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Abstract. We study groups in which all infinite subgroups are centralizers. Such groups are periodic;

we completely describe them in the additional hypothesis that they are locally graded.

Centralizers in a group G form a subset C(G) = {CG(H) | H ≤ G} of the lattice L(G) of all subgroups
of G; of course this subset is closed under taking (arbitrary) intersections, but usually it is not join-
closed. Gaschütz [4] described those finite groups G in which all subgroups are centralizers, that is,
such that C(G) = L(G). The corresponding result for infinite groups is due to Stonehewer and Zacher
[8], Corollary 6.2: a locally graded group G satisfies C(G) = L(G) if and only if it is periodic and has
a Hall decomposition in which each factor is nonabelian of order the product of two primes. Here, as
elsewhere, by a Hall decomposition of a periodic group we mean a decomposition as a direct product in
which elements from different factors always have coprime orders. For the sake of shortness we shall also
call groups of type pq the nonabelian groups whose order is the product of two (necessarily different)
primes.

It is worth mentioning that every group in which all subgroups are centralizers is periodic (see [9],
Proposition 4.1) and that Tarski groups provide more examples of groups with this property.

We use brackets to denote intervals in the subgroup lattice of a group. In this notation C(G) ⊆
[G/Z(G)] = {H ≤ G | Z(G) ≤ H} for all groups G; Reuther [5] determined the structure of those finite
groups G for which C(G) = [G/Z(G)], also see [2]; the infinite case is discussed in [1].

A useful tool in obtaining these results is the centralizer mapping : H ∈ L(G) 7→ CG(H) ∈ L(G). If
H is a subgroup of a group G it is clear that CG

(
CG(H)

)
is the smallest centralizer in G containing H.

Thus H ∈ C(G) if and only if H = CG

(
CG(H)

)
. Therefore the centralizer mapping induces a duality in

the poset C(G).
We are interested in those groups in which every infinite subgroup is a centralizer. Let us call (IC)

the class of such groups. We shall see that all (IC)-groups are periodic (Corollary 1.5). As is so often the
case for properties defined by restrictions on infinite subgroups, on the one hand it is necessary to impose
extra hypotheses on the groups considered, to exclude some groups, difficult to handle, all whose proper
subgroups are finite. On the other hand, even under fairly general solubility or finiteness assumptions,
imposing some restrictions on the infinite subgroups is in many cases equivalent to imposing them on
all subgroups. In our case, it turns out that for infinite locally graded groups G the property (IC) is
equivalent to the condition C(G) = L(G) considered by Gaschütz, Stonehewer and Zacher, unless G is
a finite extension of a Prüfer group. Therefore, in this paper we shall mostly deal with Prüfer-by-finite
groups.

Our main result is the following classification of locally graded (IC)-groups; it turns out that they
are either finite or soluble. Let us say that a finite group is of Gaschütz type if all subgroups of its are
centralizers, that is, if it has a Hall decomposition whose factors are groups of type pq.

Theorem. Let G be an infinite locally graded group. Then G ∈ (IC) if and only if either C(G) = L(G)
or G has a Prüfer p-subgroup P of finite index (p a prime) and one of the following holds:

(a) G = P × F , where F is of Gaschütz type;
(b) G = R×F , where R is a p-group and F is a p′-group of Gaschütz type, P = Z(R) < R, R′ is cyclic

and R/P has modular subgroup lattice;

2000 Mathematics Subject Classification. 20F30, 20E15, 20F99, 20E99.

1



2 MARIA ROSARIA CELENTANI, GIOVANNI CUTOLO AND ANTONELLA LEONE

(c) G = C⟨x⟩, where C = CG(P ) has prime index q in G, also C = P × F where F has a Hall
decomposition F1 × F2 × · · · × Fn whose factors are of type pq (hence F is of Gaschütz type),
[F2F3 · · ·Fn, x] = 1 and one of the following holds:
(c1) [F1, x] = 1 and q does not divide |F |; moreover either xq = 1 or p = q = 2 and x2 is the element

of order 2 in P ;

(c2) xq2
= 1 ̸= xq ∈ F1;

(c3) p = q = 2 and F1 = ⟨y⟩o⟨h⟩ is dihedral of order 2r, where r is a prime congruent to 1 modulo 4,
x2 = uh, where u is an element of order 4 in P , [h, x] = u2 and x induces an automorphism of
order 4 on ⟨y⟩.

(d) p = 2 and G = G1 × F , where F is of Gaschütz type and has odd order, G1 is a 2-group, P < C =
CG1(P ) < G1 and P = CG1(C), and G1/P is elementary abelian;

Examples of groups of each of the types described can be constructed in a straightforward way. It
can also be mentioned that there is no overlap between the cases considered in the Theorem: a group G
can satisfy at most one of (a), (b), (c1), (c2), (c3), (d). For the only (possibly) doubtful case (c) see the
Remark following Lemma 2.5.

1. Preliminary results

Lemma 1.1. Let G be a group and let U ≤ G. If [G/U ] ⊆ C(G) then CV

(
CV (U)

)
= UZ(V ) for all

V ∈ [G/U ].

