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Locally finite groups all of whose subgroups
are boundedly finite over their cores

G. CUTOLO, E.I. KHUKHRO, J.C. LENNOX, S. RINAURO, H. SMITH AND J. WIEGOLD

Abstract. For n a positive integer, a group G is called core-n if H/HG has order at most n for every subgroup H
of G (where HG is the normal core of H, the largest normal subgroup of G contained in H). It is proved that

a locally finite core-n group G has an abelian subgroup whose index in G is bounded in terms of n.

1. Introduction

Given a positive integer n, a group G is called core-n if H/HG has order at most n for every subgroup H of G.
Here HG denotes the normal core of H, the largest normal subgroup of G contained in H. Our main result is
as follows.

Theorem 1. Every locally finite core-n group G has an abelian subgroup whose index in G is bounded in terms
of n.

By the Mal’cev Local Theorem, it is sufficient to prove the theorem assuming the group G to be finite. A
further argument [10] reduces the proof to the case where G is a finite p-group. In view of this reduction, it
is natural to reformulate Theorem 1 for finite core-pk p-groups, since the function bounding the index of an
abelian subgroup then involves p and k naturally.

Theorem 2. Let p be a prime and let G be a finite core-pk p-group, where k is a positive integer. Then G has
an abelian subgroup of index at most pf(k), where

f(k) = k(k + (k/2 + 1)(k + 1)(2k + 1))((k + 1)(k2 + k + 2)− 1) if p 6= 2,

and

f(k) = (k + 1)(k + (k/2 + 1)(k + 1)(2k + 1))((k + 1)(k2 + k + 2)) + 1 if p = 2.

The first step in proving Theorem 2 is the following result, which is also interesting in its own right.

Theorem 3. Let G be a finite core-pk p-group, where k is some positive integer.

(a) If p 6= 2, then the nilpotency class of G is at most (k + 1)(k2 + k + 2).
(b) If p = 2, then G has a subgroup of index 2 whose nilpotency class is at most (k + 1)(k2 + k + 2) + 1.

The upper bounds obtained in Theorems 1 and 2 may well be far from the truth. It might be interesting,
if very difficult, to find best possible bounds. We have succeeded in doing this for finite core-p p-groups for p
odd, in which case the bound is p2, and we have an ‘almost’ best possible bound for (arbitrary) core-2 2-groups;
these results appear in [2]. Theorem 1 complements the result of [1], where it is proved that if all subgroups of a
locally finite group are finite over their cores, then the group is abelian-by-finite (there is no function bounding
the index of an abelian subgroup there, but also no restriction on the orders |H/HG| in the hypothesis). These
results can also be viewed as duals of B. H. Neumanns theorem [7], stating: groups in which all subgroups
are of finite index in their normal closures are finite-by-abelian. Some other results and discussion of further
problems relating to groups all of whose subgroups are finite over their cores can be found in [1, 2, 3, 5, 6, 9,
10]. Our final remark is that (unlike in B. H. Neumanns theorem) one has to impose some finiteness condition
on a core-finite group (even for core-p groups). Indeed, the Tarski p-groups, constructed by A. Yu. Ol’shanskii
[8] for sufficiently large p, are core-p but not abelian-by-finite.

1. The nilpotency class of finite core-pk p-groups

We begin by establishing some notation and making some elementary observations. We denote by [A,mB] the
commutator subgroup

[. . . [A,B], . . . , B︸ ︷︷ ︸
m

].

Throughout this section, in which we prove Theorem 3, G will denote a finite core-pk p-group, where k ∈ N and

p is an arbitrary prime unless otherwise stated. Since 〈gpk〉 is normal in G for all g ∈ G, it follows easily that

[Gp
k

, G′] = 1 (and hence, incidentally, that Gp
k

has class at most 2). Writing B = Gp
k ∩G′ and A = Bp

k

, we
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see that B is abelian and that all subgroups of A are therefore G-invariant. Since G/CG(A) is abelian and of
exponent at most pk, it is clear that the following lemma ought to be of some use to us.

