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§1. Introduction

A power automorphism of a group G is an automorphism fixing every subgroup of G. Power
automorphisms have been studied by many authors, mainly by C.D.H. Cooper [2]. The set PAutG
of all power automorphisms of a group G is a normal, abelian, residually finite subgroup of the full
automorphism group AutG of G.

The aim of this paper is the study of quasi-power automorphisms of infinite groups. We say
that an automorphism of a group G is a quasi-power automorphism if it fixes all but finitely many
subgroups of G. It is clear that the set of all quasi-power automorphisms of G is a normal subgroup
QAutG of AutG containing PAutG and that QAutG = AutG if G is finite.

It is easily verified that quasi-power automorphisms fix all infinite subgroups (see Lemma 2.2
below). Automorphisms fixing infinite subgroups of groups have been studied by M. Curzio, S. Fran-
ciosi and F. de Giovanni [3] under the name of I-automorphisms. They prove that, under certain
solubility or finiteness conditions for the group G, the group IAutG of all I-automorphisms of G
coincides with PAutG, provided G is not a Černikov group. They also give some sufficient condi-
tions on a non-Černikov group G to ensure the commutativity of IAutG and exhibit, by contrast,
an infinite Černikov group G such that IAutG is not abelian.

Stronger results hold for quasi-power automorphisms. Indeed, if G is an infinite group, then
QAutG is always abelian and residually finite, as happens for PAutG. Furthermore, it turns out that
the existence of quasi-power automorphisms which are not power automorphisms affects the structure
of an infinite group strongly, even if no further condition on this group is imposed. Our main result
illustrating this is the following Theorem A, which also gives information on the subgroups which
are not fixed under the action of quasi-power automorphisms.

Theorem A. Let G be an infinite group such that QAutG 6= PAutG. Then the subgroups of G
which are not fixed under the action of QAutG generate a finite characteristic subgroup Θ(G) of G.
Moreover:
(i) G/Θ(G) is a finite extension of a p-subgroup (p prime). In particular, G is periodic;

(ii) every subgroup of G which is not fixed under the action of QAutG has order divisible by p,
and Θ(G) has order divisible by p2;

(iii) every infinite subgroup of G which is locally finite is Prüfer-by-finite.

Here, by a Prüfer-by-finite group we mean a finite extension of a Prüfer group.
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Quasi-power automorphisms are connected with the study of autoprojectivities (i.e., automor-
phisms of the subgroup lattice) of groups. In fact the group Q̄AutG = QAutG/PAutG is isomorphic
with the group of all autoprojectivities induced by AutG on the subgroup lattice `(G) which act on
`(G) as finitary permutations. The finiteness of Θ(G) (Theorem A) exactly means that Q̄AutG is
always finite. Further information on Q̄AutG is contained in

Theorem B. Let G be an infinite group such that QAutG 6= PAutG. Then Q̄AutG is a finite
(abelian) p-group, where p is the prime such thatG/Θ(G) is a finite extension of a p-group. Moreover,
if P is a Sylow p-subgroup of G, then Q̄AutG can be embedded in Q̄AutP . Conversely, every finite
abelian p-group is isomorphic with Q̄AutG for a suitable abelian p-group G.

Another problem considered in this paper (§3) is whether quasi-power automorphisms of infinite
groups are central, the motivation being the well-known theorem by Cooper (Theorem 2.2.1 in [2],
see Newell [5] for a generalization) stating that power automorphisms are central. Recall that an
automorphism of a group G is said to be central if it acts trivially on the factor group G/Z(G) or,
equivalently, if it centralizes every inner automorphism of G. Cooper’s centrality theorem generalizes
a previous result by E. Schenkman [7] stating that the intersection of the normalizers of the subgroups
of a group G (called the norm of G) is contained in Z2(G), the second centre of G (i.e., inner power
automorphisms are central). Cooper’s theorem cannot be generalized to quasi-power automorphisms
of infinite groups (see Example 3.4). However some sufficient conditions under which quasi-power
automorphisms are central are given. These imply, for instance, a generalization of Schenkman’s
result.

The last section of the paper contains a description of QAutG for infinite groups in some classes
of nilpotent groups (including abelian groups).

Notation and terminology used throughout the paper are mostly standard (see for instance [6]).
The groups PAutG, QAutG, Q̄AutG have been defined above. Slightly extending the terminology
used by Cooper, if p is a prime, G is a p-group and π is a p-adic unit, we will call the map x 7−→ xπ

the universal power automorphism of exponent π of G, whenever it is an automorphism of G. Here
xπ has to be interpreted as xn, where n is an integer congruent to π modulo the order of x. Finally
Cn and Cp∞ will denote a cyclic group of order n and a Prüfer p-group, respectively.