Proof. Let U ≤ V ≤ G. Since V is a centralizer V = CG

(
CG(V )

)
, hence CV (U) = V ∩ CG(U) =

CG

(
CG(V )

)
∩ CG(U) = CG(UCG(V )). Then CG

(
CV (U)

)
= CG

(
CG(UCG(V ))

)
= UCG(V ), because

UCG(V ) is a centralizer too. Therefore CV

(
CV (U)

)
= V ∩ UCG(V ) = U(V ∩ CG(V )) = UZ(V ). �

In other words: if every subgroup containing U is a centralizer then U is a centralizer in a subgroup V
containing it if and only if Z(V ) ≤ U . It is not hard to deduce from this a remark made by Antonov
([1], Lemma 1.1): the class of groups in which all subgroups containing the centre are centralizers is
subgroup-closed.

Another easy lemma which will be of some use is the following.

Lemma 1.2. Let G be a group, A ∈ C(G) and suppose that A is abelian and B = CG(A). Then
A = Z(B) and, for all H ∈ [B/A], H is a centralizer in G if and only if it is a centralizer in B.

Proof. Since A is a centralizer then A = CG

(
CG(A)

)
= CG(B) = Z(B). Now, if H ∈ [B/A] then also

CG(H) and CG

(
CG(H)

)
are in [B/A]. Hence CG

(
CG(H)

)
= CB

(
CB(H)

)
and the result follows. �

Lemma 1.3. Let the periodic group G have a Hall decomposition G = R × F where R is infinite and
F is finite. Then G ∈ (IC) if and only if R ∈ (IC) and every subgroup of F is a centralizer.

Proof. Every H ≤ G can be written as H = (H ∩ R) × (H ∩ F ), and CG

(
CG(H)

)
= CR

(
CR(H ∩ R)

)
×

CF

(
CF (H ∩ F )

)
. Hence H ∈ C(G), that is H = CG

(
CG(H)

)
, if and only if H ∩ R is a centralizer in R

and H ∩ F is a centralizer in F . Moreover, H is infinite if and only if H ∩ R is infinite. The lemma
follows. �

Let G ∈ (IC). If every finite subgroup of G is the intersection of some infinite subgroups then every
subgroup of G is a centralizer. Thus we can restrict our investigation to groups not having the former
property. This excludes residually finite groups and, more generally, all groups in which every finite
subgroup is contained in an infinite residually finite subgroup. The presence of an abelian subgroup not
satisfying the minimal condition triggers this latter property in (IC)-groups.

Lemma 1.4. Let G ∈ (IC). If G has an abelian subgroup not satisfying Min then C(G) = L(G).

Proof. If G is not periodic let A be an infinite cyclic subgroup of G. If, instead, G is periodic and B
is an abelian subgroup of G not satisfying Min let A be the socle of B. In either case A is residually
finite and there exists a strictly decreasing sequence (An)n∈N of (infinite) subgroups of A such that∩

n∈N An = 1. For all n ∈ N let Cn = CG(An). Since An ∈ C(G) for all n ∈ N, the centralizer map
induces an auto-duality in C(G) and

∩
n∈N An = 1, we have that

∪
n∈N Cn = ⟨Cn | n ∈ N⟩ = G. Let H

be a finite subgroup of G. Then H ≤ Cn for some n ∈ N, and so ⟨H, An⟩ = AnH is an infinite residually
finite group. Therefore H is intersection of infinite subgroups of AnH (of finite index in AnH) and so
H ∈ C(G). This proves the lemma. �
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Corollary 1.5. Every (IC)-group is periodic.

Proof. Let G be a nonperiodic (IC)-group. Then C(G) = L(G), by Lemma 1.4. This is impossible for a
nonperiodic group, as we observed in the introduction. �
Lemma 1.6. Let S be an infinite subgroup of the (IC)-group G, and let C = CG(S). Then L(C/Z(C))
is self-dual. If C is locally graded then it is soluble.

Proof. Property (IC) yields S = CG(C), hence S ∩ C = Z(C), furthermore [CS/S] ⊆ C(G). For all
H ∈ [C/Z(C)] we have H = SH∩C ∈ C(G), thus [C/Z(C)] ⊆ C(G). Moreover CG(CS) = S∩C = Z(C),
hence the centralizer map induces an anti-isomorphism [CS/S] → [C/Z(C)]. But CS/S ≃ C/Z(C),
hence L(C/Z(C)) is self-dual. It is straightforward to check that the duality of L(C/Z(C)) obtained
by composing the natural isomorphism [C/Z(C)] → [CS/S] with the centralizer mapping [CS/S] →
[C/Z(C)] is the mapping H ∈ [C/Z(C)] 7→ CC(H) ∈ [C/Z(C)]. If C is locally graded then C/Z(C) is
locally graded (see [7]). Now the lemma follows from [8], Theorem E. �
Lemma 1.7. Let G be an infinite, locally graded (IC)-group. Then either C(G) = L(G) or G is a finite
extension of a Prüfer group.

Proof. By Corollary 1.5, G is periodic. In view of Lemma 1.4 and a well-known theorem by Šunkov
(see, e.g., [6], vol I, pag. 98), we may assume that every locally finite subgroup of G is a Černikov group.
Assume that G is not Černikov. Then G has some finitely generated, infinite subgroups. We claim
that every such subgroup has finite centralizer. Let H be such a subgroup and let S = CG(H). Then
H = CG(S), hence, if S is infinite, Lemma 1.6 yields that H is finite, a contradiction. Thus the claim
is established. For the same H, the centralizer map induces a bijection from [G/H] to C(G) ∩ L(S),
hence [G/H] is finite. Therefore G is finitely generated. Since G is locally graded it has a proper normal
subgroup N1 of finite index; since N1 is finitely generated as well it also has a proper G-invariant subgroup
of finite index. This suggests how to define a strictly decreasing sequence (Ni)i∈N of normal subgroups of
finite index in G. For all i ∈ N, the centralizer Ci := CG(Ni) is finite, because Ni is infinite and finitely
generated, and Ci < Ci+1, because the centralizer map restricted to the set of infinite subgroups of G is
injective. Therefore K :=