Lemma 1.1. Let p be a prime and let 〈a〉 be a cyclic group of order pt, and suppose that Γ is a p-subgroup of
Aut 〈a〉 having exponent at most pk.

(i) If p is odd, then 〈a〉 has a Γ -central series of length at most k + 1.
(ii) If p = 2, then 〈a〉 has a Γ1-central series of length at most k+2, where Γ1 is a subgroup of index at most 2

in Γ .

Proof. For t = 1 the result is immediate, so we shall assume that t ≥ 2. Let α denote the automorphism
given by aα = a1+p. If p is odd, then α generates the Sylow p-subgroup of Aut 〈a〉 and has order pt−1, so that

Γ = 〈αpλ〉 for some λ such that λ+ κ ≥ t− 1. Since (1 + p)p
λ ≡ 1 (mod pλ+1), we see that Γ acts trivially on

each of the factors 〈api(λ+1)〉/〈ap(i+1)(λ+1)〉, i ≥ 0. Since (k + 1)(λ + 1) ≥ t, part (i) of the lemma now follows.

For p = 2, we note that 〈α〉 has index at most 2 in Aut 〈a〉 and, setting Γ1 = Γ ∩ 〈α〉, we have that Γ1 = 〈α2λ〉
for some λ satisfying λ+ k ≥ t− 2. Part (ii) is then proved as above. �

Our next lemma will enable us to deal with the factor B/A and will also be of use in bounding the class of

G/Gp
k

.

Lemma 1.2. If E is a normal abelian section of G of exponent pl (l ≥ 1), then E has a G-central series of
length at most l(k + 1).

Proof. Clearly, we may assume that l = 1, and we may as well assume that E is a (normal) subgroup of G. Then
E = (E ∩ Z(G)) × F for some F and, by the core-pk property, F has order at most pk (since every nontrivial
normal subgroup of G intersects Z(G) nontrivially). It follows easily that [E, k+1G] = 1, as required. �

Lemma 1.3. G/Gp
k

has nilpotency class at most k + k2(k + 1).

Proof. We may assume that Gp
k

= 1. Let U be a maximal normal abelian subgroup of G and let C = CG(U/Up).
Then C stabilizes the series

U ≥ Up ≥ Up
2

≥ · · · ≥ Up
k

= 1

and, since U = CG(U), we deduce that C/U has class at most k − 1 (see [4, Theorem 1.C.1]) and hence that
C has derived length at most k. Applying Lemma 1.2 to the factors of the derived series of C we see that
C ≤ Zk2(k+1)(G). Further, G/C is isomorphic to a group of automorphisms of Ū = U/Up and, by Lemma 1.2,

[Ū , k+1(G/C)] = 1, which gives G/C of class at most k. The result follows. �

Now we complete the proof of Theorem 3. With the notation as previously established, all we need to do

is to provide the bounds obtained in our lemmas. For p odd, we use the facts that [G′Gp
k

, A] = 1 and every
subgroup of A is G-invariant, then apply Lemma 1.1 to show that [A, k+1G] = 1 (we remind the reader that

A = (Gp
k ∩ G′)pk). By Lemma 1.2, [B, k(k+1)G] ≤ A, while [Gp

k

, G] ≤ Gp
k ∩ G′ = B. Finally, we apply

Lemma 1.3 and deduce that G has class at most

(k + 1) + k(k + 1) + 1 + (k + k2(k + 1)) = (k + 1)(k2 + k + 2),

thus proving Theorem 3(a).
For p = 2, we again have that G/A has class at most (k + 1)(k2 + k + 1). Write Γ = G/CG(A), and let G1

be the pre-image of the subgroup Γ1 of index at most 2 in Γ which centralizes a series of length at most k + 2

in A—the existence of Γ1 is, of course, guaranteed by Lemma 1.1, as [G′G2k , A] = 1. Clearly, this subgroup Γ1

satisfies our requirements, and the proof of Theorem 3 is complete.

