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Locally finite groups with all subgroups either subnormal or
nilpotent-by-Chernikov

GIOVANNI CUTOLO AND HOWARD SMITH

Abstract. Let G be a locally finite group satisfying the condition given in the title and suppose
that G is not nilpotent-by-Chernikov. It is shown that G has a section S that is not nilpotent-
by-Chernikov, where S is either a p-group or a semi-direct product of the additive group A
of a locally finite field F by a subgroup K of the multiplicative group of F , where K acts by
multiplication on A and generates F as a ring. Non-(nilpotent-by-Chernikov) extensions of this
latter kind exist and are described in detail.

1. Introduction

Let NC denote the class of groups that are nilpotent-by-Chernikov. By results from [1] and [5],
a locally graded group with every proper subgroup in NC is itself in NC, and from [2] it is known
that a locally finite group in which every subgroup is subnormal is also in NC. (Examples in [7]
and [9] show that one cannot remove the hypothesis of local finiteness here.) Theorem 4 of [8]
states that a locally finite group G in which every subgroup is either subnormal or nilpotent
has a subgroup of finite index in which every subgroup is subnormal, and together with [2] this
shows that G belongs to NC. It is natural to ask next whether a locally finite group G in which
every subgroup is either subnormal or in NC necessarily lies in the class NC. It was shown
in [10] that if G is a locally soluble-by-finite group in which every subgroup is either subnormal
or in NC then G is soluble-by-finite, and if G is not nilpotent-by-Chernikov then G is in fact
soluble, and so the above question becomes a question about soluble groups. Let us denote by
X the class of groups G in which every subgroup is either subnormal or in NC. Our first result
here is as follows.

Theorem 1.1. Let G be a locally finite group in the class X. If G has finite exponent then G
is nilpotent-by-finite.

It turns out that there are locally finite groups in X that are not in NC. Besides describing
such counterexamples in detail we are able to present a necessary and sufficient condition for
a locally finite group to lie in X but not in NC. This condition is not quite satisfactory, on
account of the fact that we have been unable to decide whether there are any locally finite
p-groups in X \ NC. We have made some progress with the p-group case, having shown in
particular that every Baer p-group in X is also in NC, but we have chosen to postpone such
discussion to a subsequent article. In the statement of the following result we make reference
to some groups described in more detail in Section 3 of this paper. For a given group X, π(X)
denotes as usual the set of primes p such that X has an element of order p, and we recall that
a field is locally finite if and only if it has positive characteristic and is algebraic over its prime
subfield.

Theorem 1.2. Let G be a locally finite group in X and suppose that, for every prime p, all
p-sections of G belong to NC. Then the following are equivalent.

(a) G /∈ NC.
(b) For some locally finite field F , G has a section isomorphic to a group G(F,K) := A oK,

that satisfies the following.
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(i) A is the additive group of F .
(ii) K is a subgroup of the multiplicative group F ∗ of F that acts on A by multiplication

and generates F as a ring.
(iii) π(K) is infinite but π(K ∩ F ∗1 ) is finite for every proper subfield F1 of F .

Theorem 3.4 (which is given in Section 3) shows that there do indeed exist groups AoK of
the kind described in part (b) of Theorem 1.2.

2. Background results and the proof of Theorem 1.1

As a preliminary remark, let us note that a group G that is an extension of an NC-group by a
Chernikov group is again in NC — a reference for this result, which will be used without further
mention on several occasions, is provided in the proof of Lemma 1 of [5]. Our first lemma deals
with the locally nilpotent case of Theorem 1.1.

Lemma 2.1. Let G be a locally nilpotent group of finite exponent and suppose that G ∈ X.
Then G is nilpotent.

Proof. If G is not nilpotent then there is a prime p for which the p-component of G is not
nilpotent, and we may therefore assume thatG is a p-group. By hypothesis, every non-subnormal
subgroup of G is nilpotent-by-Chernikov and hence nilpotent-by-finite. By Theorem 1 of [10]
(though we need only apply Proposition 2 of that paper), G is soluble, and now G is a soluble
p-group of finite exponent and so G is a Baer group (see, for example, Theorem 7.17 of [6]) and
hence every non-subnormal subgroup of G is nilpotent. By Theorem 3 of [8] every subgroup
of G is subnormal, and since G has finite exponent it follows immediately from [4] that G is
nilpotent, thus completing the proof. �

Much of our effort will be directed towards determining when a locally finite group G in the
class X is (locally nilpotent)-by-Chernikov, that is, in the class (LN)C. Our next three results,
which have application beyond the finite-exponent case, together show that a locally finite group
in X\ (LN)C has a non-(LN)C section that is a split extension of an abelian group by an abelian
group that is either elementary or of rank one.