∪
i∈N Ci is an infinite, locally finite subgroup of G, hence it is Černikov. Let

J be the finite residual of K. Then J ▹ G. There exists n ∈ N such that Cn contains the set X of all
elements of J whose order is cube-free. By a theorem of Baer (see [6], Lemma 3.28), the only periodic
automorphism of J fixing X elementwise is the identity, therefore [Nn, J ] = 1. This is a contradiction,
because Cn = CG(Nn) is finite. Therefore G is Černikov; let R be its finite residual. If R is not a Prüfer
group then the set S of its infinite subgroups is infinite. The centralizer of each element of S lies in the
finite interval [G/R]. However S ⊆ C(G), hence the restriction of the centralizer map to S is injective.
This is a contradiction, so R is a Prüfer group and G is Prüfer-by-finite. �

Thus from now on we need to consider Prüfer-by-finite groups only. Note that Prüfer-by-finite groups
necessarily have finite subgroups which are not centralizers, as follows from an argument similar to that
in the final part of the proof of Lemma 1.7. As a matter of fact, at most one of the proper subgroups of
the Prüfer subgroup of a Prüfer-by-finite (IC)-group is a centralizer, as will be seen in Lemma 2.3.

In the special case when G is a 2-group the following easy remark will be of some use.

Lemma 1.8. Let G be a 2-group, and suppose that G is a finite, noncentral extension of a normal
subgroup P ≃ C2∞ . Let C = CG(P ) and x ∈ G r C. Then CC/P (xP ) = CC(x)P/P .

Proof. Let c ∈ C be such that [c, x] ∈ P . Then [c, x] = b2 for some b ∈ P . It is clear that x acts
on P like the inverting automorphism, thus bx = b−1. Hence [bc, x] = b−2[c, x] = 1, so bc ∈ CC(x) and
c ∈ CC(x)P . �

2. Necessity

We fix the following notation that will be in use throughout this section. G is an (IC)-group with a
(normal) subgroup P ≃ Cp∞ of finite index (p a prime). We also let C = CG(P ). We shall show that G
satisfies one of the conditions (a–d) of the Theorem in the introduction. For a start, it is clear that G/C
is cyclic and |G/C| ≤ 2 if p = 2, while |G/C| divides p − 1 otherwise.

The infinite subgroups of G are precisely those containing P . Also, P is a centralizer, hence Z(G) ≤ P ;
actually P = CG

(
CG(P )

)
= CG(C) = Z(C). Of course, in the case when Z(G) = P then the property

that G ∈ (IC) amounts to saying that G has the property that C(G) = [G/Z(G)] considered in [5, 1].
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From the descriptions that will follow it is easy to see that the class (IC) is not closed under taking
subgroups; however the following weaker property holds.

Lemma 2.1. Let V be an infinite subgroup of G. Then V ∈ (IC) if and only if Z(V ) ≤ P .

Proof. Since V is infinite P ≤ V . If V ∈ (IC) then P is a centralizer in V , hence Z(V ) ≤ P . Conversely,
if Z(V ) ≤ P and U is an infinite subgroup of V then Z(V ) ≤ P ≤ U and so Lemma 1.1 yields
CV

(
CV (U)

)
= U . Hence V ∈ (IC). �

Lemma 2.2. C ∈ (IC). Moreover C = R × F where

(i) R is a p-group such that P = Z(R), R/P has modular subgroup lattice and R′ is cyclic;
(ii) F is of Gaschütz type;
(iii) if P < R then p does not divide |F |.

Proof. By Lemma 2.1, or by Lemma 1.2, C ∈ (IC). Since PC ′ is a direct factor of C modulo C ′ there
exists K ≤ C such that C = PK and P ∩ K = P ∩ C ′. As C ′ is finite, because C is centre-by-finite, K
is finite as well; also note that Z(K) = P ∩ K. Now H ∈ [C/P ] 7→ H ∩ K ∈ [K/P ∩ K] is a bijection
and any given H ∈ [C/P ] is a centralizer in C if and only if H ∩ K is a centralizer in K. Thus the fact
that C ∈ (IC) is equivalent to the property that every subgroup of K containing Z(K) = P ∩ K is a
centralizer in K. Hence Reuther’s theorem in [5] applies, thus K = A×B where A is abelian and B has
a Hall decomposition

B = B1 × B2 × · · · × Bn, (∗)
where each of the subgroups Bi either has prime-power order (with B′

i cyclic and Bi/Z(Bi) modular) or
is a semidirect product of two cyclic groups of prime-power order and such that Bi/Z(Bi) is of type pq.
Recall that Z(K) = P ∩ K is a cyclic p-group, hence A ≤ P and either A = 1 or Z(B) = 1. In the
latter case all factors Bi in (∗) are of type pq; if this happens then (i–iii) are satisfied if we let R = P
and F = B. Thus we may assume Z(B) ̸= 1, hence A = 1. There is no loss of generality in further
assuming Z(B1) ̸= 1. Since Z(K) is a p-group this yields that p divides |B1|. Therefore all factors Bi