2. An abelian subgroup of bounded index

Here we prove Theorems 1 and 2. For given m, the property that a group contains an abelian subgroup of index
at most m can be written as a universal formula of predicate calculus. Hence, by the Mal’cev Local Theorem,
it suffices to prove Theorem 1 for finite groups (see, for example, [4, Proposition 1.K.2]).

Next we show that Theorem 1 follows from Theorem 2. Let G be a group satisfying the hypothesis of
Theorem 1. By the well-known result of Dedekind and Baer, if every subgroup of a group is normal, then the
group has an abelian subgroup of index at most 2. If p is a prime greater than n, then every p-subgroup of G
is normal in G, and so the Sylow p-subgroup of G is abelian. Suppose that P is a Sylow p-subgroup of G for
some prime p ≤ n. Then P is core-pk for some k such that pk ≤ n and so, by Theorem 2, P has a G-invariant
abelian subgroup of index bounded in terms of pk. Since G is the product of its Sylow p-subgroups (over all p),
the result now follows easily.

Now we prove Theorem 2. Applying Theorem 3 and an easy induction argument, we are left to prove the
following proposition on p-groups of nilpotency class 2.
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Proposition 2.1. Let p be a prime and let G be a finite core-pk p-group of nilpotency class 2. Then G has an
abelian subgroup of index at most pf(k), where

f(k) = k(k + (k/2 + 1)(k + 1)(2k + 1)) if p 6= 2,

and

f(k) = (k + 1)(k + (k/2 + 1)(k + 1)(2k + 1)) if p = 2.

Proof. We recall first some formulae that hold in any nilpotent group F of class 2; they will be used usually
without reference:

[ab, c] = [a, c][b, c],

[am, b] = [a, b]m = [a, bm], m ∈ N.

In particular, the exponents of F/Z(F and of F ′ are the same. Another consequence is that [h, F ] and F/CF (h)
are isomorphic groups for every h ∈ F . �

Lemma 2.1. Let H be a finite core-pk p-group of nilpotency class 2. Then H/Z(H) (and H ′) is of exponent
at most pk if p 6= 2, and at most 2k+1 if p = 2.

Proof. We consider the case p 6= 2 first. We have to prove that every commutator is of order at most pk. Thus,
without loss of generality, we may assume that H = 〈a, b〉, and that Z(H) is cyclic. By induction, supposing
the opposite, we may assume that [a, b] has order pk+1.

Now, as [a, b]p
k+1

= 1, both ap
k+1

and bp
k+1

are central, so without loss of generality, since Z(H) is cyclic,

we have ap
k+1

= bλp
k+1

for some λ ∈ N. Thus

(ab−λ)p
k+1

= ap
k+1

b−λp
k+1

[b, a]−λp
k+1(pk+1−1)/2 = 1,

since p is odd and [b, a]p
k+1

= 1. So, with a1 := ab−λ, we have G = 〈a1, b〉, where ap
k+1

1 = 1. By the core-pk

property, 〈ap
k

1 〉 is a normal subgroup of H, so ap
k

1 ∈ Z(H), since it is of order at most p. Thus [a1, b]
pk = 1, a

contradiction, since [a1, b] = [a, b].
Let now p = 2. Similarly, we have to prove that every commutator is of order at most 2k+1, and we may

assume H = 〈a, b〉, Z(H) is cyclic and [a, b] has order 2k+2. Again, a2
k+2

= bλ2
k+2

, so

(ab−λ)2
k+2

= [b, a]−λ2
k+1(2k+2−1).

Hence, as above, without loss of generality, we may assume λ = 1 (else a1 := ab−λ has order ≤ 2k+2, so a2
k+1

1

is central and [a1, b] = [a, b] has order ≤ 2k+1, a contradiction). So, replacing ab−λ by a, we have

a2
k+2

= [b, a]2
k+1

and a has order precisely 2k+3. But 〈a2k〉 is a normal subgroup of G, so [a2
k

, b] = aε2
k

for some ε. But [a, b]2
k

has order 4, so aε2
k

has order 4, so ε = 2δ, where δ is odd, whence [a, b]2
k

= aδ2
k+1

. But then [aδ2
k+1

, b] = 1, so

[a, b]δ2
k+1

= 1 and hence [a, b]2
k+1

= 1, a contradiction that completes the proof. �

We fix the notation k0 = k if p is odd, and k0 = k+1 if p = 2 ,so that pk0 is an upper bound for the exponent
of G/Z(G) and of G′, by Lemma 2.1.