Lemma 2.2. Let G be a locally finite group in X and suppose that G /∈ (LN)C. Then G has a
non-(LN)C subgroup G0 with a locally nilpotent normal subgroup X such that G0/X is either
elementary abelian or of rank one and with all nontrivial primary components of prime order.

Proof. By Proposition 3 of [8], G is soluble. Let X be its locally nilpotent radical. Periodic sol-
uble groups satisfying the the minimal condition on subnormal abelian subgroups are Chernikov
(see [6], vol. 1, page 176) but G/X is not Chernikov, hence it has a subnormal abelian sub-
group A/X which is not Chernikov. Then A/X has an infinite subgroup G0/X which either
is of prime exponent or has all primary components of prime order. Also, since G0 is subnor-
mal in G, X is the locally nilpotent radical of G0. Therefore G0 is a subgroup of the required
type. �

Lemma 2.3. Let G be a locally finite group in X, N the locally nilpotent radical of G, and
suppose that G/N is an infinite elementary abelian p-group for some prime p. Then G has a
non-(LN)C section G0 := A o H, where H is an elementary abelian p-group, A is the locally
nilpotent radical of G0 and A is an abelian p′-group.

Proof. We shall assume that every section of the type described is in (LN)C and proceed to
obtain the contradiction that G ∈ (LN)C; note that every (LN)C-section of G belongs to the
class (LN)F of (locally nilpotent)-by-finite groups. We have N = M×B for some p-subgroup M
and p′-subgroup B, where both M and B are G-invariant. Since G/M has no nontrivial normal
p-subgroups we see that N/M is the LN-radical of G/M , and there is no loss in factoring by M
and hence assuming that N is a p′-group. Certainly every finite p-subgroup of G is contained
in a larger one, and so there is an infinite abelian p-subgroup H of G and, since N is the
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locally nilpotent radical of NH, we may suppose that G = N oH. Among all such non-(LN)F
examples G, we may choose one with the derived length of N minimal. By hypothesis N is not
abelian, and so there is a G-invariant abelian subgroup A of N such that each of AH and G/A is
in (LN)F. Hence there is a subgroup K of finite index in H such that AK and NK/A are locally
nilpotent. Now N is a p′-group and K is a p-group, so we have [A,K] = 1 and [N,K] ≤ A, and
it follows that K acts nilpotently and hence trivially on N . But then NK is nilpotent and of
finite index in G, and we have our contradiction. �

Lemma 2.4. Let G be a locally finite group in X, N a normal locally nilpotent subgroup of G
such that G/N is an infinite abelian group with all nontrivial primary components of prime
order. If G /∈ (LN)C then G has a non-(LN)C section G0 := A0 o H, where A0 is abelian
and normal, H is an infinite abelian subgroup with primary components of prime order and
π(H) ∩ π(A0) = ∅.

Proof. Supposing that every such section of G is in (LN)C and hence in (LN)F, we shall obtain
the contradiction G ∈ (LN)F. Suppose first that the set π of primes p such that N has nontrivial
p-component is finite. By passing to a subgroup of finite index in G we may assume in this case
that G/N is a π′-group. Since G/N is countable we may apply the Schur-Zassenhaus Theorem
to obtain a π′-subgroup H of G (which is abelian and has all nontrivial primary components of
prime order) such that G = N oH. By induction on the derived length of N we may suppose
that HN ′ is almost locally nilpotent, that is, H1N

′ is locally nilpotent for some subgroup H1

of finite index in H. Since H is a π′-group, H1 centralizes N ′ and so H1N/N
′ /∈ (LN)F. But

H1N/N
′ is a section of the type described above, and by hypothesis it is in (LN)C. This is a

contradiction, and from now on we shall suppose that π := π(N) is infinite.
There is an infinite set σ of primes and a set S := {gi : i ≥ 1} of elements of G such that

