nontrivial normal subgroups of G have nontrivial intersection with G′. An immediate consequence
is that the socle S of Z(G) is contained in G′. Assume first that Z(G) is cyclic. By Lemma 2.9
it follows that G has only one element of order two, hence G is a generalised quaternion group
(see, for instance, [6], 5.3.6). From sbr(G) = 1 it easily follows that |G| ≤ 16, a contradiction.
Therefore Z(G) is not cyclic, so S = G′. In other words, G has class 2 and G′ ' V4. Let A1,
A2, A3 be the subgroups of order two in G′. For each i let Ci/Ai = Z(G/Ai) and let Ni be a
normal subgroup of G which is maximal with respect to the condition Ni ∩ G′ = Ai. If |G/Ci|,
|G/Cj | ≤ 4 for some i, j such that i 6= j then Ci ∩ Cj is a central subgroup of index at most 16
in G and we have a contradiction. Therefore, up to relabelling the Ai, we may assume that G/N1

and G/N2 are both isomorphic to the central product of D8 and Q8 (see Proposition 2.7). Now,
N1 ∩N2 ∩G′ = A1 ∩A2 = 1, hence N1 ∩N2 = 1; it follows that G′ = Z(G) = G2 and expG = 4.
Let X be the set of all x ∈ G such that xN1 is a noncentral involution in G/N1. For all x ∈ X,
Lemma 2.9 shows that x2 6= 1; on the other hand N1 ∩G2 = A1, hence x2 is the generator of A1.
If a ∈ N1 the same holds for ax ∈ X, so x2 = (xa)2 = x2axa and ax = a−1. Thus, every element
of X induces by conjugation the inverting map on N1, therefore N1 is abelian. By Lemma 2.9
the socle of N1 is N1 ∩ Z(G) = A1 hence N1 is cyclic, and |N1| ≤ 4 since expG = 4. Then
|G/CG(N1)| ≤ 2. Now, the structure of G/N1 shows that every subgroup of index 2 in G must
contain some element of X. Hence there exists x ∈ X ∩ CG(N1). We have shown that x acts like
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inversion on N1, therefore |N1| = 2. But then |G| = |N1| |G/N1| = 26 and so |G/Z(G)| = 16,
because |Z(G)| = 4. This is a contradiction, and the proof is complete. �

With this last result, the proof of Theorem B is also complete.
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