We proceed with the proof of Proposition 2.1. We may assume the rank of G/Z(G) to be greater than k,
since otherwise the index of Z(G) is at most pk0k. Hence the rank of G/Φ(G) is also at least k + 1.

Choose the largest possible N and a set of elements {xi | i = 1, . . . , N} satisfying the following conditions:

(1) the xi are linearly independent modulo the Frattini subgroup Φ(G);
(2) [xi, xj ] = 1 for all i, j = 1, . . . , N ;
(3) the rank of [xi, G] (which is equal to the rank of G/CG(xi)) is not greater than (k/2 + 1)(k + 1).

To show that sets satisfying (1)–(3) do exist, take k + 1 elements b1, . . . , bk+1 linearly independent mod-
ulo Φ(G), and generate a subgroup B = 〈b1, . . . , bk+1〉. Note that B has rank at most (k/2 + 1)(k+ 1) (that is,
each of its subgroups can be generated by (k/2 + 1)(k+ 1) elements). Since |B : BG| ≤ pk, we have BG � Φ(G).
Take x1 ∈ BG r Φ(G). Then {x1} clearly satisfies (1) and (2). The rank of [x1, G] is at most (k/2 + 1)(k + 1)
since [x1, G] ≤ BG ≤ B.

Let X be an abelian normal subgroup containing the (maximal) set {xi | i = 1, . . . , N} and Z(G) (for
example, take 〈{xi | i = 1, . . . , N}, Z(G)〉). We shall prove that X is a desired abelian subgroup of index at
most pk0(k+(k/2+1)(k+1)(2k+1)) in G. Since the exponent of G/Z(G), and hence of G/X, is at most pk0 , we need
only prove that the rank of the abelian group G/X is at most k + (k/2 + 1)(k + 1)(2k + 1). The latter rank
obviously coincides with that of G/XΦ(G), since X ≥ Z(G) ≥ G′.

Lemma 2.2. The rank of
( N⋂
i=1

CG(xi)
)

Φ(G)
/
XΦ(G)) is at most k.
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Proof. Otherwise, we could pick k + 1 elements b1, . . . , bk+1 in
⋂N
i=1 CG(xi) which are linearly independent

modulo XΦ(G). Again, for B = 〈b1, . . . , bk+1〉, there is xN+1 ∈ BG rXΦ(G). Then the set {i = 1, . . . , N} ∪
{xN+1} would also satisfy (1)–(3), contrary to the maximality of N . We have (1) by the choice of the bi linearly

independent modulo XΦ(G); we have (2), since xN+1 ∈ B ≤
⋂N
i=1 CG(xi); and (3) holds for xN+1 by the same

argument as for x1 above. �

Corollary. It suffices to show that the rank of G
/ N⋂
i=1

CG(xi) is at most (k/2 + 1)(k + 1)(2k + 1).

Proof. Note that the ranks of G
/⋂N

i=1 CG(xi) and G
/(⋂N

i=1 CG(xi)
)
Φ(G) are the same. In the series

G ≥
( N⋂
i=1

CG(xi)
)
Φ(G) ≥ XΦ(G),

the rank of the second factor is at most k, by Lemma 2.2. If the Corollary holds true, then the rank of the first
factor is at most (k/2+1)(k+1)(2k+1), and hence the rank of G/XΦ(G) is at most k+(k/2+1)(k+1)(2k+1),
as required. �

Now choose the smallest M for which there is a subset {gj | j = 1, . . . ,M} ⊆ {xi | i = 1, . . . , N} such that