in (∗) with i > 1 are p′-groups, so they have trivial centres and hence are of type pq. If B1 is a p-group
let R = PB1 and F = B2 × · · · × Bn; also in this case (i–iii) are satisfied, because R/P ≃ B1/Z(B1)
has modular subgroup lattice. The remaining possibility is that B1/Z(B1) is of type pq, of order pq for
some prime q ̸= p. Since Z(B1) is a p-group any Sylow q-subgroup of B1 has order q, hence B1 = ⟨a, b⟩,
where a has p-power order, ap ∈ Z(B1) ≤ Z(K) ≤ P and bq = 1. If q < p then ⟨a⟩ ▹ B1. Since b
centralizes ⟨ap⟩ ̸= 1 this implies that b acts nilpotently on ⟨a⟩, which is a contradiction. Thus q > p,
hence ⟨b⟩ ▹ B1. There exists c ∈ P such that c−p = ap. Hence ca has order p and so B0 := ⟨ca, b⟩ is of
type pq. If we let R = P and F = B0 × B2 × · · · × Bn, once again (i–iii) are satisfied. Now the proof is
complete. �

Lemma 2.2 shows that if our group G is such that C = G, that is, P = Z(G) then it satisfies either (a)
or (b) of the Theorem. Therefore from now on we shall assume that C < G or, equivalently, Z(G) < P .

Lemma 2.3. If C < G then |G/C| is prime.

Proof. If p = 2 then |G/C| = 2, so we may assume p > 2. The centralizer map induces an anti-
isomorphism from [G/C] to the set S = C(G) ∩ L(P ) of all subgroups of P which are centralizers in G.
Let X < P and suppose that X ∈ C(G). Then Y := CG(X) > CG(P ) = C. But every element in
G r C acts fixed point freely on P , hence X = CG(Y ) = CP (Y ) = 1. Thus S = {1, P} and the result
follows. �

For the rest of this section we let q = |G/C| > 1 and fix a q-element x ∈ G r C, so that G = C⟨x⟩;
further we let L = CC(x). Note that L is finite since P � L. Also note that CP (x) = Ω1(P ) = Z(G)
has order 2 if p = 2, because in this case bx = b−1 for all b ∈ P , while CP (x) = Z(G) = 1 if p > 2.

Lemma 2.4. In the notation just established,

(i) L = CG(P ⟨x⟩) and CG(L) = P ⟨x⟩;
(ii) P ⟨xq⟩ = CG(PL) and CG(P ⟨xq⟩) = PL;
(iii) Z(L) = Z(G)⟨xq⟩ = CG(PL⟨x⟩) and CG(Z(L)) = CG(xq) = PL⟨x⟩;
(iv) the centralizer map induces an anti-isomorphism from [P ⟨xq⟩/P ] to [C/PL].
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Proof. Clearly CG(P ⟨x⟩) = CG(P ) ∩ CG(x) = CC(x) = L. Moreover P ⟨x⟩ = CG

(
CG(P ⟨x⟩)

)
= CG(L).

Thus (i) is proved. Next, CG(PL) = CG(P ) ∩ CG(L) = C ∩ P ⟨x⟩ = P (C ∩ ⟨x⟩) = P ⟨xq⟩, and (ii)
follows. Now CG(PL⟨x⟩) = CC(L⟨x⟩) = CL(L) = Z(L). On the other hand Z(L) = L ∩ P ⟨x⟩ by (i).
Since C ∩ P ⟨x⟩ = P ⟨xq⟩ we have Z(L) = L ∩ P ⟨xq⟩ = (L ∩ P )⟨xq⟩ = Z(G)⟨xq⟩. Thus PL⟨x⟩ =
CG

(
CG(PL⟨x⟩)

)
= CG(Z(G)⟨xq⟩) = CG(xq) and also (iii) is proved. Finally, the intervals [P ⟨xq⟩/P ]

and [C/PL] are contained in C(G), hence (ii) shows that the former is mapped onto the latter by the
the centralizer map, and (iv) follows. �

We fix yet another piece of notation: we let R be the (uniquely determined) subgroup defined in
Lemma 2.2. We shall consider the two cases R = P (that is, Z(C/P ) = 1) and R > P (that is,
Z(C/P ) ̸= 1) separately. The former is settled by the next lemma, showing that in this case G has the
structure described in (c) of the Theorem.

Lemma 2.5. Let C < G and suppose that P = R. Then C = P ×F where F has a Hall decomposition
F1 × F2 × · · · × Fn whose factors are of type pq, and one of the following holds:

(1) [F, x] = 1 and q does not divide |F |; moreover either xq = 1 or p = q = 2 and x2 is the element of
order 2 in P ;

(2) 1 ̸= xq ∈ F1 and [F2F3 · · ·Fn, x] = 1;
(3) p = q = 2 and F1 = ⟨y⟩ o ⟨h⟩ is dihedral of order 2r, where r is a prime congruent to 1 modulo 4,

x2 = uh, where u is an element of order 4 in P , and x acts on F as follows:
– [h, x] = u2;
– x induces an automorphism of order 4 on ⟨y⟩;
– [F2F3 · · ·Fn, x] = 1.