S generates G modulo N and, for each i, gi has order a power of pi for some pi ∈ σ, where
i 6= j implies pi 6= pj . Since G /∈ (LN)F we may choose an element h1 of S such that N〈h1〉
is not locally nilpotent. If h1 has order a power of the prime r1 then there is a prime q1,
necessarily distinct from r1, and a finite subgroup F1 of N that has order a power of q1 and is
such that 〈h1, F1〉 /∈ (LN). In particular, there is an element x1 of F1 such that [x1, h1] 6= 1. Let
π1 = {r1, q1}, let N1 be the π1-radical of N and write N = N1×M1. From our earlier argument
we have that G/M1 ∈ (LN)F, so all but finitely many elements of S centralize N/M1. Thus we
may choose an element h2 of S with order a power of some r2 ∈ σ\π1 such that 〈M1, h2〉 /∈ (LN).
Arguing as before, we may choose an element x2 of q2-power order in M1, where q2 is prime, such
that [x2, h2] 6= 1 and q2 /∈ π1 ∪ {r2}. Set π2 = π(〈x1, x2, h1, h2〉) and write N = N1 ×N2 ×M2,
where N1×N2 is the π2-radical of N . We have G/M2 ∈ (LN)F, and we may choose an element
h3 of S, with order a power of some r3 ∈ σ \π2, such that 〈M2, h3〉 /∈ (LN)F. Then we choose an
element x3 of q3-power order in M2 such that [x3, h3] 6= 1, where q3 is a prime not in π2 ∪ {r3}.
Set π3 = π(〈x1, x2, x3, h1, h2, h3〉) and write N = N1 ×N2 ×N3 ×M3, where N1 ×N2 ×N3 is
the π3-radical of N .

Continue in this manner and let H = 〈hi : i ≥ 1〉, B = 〈xi : i ≥ 1〉H . Also, set λ = {ri : i ≥
1}, µ = {qi : i ≥ 1}. Then B is a µ-group and λ ∩ µ = ∅. Let G1 = BH. If G1 ∈ (LN)F then
there is a subgroup H0 of finite index n, say, in H such that BH0 is locally nilpotent. But then
for every element h of H that has order co-prime to n we have B〈h〉 locally nilpotent, and so all
but finitely many of the elements [xi, hi] are trivial, contrary to construction. Thus G1 /∈ (LN)F.
Similarly, if M denotes the λ-radical of N ∩ G1 then we see that G1/M is also not in (LN)F.
There is nothing lost, therefore, in factoring by M , which means that every λ-subgroup of G1

is now of rank one, with nontrivial primary components of prime order. Since the locally finite
group G1 is countable there is, by the Schur-Zassenhaus Theorem, a λ-subgroup H1 of G1 that
supplements N ∩G1. If G2 := BoH1 ∈ (LN)F then there is a subgroup C of finite index in H1

that centralizes B, and then D := CG1 centralizes B. But π(G1/D) contains just finitely many
elements of λ, again contrary to construction, and so G2 /∈ (LN)F.
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Suppose that B has derived length d. By our hypothesis on sections of G, H1B
(i)/B(i+1) ∈

(LN)F for every i = 0, . . . , d − 1, and so there is a subgroup H2 of finite index in H1 that

centralizes each B(i)/B(i+1). But then [B,dH2] = 1 and so [B,H2] = 1, which gives BH2 locally
nilpotent and hence G2 ∈ (LN)F, a contradiction that establishes the result. �

Lemma 2.5. Let G be a locally finite group in X, and suppose that, for every prime p, all
p-sections of G belong to NC but G /∈ NC. Then, for some locally finite field F , G has a section
isomorphic to a group AoK, where A is the additive group of F and K is an infinite subgroup
of the multiplicative group F ∗ of F that acts on A by multiplication and generates F as a ring.