§2. First results and proof of Theorem A

It is obvious that the power automorphisms of a group G are precisely those automorphisms fixing all
cyclic subgroups of G. It is easily seen that a similar statement holds for quasi-power automorphisms.

Proposition 2.1. Let G be a group. Then QAutG consists of all automorphisms fixing all but
finitely many cyclic subgroups of G.

Proof. Let α be an automorphism of G fixing all but finitely many cyclic subgroups of G. Then
the set S = {x∈G | 〈x〉α 6= 〈x〉} is finite. For every subgroup H of G such that Hα 6= H, it holds
H = 〈H∩S〉, otherwise H = 〈HrS〉 would be fixed by α. It follows that α ∈ QAutG. ut

Since every infinite group is generated by the complement of each finite subset, an argument
similar to that used in the proof of the previous proposition proves the following lemma, which
allows us to apply the results of [3] referred to in §1.

Lemma 2.2. A quasi-power automorphism of a group G fixes every infinite subgroup of G.

It is shown in [3] that if G is a non-Černikov (locally radical)-by-finite group, then every I-
automorphism of G is a power automorphism; hence QAutG = PAutG in this case.

Proposition 2.3. Let G be an infinite group. Then QAutG is abelian.
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Proof. Let α, β ∈ QAutG and let Γ = 〈α,β〉. There exists a subset X of G such that G r X is
finite and 〈x〉Γ = 〈x〉 for all x ∈ X. Clearly Γ/CΓ (x) is abelian for all x ∈ X. Since 〈X〉 = G, then⋂
x∈X

CΓ (x) = 1, so that Γ is abelian and so is QAutG. ut

Our next aim is the proof of Theorem A. We shall divide it into several steps.

Proof of Theorem A
Assume G is an infinite group such that QAutG 6= PAutG. Recall that Θ(G) is the (characteristic)
subgroup of G generated by all (cyclic) subgroups of G which are not fixed under the action of
QAutG.

Step 1 — QAutG is residually finite.

The orbit Orb(H) of a subgroup H of G under the action of QAutG is the orbit of H under the action
of Q̄AutG. As remarked in §1, this can be identified with an abelian group of finitary permutations
of `(G), so that Orb(H) is finite. It follows that for every cyclic subgroup H of G, the normalizer of
H in QAutG has finite index in QAutG, hence |QAutG : CQAutG(H)| is finite. Therefore QAutG
is residually finite.

From now on, let H be a subgroup of G which is not fixed by some quasi-power automorphism
θ of G. By Lemma 2.2, H is finite.

Step 2 — [G,QAutG]Z(G)/Z(G) is finite.

Since QAutG / AutG, we have [InnG,QAutG] ≤ QAutG. By Proposition 2.3 and Step 1, we
deduce that [G,QAutG]Z(G)/Z(G) is abelian and residually finite. Hence H[G,QAutG] is a
nilpotent-by-finite group on which θ acts as a quasi-power automorphism which is not a power
automorphism. Then H[G,QAutG] is a Černikov group by the above-quoted result of [3]. It follows
that [G,QAutG]Z(G)/Z(G) is finite.

Step 3 — H has finitely many conjugates in G.

Assume false. Let C/Z(G) be the centralizer of θ in G/Z(G). By Step 2, C has finite index in G.
Then |C : NC(H)| is infinite. Hence there exists x ∈ C such that (Hx)θ = Hx. Since [x, θ] ∈ Z(G),
it follows that (Hθ)x = (Hx)θ = Hx and so Hθ = H, a contradiction.

Step 4 — There exists a (unique) prime number p dividing the order of every subgroup of G which
is not fixed under the action of QAutG and such that G/F is a finite extension of a p-group for a
suitable finite subgroup F of Θ(G) normal in G.

Let F be the normal closure in G of the subgroup generated by the subgroups of G which are not
fixed by θ. By Step 3, F is finite. It is clear that H has a cyclic subgroup H1 of order a power of a
prime p such that Hθ

1 6= H1. Let K be a subgroup of N = NG(H1) without elements of order p. If
K were not contained in F , then θ would fix H1K and so H1, the unique Sylow p-subgroup of H1K.
Hence K ≤ F ∩N . We have proved that NF/F is a p-group. Since N has finite index in G (again
by Step 3), it follows easily that every p′-subgroup of G is fixed by any quasi-power automorphism
of G. Therefore Step 4 is proved.