Proof. Let F and its factors F1, F2, . . . , Fn be defined as in Lemma 2.2, so that C = P × F . Recall
that ⟨xq⟩ = C ∩ ⟨x⟩. Since x is a q-element and the factors Fi have pairwise coprime orders, either
xq ∈ P (and hence [F, xq] = 1) or xq ∈ PFj r P (hence Fj ∩ P ⟨x⟩ ̸= 1) for exactly one j ∈ {1, 2, . . . , n},
in which case Fi ∩ P ⟨x⟩ = 1 and [Fi, x

q] = 1 for all i ̸= j. We also know, from Lemma 2.4(ii), that
CG(P ⟨xq⟩) = CC(xq) = PL. Thus Fi ≤ PL for all i ∈ {1, 2, . . . , n} such that Fi ∩ P ⟨x⟩ = 1. Our first
aim is showing that, at the expense of redefining one of the factors Fi, if needed, the following stronger
statement holds:

for all i ∈ {1, 2, . . . , n}, if Fi ∩ P ⟨x⟩ = 1 then q does not divide |Fi| and Fi ≤ L. (∗)

Let i ∈ {1, 2, . . . , n} be such that Fi ∩ P ⟨x⟩ = 1. Then, as already remarked, Fi ≤ PL. By the same
remark, [C, x] ≤ PJ , where J is the (only) factor Fj such that Fj∩P ⟨x⟩ ̸= 1, if there is such a factor, and
J = 1 otherwise (it is clear that PJ is x-invariant); hence Fi ∩ [C, x] = 1. Suppose that q divides |Fi|,
so that Fi has an element g of order q. Let H = P ⟨xg⟩. If x ∈ H then g ∈ H and so g ∈ P ⟨x⟩,
because H/P is a cyclic q-group, x /∈ P and gq = 1. This is impossible, as Fi ∩ P ⟨x⟩ = 1, hence
x /∈ H. But H = CG

(
CG(H)

)
, since G ∈ (IC), hence there exists c ∈ CG(H) such that [c, x] ̸= 1; clearly

CG(H) ≤ C, so c ∈ C. Now [c, xg] = 1, hence 1 ̸= [c, x] = [c, g]−g−1
. This is a contradiction, as [c, g] ∈ Fi

and Fi ∩ [C, x] = 1. Therefore q does not divide |Fi|. Next, if Fi � L there exists f ∈ Fi r L, but f = bl
for suitable b ∈ P and l ∈ L. Now f /∈ ⟨b−1f⟩ ≤ L; since [b−1, f ] = 1 and f has prime order it follows
that f is a p-element, hence fp = 1 and b−p = (b−1f)p ∈ P ∩ L. Also, since q does not divide |Fi| it
follows that p ̸= q, hence p > 2, so that P ∩ L = 1 and bp = 1. Now |Fi| = pt for some prime t ̸= p. If
⟨f⟩ ▹ Fi then Fi is generated by t-elements, since it is of type pq. In this case Fi = ⟨g ∈ C | gt = 1⟩ ▹ G,
so [Fi, x] ≤ Fi ∩ [C, x] = 1 and Fi ≤ L. Otherwise, the proper nontrivial normal subgroup ⟨k⟩ of Fi

has order t, hence Fi = ⟨k⟩ o ⟨f⟩. Then Fi ≃ F ∗
i := ⟨k, b−1f⟩ and PFi = PF ∗

i . Moreover ⟨k⟩ ▹ G,
because ⟨k⟩ is a normal Sylow subgroup of C, hence [k, x] ∈ ⟨k⟩ ∩ P = 1 (recall that Fi ≤ PL, hence
[Fi, x] ≤ P ), thus k ∈ L and F ∗

i ≤ L. Therefore we may substitute F ∗
i for Fi (and change F accordingly)

to establish (∗).
Now, ⟨x⟩∩P = 1 if p > 2, as q ̸= p in this case, and |⟨x⟩∩P | ≤ 2 if p = 2, since x induces the inverting

automorphism on P in this second case. Therefore (∗) yields (1) if xq ∈ P . Suppose that xq /∈ P . Up to
relabelling the subgroups Fi we may assume that xq ∈ PF1, hence [F2F3 · · ·Fn, x] = 1 by (∗). If p > 2
then xq ∈ F1, because all q-elements of PF1 are in F1. In this case, and also if p = 2 and x2 ∈ F1, (2)
is satisfied. In the remaining case p = q = 2 and F1 is a dihedral group, x2 = uh where 1 ̸= u ∈ P
and h is an element of order 2 in F1. We have F1 = ⟨y⟩ o ⟨h⟩ for some y. If u2 = 1 then x4 = 1 and
F ∗

1 := ⟨y, x2⟩ ≃ F1; as above we may replace F1 with F ∗
1 so that we are reduced to the previous case
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and (2) holds. Finally, suppose u2 ̸= 1. As x2 = uh we have 1 = [uh, x] = u−2[h, x], because ux = u−1

and [u, h] = 1. Hence [h, x] = u2 and 1 = [h2, x] = [h, x]2 = u4. Thus u has order 4. Also, if r is the order
of y then ⟨y⟩ is the only Sylow r-subgroup of C, hence ⟨y⟩ ▹ G, and x induces on ⟨y⟩ an automorphism,
of order 4 because [x2, y] = [h, y] ̸= 1 and x4 = u2 ∈ Z(G); hence r ≡ 1 mod 4. Then (3) holds in this
case. The proof is complete. �

Remark. Cases (1–3) of Lemma 2.5 are mutually exclusive. Indeed, in case (1) all q-elements g ∈ GrC
satisfy gq ∈ P , which is false in cases (2) and (3). Also, X := Ω1(P )F ▹ G, as X is the set of all elements
of square-free order in C. To exclude that G can satisfy (2) and (3) at same time note that, if q = 2 and
g = xbf ∈ G r C, where b ∈ P and f ∈ F , then g2 ≡ (xb)2 = x2 modulo X. Thus g2 ∈ X in case (2)
but g2 /∈ X in case (3).