Proof. Since every p-section of G lies in NC, so does the locally nilpotent radical R, say, of G,
by Lemma 2 of [10]. Thus G/R is not Chernikov, and by Lemmas 2.2, 2.3 and 2.4 we may
assume that G = AoK for some abelian normal subgroup A and infinite abelian subgroup K
that either is of prime exponent p or has nontrivial primary components of prime order and, in
this latter case, π(A)∩ π(K) = ∅. Also in the former case we may assume that A is a p′-group.
For if A = Ap × Ap′ , where Ap, Ap′ respectively denote the p- and p′-components of A, then
ApK ∈ NC, by hypothesis, and if Ap′K is also in NC then there is a subgroup of finite index
in K that centralizes Ap′ , and we easily obtain the contradiction G ∈ NC.

Now, in either case, K acts nilpotently and hence trivially on A/[A,K,K] and so [A,K,K] =
[A,K], while if K[A,K] is nilpotent-by-Chernikov then [A,K] is centralized by some subgroup
of finite index in K and again the result follows. Replacing A by [A,K] if necessary, we may
assume that A = [A,K]. Factoring, we may also assume that CK(A) = 1.

Now let D be an arbitrary proper K-invariant subgroup of A. Since A = [A,K] = [A,KD]
we cannot have KD subnormal in G, so KD is nilpotent-by-finite and D is centralized by some
subgroup of finite index in K. In particular, if [A, k] < A for some non-trivial element k of K
then we have [A, k,H] = 1 for some H with K/H finite, and since K is abelian we deduce from
the three-subgroup lemma that 1 = [A,H, k] and hence that [A,H] < A, as CK(A) = 1. This in
turn gives [A,H]K nilpotent-by-finite, from which it follows that there is a subgroup L of finite
index in K that centralizes [A,H]. But then [A,H ∩L,H ∩L] = 1, hence [A,H ∩L] = 1. Since
K is infinite, H ∩L 6= 1 and we have a contradiction, so [A, k] = A for every non-trivial element
k of K.

If A = D × E for some nontrivial K-invariant subgroups D and E then there is a subgroup
H of finite index in K that centralizes both D and E and hence A, which gives a contradiction.
Thus A is a q-group for some prime q. Next, let k be an arbitrary nontrivial element of K and let
C = CA(k), C1/C = CA/C(k). Then [C1, k, k] = 1 and hence [C1, k] = 1 and C1 = C. The map
a 7→ [a, k] induces an isomorphism from A/C onto A, and the pre-image of C under this map is
just C1/C, which is trivial. It follows that CA(k) = 1 for all nontrivial k ∈ K. We now claim
that A is simple as a K-module: if B is a proper K-invariant subgroup of A then BK ∈ NC
and so [B,H] = 1 for some H of finite index in K, and since CA(k) = 1 for all nontrivial k ∈ K
it follows that B = 1 and the claim is established. In particular, Aq = 1.

Let R denote the group ring ZqK. As an R-module, A is isomorphic to the factor module
F := R/M , where M is a maximal right ideal of R and the action of K on F is induced by
right multiplication. Since R is commutative, M is a maximal ideal of R and F is a field. Now
K embeds in a natural way in the multiplicative group of F , and since K generates R as a ring
its image in F generates F . Finally, F has characteristic q and K is periodic, meaning that the
elements of K (and hence those of F ) are algebraic over the prime subfield of F . Thus F is
locally finite, and this shows that G has the required structure. �

Proof of Theorem 1.1. Since G has finite exponent Lemma 2.1 shows that, for every prime
p, all p-sections of G are nilpotent. If G is not nilpotent-by-finite then G /∈ NC and hence G
has a section A o K /∈ NC as described in Lemma 2.5. But K has rank one, as a periodic
subgroup of the multiplicative group of a field, hence K is finite because expG is finite. This is
a contradiction, which completes the proof of the theorem. �
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3. Examples and the proof of Theorem 1.2

Prompted by Lemma 2.5, we shall study split extensions AoK of the type described there and
determine under which conditions they belong to the class X \NC.