Step 5 — Every infinite locally finite subgroup K of G is Prüfer-by-finite.

We may clearly assume that K contains the FC-centre of G. Then, by Step 3, θ acts on K as a
quasi-power automorphism which is not a power automorphism. By Step 4, K is (locally nilpotent)-
by-finite. Applying as above a result from [3], we get that K is a Černikov group. Let R be its finite
residual. By Step 3, H / HR. Assume, by contradiction that R is not a Prüfer group. Then, since
H is finite, HR/H is not a Prüfer group, so that there exist two infinite subgroups A and B of HR
such that A ∩B = H. By Lemma 2.2, θ fixes both A and B and so Hθ = H, a contradiction.

By the above (Steps 3 and 5), to prove the finiteness of Θ(G), we may assume, at the expense
of replacing G with its FC-centre, that G is a finite, central extension of a Prüfer p-group. Thus,
before completing the proof of Theorem A, we examine in some details quasi-power automorphisms
of nilpotent Prüfer-by-finite p-groups.

Proposition 2.4. Let the nilpotent p-group G be extension of a Prüfer group A by a finite group
Q and let α ∈ AutG. Then:
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(i) If α ∈ PAutG, then α is a universal power automorphism.

(ii) α ∈ QAutG if and only if α induces on both A and Q a universal power automorphism with
the same p-adic unit as exponent.

(iii) If α ∈ QAutG and H is a subgroup of G not fixed by α, then |H| < |Q|2.

Proof. Let π be the p-adic unit such that xα = xπ for each x ∈ A.

(i) For any x ∈ G, α induces a power automorphism on the abelian group 〈A,x〉. Therefore
xα = xπ. Hence α is the universal power automorphism with exponent π.

(ii) Let α ∈ QAutG. By Lemma 2.2, the subgroup F generated by the subgroups H of G such
that Hα 6= H is finite. Let B be any proper subgroup of A properly containing A ∩ F . Then α
induces a power automorphism on G/B. Thus, by (i), α induces the universal power automorphism
of exponent π on G/B and hence on Q, as we wanted to show.

Conversely, assume that α induces on both A and Q the universal power automorphism of
exponent a given p-adic unit π. Since x−πxα = y−πyα whenever x, y ∈ G with x ≡ y (modA), then
E = 〈x−πxα |x∈G〉 is a finite subgroup of A. Let now H be a subgroup of G such that H 6= Hα.
Then E 6≤ H, since α induces on G/E the universal power automorphism of exponent π. Then
H ∩A < E, so that |H| < |E| |Q|. It follows that α ∈ QAutG.

(iii) With the notation of (ii), it will be sufficient to prove that |E| ≤ |Q|. Let n = |Q| and
x ∈ G. Since x−πxα ∈ A ≤ Z(G), then (x−πxα)

n
= (x−π)n(xα)n = (xn)−π(xn)α = 1, because

xn ∈ A. Hence E is contained in A[n], which has order n. ut

We can now complete the proof of Theorem A.

Step 6 — Θ(G) is finite.

We may assume that G has a central subgroup A ' Cp∞ of finite index. Let P be a Sylow p-subgroup
of G and let pn = |P/A| and m = |G : P |. We shall prove that every α ∈ QAutG fixes every (finite)
subgroup H of G of order not dividing mp2n.

Let S be a Sylow p-subgroup of H. Then S is contained in a conjugate of P and Sα = S by
Proposition 2.4 (iii). By Step 4, α fixes every p′-subgroup of H, hence Hα = H. Since G′ is finite
there are only finitely many elements of G of order at most mp2n, so that Θ(G) is finite.

Step 7 — Every Sylow p-subgroup P of G is fixed by every quasi-power automorphism θ of G.

If this is not the case, then P is finite and N = NG(P ) has finite index in G. Hence Nθ = N . Since
P is characteristic in N , we get P θ = P , as we wanted.

The only remaining fact to be proved is that p2 divides the order of Θ(G), where p is defined as
in Step 4 above. Assume false. Then every p-subgroup H of G which is not fixed under the action
of QAutG is a Sylow p-subgroup of Θ(G) and so has the form H = P ∩Θ(G), where P is a Sylow
p-subgroup of G. This is a contradiction by Step 7. Theorem A is now completely proved. ut

By Theorem A there are two possible kinds of groups G for which QAutG and PAutG do
not coincide, namely Prüfer-by-finite groups and periodic non-(locally finite) groups. Indeed both
possibilities occur. A class of groups of the first type has already been considered in Proposition 2.4,
from which we deduce the following

Corollary 2.5. Let the nilpotent p-group G be extension of a Prüfer group A by a finite group Q.
Then Qab = Q/Q′ can be embedded in Q̄AutG = QAutG/PAutG. In particular, QAutG = PAutG
if and only if Q = 1.