Now we turn our attention to the case in which P < R. The structure of (IC)-groups of this type
is much more restricted than in the previous case. Our next Lemma (together with Lemma 1.3) shows
that their study reduces to the case of 2-groups.

Lemma 2.6. Let C < G and suppose P < R. Then p = 2 and G = R⟨x⟩ × F , where R⟨x⟩ is a 2-group
and F is a group of Gaschütz type and odd order.

Proof. Let R and F be as in Lemma 2.2, so R × F is a Hall decomposition of C. It follows that
L = (R ∩ L) × (F ∩ L), hence Z(R ∩ L) ≤ Z(L). If p > 2 then Z(G) = 1 and Z(L) ≤ ⟨x⟩ by
Lemma 2.4(iii). Thus Z(R ∩ L) ≤ ⟨x⟩, but q ̸= p, hence Z(R ∩ L) = 1. Since R is nilpotent R ∩ L = 1
and L ≤ F . Thus R ≤ CG(L) = P ⟨x⟩ by Lemma 2.4(i). This is a contradiction, because P < R and p
does not divide |P ⟨x⟩/P |. Therefore p = 2, hence q = 2, so R⟨x⟩ is a 2-group while |F | is odd. Then
CF (L) = F ∩ P ⟨x⟩ = 1 (see Lemma 2.4(i)). As L = (L ∩ R) × (L ∩ F ) it follows that CF (L ∩ F ) = 1.
But L(F ) = C(F ), hence L ∩ F = CF

(
CF (L ∩ F )

)
= F , that is, [F, x] = 1. The lemma follows. �

So we only need to consider the case when G is a 2-group. In this case R = C and C/P has modular
subgroup lattice, by Lemma 2.2. Our first aim is showing that this quotient actually is abelian.

Lemma 2.7. Suppose that G is a 2-group and C < G. Then C/P is abelian.

Proof. By Lemma 2.2, C ′ is cyclic. Suppose that C ′ � P . Let bars denote images modulo P . The
centralizer map induces an anti-isomorphism of [C/P ] onto itself, hence Proposition 5.2 of [8] shows that
there exist u, v ∈ C such that, after setting K = P ⟨u, v⟩, we have ¯̄K = ⟨ū⟩ o ⟨v̄⟩, where ū and v̄ have
the same order 2n and [ū, v̄] = ū2s

for some integer s such that 2 ≤ s < n; moreover ¯̄C = ¯̄K × ¯̄T where
T = CG(K), and ¯̄T is abelian of exponent at most 2s. We may actually assume K ′ ≤ ⟨u⟩. For, K ′ is
cyclic and K ′P = ⟨u2s⟩P , hence K ′ = ⟨bu2s⟩ for some b ∈ P . There exists z ∈ P such that z2s

= b,
hence ⟨(zu)2

s⟩ = K ′ and we may substitute zu for u. Now ⟨u⟩ ∩ P = ⟨u⟩ ∩ Z(C) = C⟨u⟩(v), because
[u, PT ] = 1. Since ⟨[u, v]⟩ = ⟨u2s⟩ it follows that |P ∩ ⟨u⟩| = 2s. As K ′ ≤ ⟨u⟩ and K ′ � P we have
P ∩ ⟨u⟩ < K ′, hence P ∩ ⟨u⟩ = P ∩ K ′. Since C ′ is cyclic and K ′ ≤ C ′ a similar argument yields
P ∩ C ′ = P ∩ K ′. Hence P ∩ C ′ = P ∩ ⟨u⟩. Then |P ∩ C ′| > 2, as s > 1. Now L′ ≤ C ′ and |L ∩ P | = 2.
Therefore P ∩ C ′ � L′ and so L′ ≤ P ∩ C ′, hence |L′| ≤ 2; as a consequence L2 ≤ Z(L) ≤ P ⟨x2⟩—see
Lemma 2.4(iii).

Let 2m be the order of x2 modulo P . Then m ≤ n, because 2n = exp( ¯̄C). Also, from Lemma 2.4(iv)
it follows that 2m = |C : PL|. Let X = PL ∩ K and Y = P ⟨x2⟩ ∩ K. Then | ¯̄Y | ≤ 2m and |K : X| =
|KL : PL| ≤ 2m. Next, X2 ≤ Y , because L2 ≤ P ⟨x2⟩, hence |X/Y | ≤ 4, because K/P is metacyclic.
Thus 22n = | ¯̄K| ≤ 22m+2 and n ≤ m + 1. Moreover, if n = m + 1 then |X/Y | = 4 and Y = P ⟨x2⟩,
hence X2 = P ⟨x2⟩ and x2 ∈ g2P for some g ∈ L (note that X/P is abelian, as L′ ≤ P ). In this case
x1 := xg−1 ∈ G r C and x2

1 ∈ P . By repeating the argument in this paragraph with x1 in place of x
(and hence 0 in place of m) we obtain n ≤ 1. But then |K/P | ≤ 4 and ¯̄K is abelian, a contradiction.
Hence m = n. We have proved that all elements of G r C have the same order, namely 2n+1, modulo P .