Let F be a locally finite field of (prime) characteristic p and let A and F ∗ respectively denote
the additive and multiplicative groups of F . If K is a subgroup of F ∗ that generates F as a
ring (or, equivalently, as a field) then we denote by G(F,K) the split extension A oK, where
the action of K on A is by (field) multiplication. With this setting we have, for G = G(F,K),
p /∈ π(K) and CG(A) = A, so A = Fitt(G); also, if 0 6= a ∈ A then CG(a) = A and 〈a〉K = A.
This latter equality follows from the fact that for all b ∈ A we have ba−1 = k1 + k2 + · · · + kn
for elements ki of K and hence, in group notation, b = ak1ak2 · · · akn . Thus G is a metabelian
group with monolith, derived subgroup and locally nilpotent radical all equal to A. Then
G ∈ NC if and only if K is Chernikov, that is (since K has rank one), if and only if π(K) is
finite. In what follows it will often be convenient to regard each element of G as an ordered
pair (a, k), with the obvious identification of a ∈ A with (a, 1F ) and k ∈ K with (0F , k).

Then, for example, the rules for forming conjugates and commutators are given by (a, k)(b,l) =
(−bl + al + blk−1, k), [(a, k), (b, l)] = (ak(l − 1F ) + bl(1F − k)), 1F ).

Lemma 3.1. Suppose that F1 is a subfield of F that is generated by a nontrivial subgroup K1

of K. Then the normalizer of G1 := G(F1,K1) in G := G(F,K) is G(F1,K ∩ F ∗1 ), where F ∗1 is
the multiplicative group of F1.

Proof. First note that G(F1,K∩F ∗1 ) is well-defined since K∩F ∗1 contains K1 and hence generates
F1. We have G1 = A1K1, where A1 is the additive group of F1, and if a, b ∈ A1, k ∈ K1 and
l ∈ K ∩ F ∗1 , then (a, k)(b,l) ∈ G1 and so G(F1,K ∩ F ∗1 ) ≤ N := NG(G1). It is enough now to
show that N ≤ A1F

∗
1 . Let u = (a, k) ∈ N , where a ∈ A, k ∈ K. Since (1F , 1F ) ∈ A1 it follows

that (k, 1F ) = (1F , 1F )u ∈ A1 and hence k ∈ F ∗1 . It follows too that (a, 1F ) ∈ N ∩ A, since
(a, 1F ) = (a, k)(0F , k

−1) and k−1 ∈ K ∩ F ∗1 ≤ N . Since K1 6= 1 we may choose x ∈ K1 with
x 6= 1F . We have [(a, 1F ), (0F , x)] = (ax − a, 1F ), which therefore belongs to G1 ∩ A = A1;
hence ax − a = a(x − 1F ) ∈ F1. Since 0F 6= x − 1F we deduce that a ∈ F1 and hence that
u ∈ G(F1,K ∩ F ∗1 ), as required. �

Lemma 3.2. With the notation of Lemma 3.1, if F1 is a proper subfield of F then G1 is not
subnormal in G.

Proof. Suppose that G1 = H0 C H1 C · · · C Hn ≤ G, for some positive integer n, and let
N = NG(H0). By Lemma 3.1, N = G(F1,K ∩F ∗1 ) = A1(K ∩F ∗1 ), and so H1 = H1∩N = A1K2,
where K2 = K ∩ F ∗1 ∩ H1. Since H1 ≥ H0 ≥ K1 we see that H1 = G(F1,K2). Again by
Lemma 3.1, the normalizer in G of H1 is G(F1,K ∩ F ∗1 ), which is just N , and repeating the
argument we have that NG(Hi) = N for every i ≥ 0. It follows that Hn ≤ N , and since N < G
the lemma is proved. �

We are now in a position to provide a necessary and sufficient condition for a group G(F,K)
to be in X \ NC. Our result is as follows, where F , K and G(F,K) are as described in the
opening paragraph of this section.

Lemma 3.3. The following are equivalent.

(a) G := G(F,K) is in X \NC.
(b) G /∈ NC but every subgroup of G is either normal or abelian-by-Chernikov.
(c) π(K) is infinite but π(K ∩ F ∗1 ) is finite for every proper subfield F1 of F , where F ∗1 is the

multiplicative group of F1.

Proof. Firstly suppose that (a) holds, and consider the statement (c). Since K has rank one but
is not Chernikov, π(K) must be infinite. Let K1 = K ∩F ∗1 , where F1 and F ∗1 are as stated, and
suppose as we may that K1 is nontrivial (which it is in any case except possibly when p = 2,
since F1 contains the prime subfield of F ). Then G1 := G(F1,K1) is not subnormal in G, by



6 GIOVANNI CUTOLO AND HOWARD SMITH

Lemma 3.2, hence G1 ∈ NC. Since Fitt(G1) is the additive group of F1, K1
∼= G1/Fitt(G1)

is Chernikov, which amounts to saying that π(K1) is finite. Thus (a) implies (c). Since (b)
implies (a) it suffices now to show that (c) implies (b).