Proof. Let Γ = CAutG(A) ∩ CAutG(Q). Then Γ ' Hom(Q,A) ' Qab. By Proposition 2.4, Γ ≤
QAutG and Γ ∩PAutG = 1. Hence Qab � Q̄AutG. The second part of the statement is now clear,
as Aut Cp∞ = PAut Cp∞ . ut

We give now an example to show that Prüfer-by-finite groups G such that QAutG 6= PAutG
are not necessarily nilpotent.
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Example 2.6. Let A ' C2∞ , 〈b〉 ' C2 and 〈x〉 ' C4. Let G be the semidirect product of (A× 〈b〉)
by 〈x〉 with x2 amalgamated with the element a of order 2 of A and x acting as the inversion
automorphism on A×〈b〉. Consider the automorphism α of G which acts trivially on A〈x〉 and maps
b to ab. We will prove that α ∈ QAutG. Let H = 〈h〉 be a cyclic subgroup of G. If h /∈ A〈x〉∪A〈b〉,
then h = cbx for a suitable c ∈ A. Then a = x2 = h2 and hα = cbax = ah = h3, so that Hα = H.
If h ∈ A〈x〉 then hα = h. Thus all cyclic subgroups of G which are not fixed by α are contained in
A〈b〉. By Proposition 2.4, α induces on A〈b〉 a quasi-power automorphism. Hence α ∈ QAutG by
Proposition 2.1. ut

An example of a non-(locally finite) group G for which QAutG 6= PAutG is the following.

Example 2.7. Ashmanov and Ol’shanskii ([1], Remark 4, p.72) have constructed, for a sufficiently
large prime number p, an infinite group T with the following structure:
– T has a unique subgroup 〈c〉 of order p, namely its centre;
– every nontrivial proper subgroup of T different from 〈c〉 is cyclic of order p2 (and contains 〈c〉).

Consider the group G = T × 〈a〉, where a has order p, and the automorphism α of G defined
by aα = ac and xα = x for all x ∈ T . Then α is a quasi-power automorphism of G. In fact, let
H = 〈xar〉 (x ∈ T and r an integer) be a cyclic subgroup of G which is not fixed by α. Since
[G,α] = 〈c〉, then c /∈ H and H ∩ T = 1. Thus H has order p and 1 = (xar)p = xp, so that x ∈ 〈c〉.
Hence H ≤ 〈c,a〉. It follows that α ∈ QAutGr PAutG. ut

§3. Centrality of quasi-power automorphisms

In this section we consider the problem of determining to what extent Cooper’s centrality theorem
for power automorphisms can be generalized to quasi-power automorphisms of infinite groups. We
have already remarked that quasi-power automorphisms are “near” to being central in the sense
that [G,QAutG]Z(G)/Z(G) is finite for every group G (Step 2 of the proof of Theorem A). Another
obvious observation is that, for every infinite group G, one has [G,QAutG,QAutG] ≤ Z(G), as
QAutG is abelian and normal in AutG. We state now a property of quasi-power automorphisms
which allows us to make use of a characterization of central automorphisms from [4].

Lemma 3.1. Let θ be a quasi-power automorphism of the infinite group G. Then [g, gθ] = 1 for
every g ∈ G.

Proof. Assume false. Then [g, gθ] 6= 1 for some g ∈ G, so that C = CG(g) is not fixed by θ. Hence
C is finite and, by Theorem A, g ∈ C ≤ F , the FC-centre of G. Therefore |G : C| is finite and so is
G, a contradiction. ut

Lemma 3.2. Let G be an infinite group. Then [G,QAutG] is abelian and, if θ ∈ QAutG, then:

(i) [g, θ, h, h] = 1 and [g, θ, h]
−1

= [h, θ, g] for all g, h ∈ G;
(ii) 〈[g,θ]〉 / G for all g ∈ G such that θ normalizes every conjugate of 〈g〉 in G. This holds in

particular for all g ∈ Gr Θ(G);
(iii) θ is a central automorphism of G if and only if 〈[g,θ]〉 / G for all g ∈ G.