In particular, x2P has order 2n, hence x2 = uivjt, where t ∈ T and the integers i, j are not both
even. If i is odd let u1 = uit and K1 = P ⟨u1, v⟩. Then ū1 has order 2n and [ū1, v̄] = ūi2s

= ū2s

1 , hence
¯̄K1 ≃ ¯̄K. Moreover CK(K1) = P because [t,K] = 1 and Z(K) = K ∩ T = P , but Ω1( ¯̄K1) = Ω1( ¯̄K);
it follows that Z(K1) = P . Hence K1 ∩ T1 = P , where T1 = CG(K1). As the centralizer map induces
a duality in [C/P ] we have |C : T1| = |K1/P |, hence ¯̄C = ¯̄K1 × ¯̄T1. Also, ¯̄C ′ ¯̄C2s

= ⟨ū2s

, v̄2s⟩ ≤ ¯̄K1,
hence ¯̄T ′

1
¯̄T 2s

1 = 1. This shows that we may replace u with u1 in our argument. After this substitution
x2 = uvj ∈ K. In the other case, when i is even, j is odd. In this case we let v1 = vtj

∗
, where jj∗ ≡ 1
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(mod 2s), so that x2 = uivj
1. Arguing as for the previous case we see that there is no loss of generality

in substituting v1 for v. Thus, in either case, we may assume x2 ∈ K.
Now we have PL = CC(x2) ≥ CC(K) = T , by Lemma 2.4(ii). Hence [T, x] ≤ [PL, x] = P ≤ T , so

T ▹ G and K = CG(T ) ▹ G. Also, CG(K⟨x⟩) ≤ T and K⟨x⟩ ∩ C = K⟨x2⟩ = K, hence Z(K⟨x⟩) ≤
T ∩ K = P . Therefore K⟨x⟩ ∈ (IC) by Lemma 2.1, so we may assume that G = K⟨x⟩ and so C = K.
Then L ≤ P ⟨x2⟩, because |K/P | = 22n and 2n = |P ⟨x2⟩/P | = |C : PL|, as we already observed. All
elements of G r K have order 2n+1 modulo P , and exp K̄2 = 2n−1. Thus G/K2 is a group of order 8
in which the elements of order at most 2 form the subgroup K/K2 of order 4. It follows that G/K2

is abelian. Since s > 1 the factor K/K4 is abelian—and likewise K2i

/K2i+2
for all i ∈ N. By an easy

induction (or by a standard property of powerful p-groups, see for instance [3], Lemma 2.4(ii)) it follows
that [K2i

, x] ≤ K2i+1
for all i ∈ N. In particular x centralizes K2n−1

/K2n

= Ω1( ¯̄K), which is not cyclic.
But ¯̄L = ⟨x̄2⟩, so this is a contradiction by Lemma 1.8. �
Lemma 2.8. Suppose that G is a 2-group and C < G. Then G/P is elementary abelian.

Proof. Let bars denote images modulo P . Then ¯̄C is abelian by Lemma 2.7 and the mapping c̄ ∈ ¯̄C 7→
[c̄, x̄] ∈ ¯̄G′ is an epimorphism with kernel ¯̄L = CC̄(x̄) (see Lemma 1.8), hence ¯̄G′ = [ ¯̄C, x̄] ≃ C/PL. Now,
Lemma 2.4(iv) shows that C/PL is cyclic of order 2λ, where 2λ+1 is the order of x̄. Thus ¯̄G′ ≃ C2λ . This
argument applies to all elements of GrC in place of x, thus showing that they all have order 2λ+1 = 2| ¯̄G′|
modulo P .

If λ = 0 then ¯̄G is abelian and all elements in ¯̄Gr ¯̄C have order 2, hence ¯̄G is elementary abelian. Then
we may assume that λ > 0; we shall derive a contradiction. Since ¯̄G is not abelian, x̄2 ∈ ¯̄L = CC̄(x̄) =
Z( ¯̄G). This holds for every element of G r C in place of x, hence we have g2 ∈ PL for all g ∈ G r C.
Since C/PL is cyclic it follows that G/PL is dihedral, of order 2λ+1. Also, L′ ≤ L ∩ P , hence |L′| ≤ 2.
Thus L2 ≤ Z(L) = (L ∩ P )⟨x2⟩ (see Lemma 2.4(iii)). If x̄2 ∈ ¯̄L2 then x̄2 = l̄2 for some l ∈ L and
(l−1x)2 ∈ P . This is false, as l−1x /∈ C and λ > 0. Therefore x̄2 /∈ ¯̄L2 and exp ¯̄L = 2λ. Let c be such that
C = PL⟨c⟩. Then C ′ = L′[L, c] ≤ P . But [L, c, L] = 1, hence 1 = [L2λ

, c] = [L, c]2
λ

and |C ′| ≤ 2λ. On
the other hand exp(C/P ) = exp(C/Z(C)) = |C ′|. Thus exp ¯̄C = 2λ. Now cx = c−1y for some y ∈ PL,
because G/PL is dihedral. Moreover, ¯̄G′ = ⟨[c̄, x̄]⟩ has order 2λ. Since [c, x] = c−2y and c̄2λ

= 1 also ȳ
has order 2λ. We have ¯̄L = ⟨x̄2⟩ × ¯̄E, where ¯̄E2 = 2, because x̄2 has order 2λ = exp ¯̄L and ¯̄L2 ≤ ⟨ ¯̄x2⟩.
Hence ȳ = x̄2tē for some odd integer t and e ∈ E. Then (x̄c̄)2 = x̄2c̄x̄c̄ = x̄2c̄−1ȳc̄ = x̄2(t+1)ē ∈ C̄. Now
x̄c̄ has order 2λ+1, since xc /∈ C. Hence 1 ̸= (x̄c̄)2