Assuming that (c) holds, let A be the additive group of F and let H ≤ G. If H ∩A = 1 then
H is abelian. Otherwise, let a be a nontrivial element of H ∩ A and let H∗ = AH ∩ K. We
have H ≥ 〈a〉H∗ = 〈a〉F1 , where F1 is the ring (equivalently, the field) generated by H∗ in F . If
F1 = F then 〈a〉F1 = A and so A ≤ H C G. If F1 ⊂ F then by hypothesis π(H∗) is finite, hence
HA/A ∼= H∗ is Chernikov and H is abelian-by-Chernikov. We have thus established that the
arbitrary subgroup H of G is either normal in G or abelian-by-Chernikov, and this completes
the proof. �

In view of Lemma 2.5, Lemma 3.3 completes the proof of Theorem 1.2.
We have not yet addressed the question of the existence of locally finite groups in X \ NC.

We shall provide such examples with the help of Lemma 3.3. Note that if K and F are such
that condition (c) in this lemma is satisfied, and K1 is a subgroup of K such that π(K1) is
infinite, then K1 generates F and still has the property required for K, hence G(F,K1) is again
in X \NC. This holds, for instance, when K1 is any infinite subgroup of the socle of K; in this
case G(F,K1) is a group of the type arising in Lemma 2.4, and all of its subgroups are either
normal or abelian-by-finite.

The key tool for our construction is Zsigmondy’s Theorem (see, for instance, Theorem 1.16
of [3]), a special case of which shows that if p is a prime and n is a positive integer then, with
the exception of the case when p = 2 and n is 1 or 6, there exists a prime q such that the
multiplicative order of p modulo q is exactly n. We shall call such a q a Zsigmondy prime
for pn. This special case of Zsigmondy’s Theorem can be stated equivalently as follows: if F is
a finite field then, unless |F | is 2 or 26, F is generated (as a field) by some element x of prime
(multiplicative) order. For, if 0 6= x ∈ F and |F | = pn, then the order q of x divides pn − 1 and
the requirement that x is in no proper subfield of F means exactly that q does not divide pm−1
for any m < n. We shall call such a generator of prime order a Zsigmondy generator of F . We
stress that the order of a Zsigmondy generator of F is a Zsigmondy prime for |F |, and that if
F1 is another finite field, of the same characteristic as F but different order, then Zsigmondy
generators of F and F1 also have different orders.

Theorem 3.4. Let F be an infinite locally finite field. Then the multiplicative group of F has
a subgroup K such that K generates F as a field and G(F,K) ∈ X \NC

Proof. Since F is countable, F =
⋃
i∈N Fi for some chain F1 ⊂ F2 ⊂ F3 ⊂ · · · of finite fields,

where we may assume that F1 has order greater than 26. For each of the fields Fi choose a
Zsigmondy generator xi. Let K be the subgroup of the multiplicative group of F generated
by all elements xi. Then K is the direct product of the subgroups 〈xi〉, which have (pairwise
different) prime orders, so that π(K) is infinite. It is also clear that K generates F as a field,
and that if π is an infinite subset of π(K) then the subfield generated by the π-component
of K contains infinitely many of the subfields Fi, and hence is F . It follows that K satisfies
condition (c) of Lemma 3.3. Therefore G(F,K) ∈ X \NC, as required. �

We make two further remarks concerning the groups G(F,K) in the class X. Firstly, while
Theorem 3.4 does not provide an explicit characterization of such groups, nevertheless it is not
far away from doing so, since the construction described in its proof has a sort of converse, as
follows.

Proposition 3.5. Let F be a locally finite field and H a subgroup of its multiplicative group.
If G(F,H) ∈ X \NC then the socle of H has a subgroup K such that G(F,K) ∈ X \NC and K
can be obtained by the construction outlined in the proof of Theorem 3.4.