M⋂
j=1

CG(gj) =

N⋂
i=1

CG(xi),

and fix the corresponding subset {gj | j = 1, . . . ,M}.
The rank of G/CG(gj) is at most (k/2 + 1)(k + 1) for every j, by condition (3), being actually the rank of

one of the G/CG(xi). By the Corollary above, it suffices to prove that M ≤ 2k + 1. For then the rank of

G
/ N⋂
i=1

CG(xi) = G
/ M⋂
j=1

CG(gj)

is at most 2k + 1 times (k/2 + 1)(k + 1), as required.
By the minimality of M , we have CG(gj) �

⋂
l 6=j CG(gl) for every j = 1, . . . ,M . So we choose hj ∈⋂

l 6=j CG(gl)r CG(gj), for every j = 1, . . . ,M . Then [gl, hl] 6= 1 and [gl, hj ] = 1 for all j 6= l, j, l = 1, . . . ,M .
We shall need the following elementary lemma.

Lemma 2.3. Suppose that A is a finite abelian p-group of rank m and that B is a subgroup of A, and let r be
the rank of B. Then there is a subgroup A1 of A such that A1 ∩B = 1 and the rank of A1A

p/Ap is m− r.

Proof. Taking Ω1(B) instead of B, we may assume B to be of exponent p. Applying then induction on r, we
are left with the case where B = 〈b〉 is cyclic of order p. Write A as the direct product of cyclics 〈ai〉, and let
b = aαi0w, where aαi0 6= 1 and w is a group word in the aj , j 6= i0. Then we can take A1 =

∏
j 6=i0 〈aj〉. �

We introduce the subgroup K = 〈[gk, hk] | k = 1, . . . ,M〉. Let r be the rank of K. We shall prove the
required inequality M ≤ 2k + 1 in two steps, in the following lemmas.

Lemma 2.4. We have M ≤ k + r.

Proof. Suppose that M ≥ k + r + 1. Consider the abelian group

A = 〈gk | 1, . . . ,M〉.

The rank of A is M , since the gj are linearly independent, even modulo Φ(G) which contains Ap.
Set D = A∩K, the rank of D being at most r. By Lemma 2.3, there is a subgroup H of A that intersects D

(and hence K) trivially, such that the rank of HAp/Ap is ≥M−r ≥ k+1. Then HG � Ap, since |H : HG| ≤ pk.
Pick an element u ∈ HG r Ap. Since the gj are linearly independent modulo Φ(G), there are s and α 6≡ 0

(mod p) such that u = gαs · w, where w ∈ 〈gi | i 6= s〉. Now [u, hs] = [gs, hs]
α is a nontrivial element of K that

does not belong to H and hence does not belong to the normal subgroup HG containing u, a contradiction. �

Lemma 2.5. We have r ≤ k + 1.

Proof. Suppose that r ≥ k + 2. In order to get a contradiction, we actually reduce the situation to that in the
proof of Lemma 2.4 with r = 1, for some section of G. (Note that the core-pk property is inherited by both
subgroups and homomorphic images.)

First we factor out Kp. The rank of the image of K in G/Kp remains the same, and the images of the gk
remain linearly independent modulo the Frattini subgroup, since Kp ≤ Φ(G).
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Now we choose a subset {gjs | s = 1, . . . , r} such that the commutators [gjs , hjs ], s = 1, . . . , r, are linearly
independent, that is, generate a subgroup of rank r. Then we glue these commutators to one cyclic subgroup,
by factoring out the subgroup

∆ :=
〈
[gjs , hjs ] · [gjt , hjt ]−1 | s 6= t, s, t = 1, . . . , r

〉
.

Again, the images of the gjs in G/Kp∆ remain linearly independent modulo the Frattini subgroup. Now the
argument from the proof of Lemma 2.4 can be applied to the image of the subgroup 〈gjs , hjt | s, t = 1, . . . , r〉 in
G/Kp∆, to arrive at a contradiction. �

By the remarks above, the proof of Proposition 2.1, and hence those of Theorems 1 and 2, is now complete.
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