λ

= (x̄2(t+1)ē)2
λ−1

= ē2λ−1
, because t + 1 is even. It

follows that λ = 1. Then ¯̄C2 = 1 and | ¯̄G′| = 2. Hence ¯̄G is a central product of an abelian group and an
extraspecial group. But the elements of order 2 in ¯̄G generate the elementary abelian group ¯̄C, hence ¯̄G
has no dihedral subgroup of order 8; moreover, the product of any two elements of order 4 in ¯̄G lies in ¯̄C,
hence it has order at most 2, thus ¯̄G has no quaternion subgroup of order 8. This is a contradiction,
hence the proof is complete. �

Together with Lemmas 1.3 and 2.6 the previous lemma shows that in the case when P < R our
group G has the structure described under (d) in the Theorem in the introduction. At this point, thanks
to the previous results in this section and to Lemma 1.7 the proof of the necessity part of the Theorem
is complete. The proof of the sufficiency part will be the content of the next section.

3. Sufficiency

In this section we shall complete the proof of our main result by showing that the groups described in
the Theorem are in fact (IC)-groups.

Let G be a group with a (normal) subgroup P ≃ Cp∞ such that G/P is finite. Consider first the
case when G has the structure described in case (a) or (b) of the Theorem. Then G = PK for some
finite K ≤ G, and P = Z(G). Now K ′ = G′ is cyclic and Z(K) = P ∩ K, hence K/Z(K) ≃ G/P has
modular subgroup lattice. By the main result of [5], [K/Z(K)] = C(K). Now the argument in the first
paragraph of the proof of Lemma 2.2 shows that G ∈ (IC).

If G satisfies (c) then C = P × F has the structure described under (a), hence C ∈ (IC) by the
previous paragraph. Moreover P = Z(C) = CG(C) and it follows from Lemma 1.2 that [C/P ] ⊆ C(G).
Hence, to prove that G ∈ (IC) we only have to consider the subgroups H containing P but not contained
in C. The nontrivial Sylow subgroups of G/P have prime order, with the possible exception of the Sylow
q-subgroups, which are cyclic anyway. If follows that if P ≤ H ≤ G but H � C then H/P contains a
Sylow q-subgroup of G/P and Hall theory shows that H is intersection of maximal subgroups of G. Thus
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it is enough to show that every maximal subgroup M of G different from C is a centralizer. To this end
we only have to show that Z(M) � Z(G): in this case M ≤ CG

(
CG(M)

)
< G and so M = CG

(
CG(M)

)
.

Every such maximal subgroup M has prime index t ̸= q; it is conjugate to a subgroup of the form P ⟨x⟩K,
where K is a maximal subgroup of F , so we may assume that M = P ⟨x⟩K for such a K. There exists
exactly one i ∈ {1, 2, . . . , n} such that t divides |Fi|; then |Fi : Fi ∩ K| = t and |Fi ∩ K| is a prime. Let
⟨g⟩ = Fi ∩ K. Then K = ⟨g⟩ × ⟨Fj | i ̸= j ∈ {1, 2, . . . , n}⟩, so [g, PK] = 1. If i > 1, or also in case (c1),
where [x, F ] = 1, we have [g, x] = 1, hence g ∈ Z(M). Since g /∈ Z(G) ≤ P we see that Z(M) � Z(G)
in these cases. Otherwise, i = 1 and either of (c2) and (c3) holds; then xq ∈ Z(M) r Z(G). Hence, in
any case, Z(M) � Z(G) and M is a centralizer in G. Therefore G ∈ (IC).

Finally, suppose that (d) holds. By Lemma 1.3 we may assume that G = G1. Then every infinite
subgroup of G is intersection of maximal subgroups, so it will be enough to show that every maximal
subgroup M of G is a centralizer. As above, this amounts to saying that Z(M) � Z(G). Since P ≃ C2∞

we have that |G/C| = 2. We may assume that M ̸= C, hence M = K⟨x⟩ where K is maximal in C
and x ∈ G r C. Lemma 1.8 shows that C = PL, where L = CC(x). Since P = Z(C) it follows that
Z(L) = P ∩ L. Moreover L′ ≤ P ∩ L and |P ∩ L| = 2, therefore L is extraspecial. Now K = P (L ∩ K)
and since L is extraspecial |Z(L ∩ K)| > 2, so Z(L ∩ K) � P . But Z(L ∩ K) ≤ Z(M) and Z(G) ≤ P ,
hence Z(M) � Z(G). This shows that G ∈ (IC) also in this latter case. Now the proof of the Theorem
is complete.
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[4] W. Gaschütz, Gruppen, deren sämtliche Untergruppen Zentralisatoren sind, Arch. Math. (Basel) 6 (1954), 5–8.
[5] M. Reuther, Endliche Gruppen, in denen alle das Zentrum enthaltenden Untergruppen Zentralisatoren sind, Arch.

Math. (Basel) 29 (1977), no. 1, 45–54.

[6] D.J.S. Robinson, Finiteness conditions and generalized soluble groups, Springer-Verlag, New York, 1972.
[7] H. Smith, On homomorphic images of locally graded groups, Rend. Sem. Mat. Univ. Padova 91 (1994), 53–60.
[8] S.E. Stonehewer and G. Zacher, Dualities of groups, Ann. Mat. Pura Appl. (4) 170 (1996), 23–55.
[9] M. Suzuki, Structure of a group and the structure of its lattice of subgroups, Ergebnisse der Mathematik und ihrer

Grenzgebiete, Neue Folge, Heft 10, Springer-Verlag, Berlin, 1956.
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