Proof. Let S be the socle of H. We have already noted that G(F, S) ∈ X \ NC. We define a
strict, partial order relation on the infinite set π := π(S) as follows: if p, q ∈ π we let p ≺ q
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if and only if the subfield of F generated by the p-component of S is strictly contained in the
subfield generated by the q-component of S. We claim that, with respect to this ordering, π has
no maximal elements. For, let P be the prime subfield of F and assume, for a contradiction,
that q is maximal in (π,≺). Let x be an element of order q in S and n = [P (x) : P ], the degree
of x over P . Let r be a prime divisor of n, W (r) the set of all positive integers m such that the
greatest common divisor of n and m divides n/r. Then W (r) is closed under taking divisors
and forming lowest common multiples, hence the set Fr of all elements of F whose degree over
P is in W (r) is a subfield of F . Now x /∈ Fr, hence Fr 6= F and Lemma 3.3 shows that S ∩ Fr
is finite. It follows that π has an infinite subset ψ with the property that the ψ-component of S
is disjoint from the union of the subfields Fr, where r ranges over the prime divisors of n. Let
s ∈ ψ and let y be an element of order s in S. If m = [P (y) : P ] then m /∈ W (r) for any prime
divisor r of n (as y /∈ Fr), hence n divides m and P (x) ⊆ P (y). Equality may hold for finitely
many values of s only, so we can choose s such that P (x) ⊂ P (y), meaning that q ≺ s. This
contradicts the maximality of q and establishes our claim.

Now let ξ be a maximal chain in π with respect to ≺. Since π has no maximal elements ξ
is infinite. Arrange its elements in a strictly increasing sequence (qi)i∈N and, for all i, let xi
be an element of order qi in S and Fi = P (xi). For all i ∈ N we have qi ≺ qi+1 and hence
Fi ⊂ Fi+1. Let K = 〈xi | i ∈ N〉 in the multiplicative group of F . Since π(K) = ξ is infinite
K generates F (see the remarks following Lemma 3.3) and so F =

⋃
i∈N Fi. Finally, for each

i, xi is a Zsigmondy generator for Fi, thus K is a group that can be obtained by means of the
construction given in Theorem 3.4. �

Our final remark is that only in a special case do we have G(F, F ∗) ∈ X\NC, where F ∗ is the
full multiplicative group of F . Let P be a field of prime order p and q a prime (not necessarily
different from p). Fix a normal closure P̄ of P and let P̄ (q) be the subfield of P̄ consisting of all
elements whose degrees over P are powers of q. If, for all nonnegative integers i, we denote by
Pi the only subfield of P̄ with degree qi over P , then P̄ (q) is the union of the chain {Pi | i ∈ N0}
and the Pi account for all proper subfields of P̄ (q).

Proposition 3.6. Let F be a locally finite field and let F ∗ be its multiplicative field. Then
G(F, F ∗) ∈ X \NC if and only if F is isomorphic to one of the fields P̄ (q) just defined.

Proof. If F ∼= P̄ (q) then π(F ∗) is infinite by Zsigmondy’s Theorem, and all proper subfields
of F are finite. Then G(F, F ∗) ∈ X \NC by Lemma 3.3. Conversely, assume G(F, F ∗) ∈ X \NC
and let P be the prime subfield of F . Let π be the set of all primes r such that F has an
element of degree r over P . For every subset ψ of π let Fψ be the subfield of F consisting of
all elements whose degrees over P are ψ-numbers. If π is infinite, choose a strictly decreasing
sequence (πi)i∈N of proper subsets of π. If Ki is the multiplicative group of Fπi for all i then
(Ki)i∈N is a strictly decreasing sequence of subgroups of K1. In that case K1 is not Chernikov
and hence π(K1) is infinite; since Fπ1 6= F this is a contradiction. Hence π is finite.

For each q ∈ π, consider the set Sq of all positive integers n such that F has a subfield of
degree qn over P . If every Sq is finite then there is an upper bound on the degrees over P
of the elements of F , but this gives the contradiction that F is finite, and so Sq is infinite for
some q ∈ π. This implies that F{q} ∼= P̄ (q). The multiplicative group of P̄ (q) involves infinitely
many primes, and we deduce from Lemma 3.3 that F{q} = F , which is what we were required
to prove. �
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