Proof. Let g, h ∈ G and θ, ψ ∈ QAutG. Since [G,QAutG,QAutG] ≤ Z(G), [h, ψ, θ, g] = 1,
which implies [ [g, θ] , [h, ψ] ] = 1 by [4], Lemma 1 (ii). Hence [G,QAutG] is abelian. Furthermore
Lemma 3.1 and QAutG/AutG imply that [g, θ, h] centralizes h. Again by Lemma 1 (ii) of [4], it holds
[g, θ, h]−1 = [h−1, θ, g−1]. By Lemma 3.1 and since [G,QAutG] is abelian, [h−1, θ, g−1] = [h, θ, g] so
that (i) is proved. Statements (ii) and (iii) follow immediately from [4], Lemma 3 and Theorem. ut

Our main result about centrality of quasi-power automorphisms is the following.

Theorem 3.3. Let G be an infinite group. Then:
(i) A quasi-power automorphism θ of G fixing infinitely many elements of G is central.

(ii) Every quasi-power inner automorphism of G is central.
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(iii) [G,QAutG] ≤ Z2(G). In particular [G′,QAutG] ≤ Z(G) and QAutG acts trivially on γ3(G).
(iv) If G is not a finite, central extension of a Prüfer group, then every quasi-power automorphism

of G is central.

Proof. (i) Let g ∈ G. Since C = CG(θ) is infinite, there exists c ∈ C such that cg /∈ Θ(G). By
Lemma 3.2 (ii), we get 〈[g,θ]〉 = 〈[cg,θ]〉 / G. Hence θ is central by Lemma 3.2 (iii).

(ii) If Z(G) is infinite, statement (ii) follows from (i). Assume then Z(G) is finite. In this case
[G,QAutG] is finite by Step 2 in the proof of Theorem A and so statement (i) implies that every
quasi-power automorphism of G is central.

(iii) follows from (ii), as every element of [G,QAutG] induces on G a quasi-power automor-
phism.

(iv) Suppose that G has a noncentral quasi-power automorphism θ. Then γ3(G) ≤ CG(θ) is
finite by (i). Hence G is finite-by-nilpotent and so it is Prüfer-by-finite by Theorem A (iii). ut

In particular, centreless infinite groups have no nontrivial quasi-power automorphism.
Statement (ii) of Theorem 3.3 generalizes (for infinite groups) the analogous theorem by Schenk-

man on the norm quoted in §1. On the other hand, quasi-power automorphisms of infinite groups
may well be non-central, as the following example shows.

Example 3.4. Let p be a prime and n > 1 an integer (n > 3 if p = 2). Let then F be the free group
on two generators x, y in the variety of the nilpotent groups of class at most 2 and exponent dividing
pn. Then F ′ = 〈[x,y]〉 has order pn if p 6= 2 and has order 2n−1 if p = 2. Consider the automorphism
α of F defined by xα = xt and yα = yt, where t = 1 + pn−1 if p is odd and t = 1 + 2n−2 if p = 2.
Then α is not central, as [x, α, y] = [x, y]t−1 6= 1. Let C = (F ′)p. Since F/C has derived subgroup
of order p, then α induces on F/C the universal power automorphism of exponent t. Moreover

([x, y]p)α = [xα, yα]p = [x, y]pt
2

= [x, y]p, so that α centralizes C.
Let now G be the direct product of F by A ' Cp∞ with C amalgamated with the corresponding

subgroup of A. Then (ga)θ = gαat (for all g ∈ F , a ∈ A) defines an automorphism θ of G which
induces on both A and G/A the universal power automorphism of exponent t. By Proposition 2.4,
θ ∈ QAutG but θ is not central, as α is not.

It is worth remarking (see Proposition 3.7 below) that, if p = 2, the above construction gives
automorphisms acting trivially on G′. It is also possible to define θ in such a way that [G′, θ] 6= 1.
The construction is similar to the above, starting with n > 4 and t = 1 + 2n−3. ut

We fix now our attention on the case not settled in Theorem 3.3 (iv).

Lemma 3.5. Let G be a finite, central extension of a Prüfer p-group. Then G/CG([G,QAutG]) is
a finite, abelian p-group.

Proof. Note first that G/CG([G,QAutG]) is finite and abelian by Theorem 3.3 (iii). By Lemma 3.2
(i), the statement is equivalent to saying that [g, θ] ∈ Z(G) for all θ ∈ QAutG and for all elements g
of G of order a power of a prime q 6= p. Let g be a counterexample. There exists an element h ∈ G
of prime-power order such that c = [g, θ, h] 6= 1. By Lemma 3.2 (i), the order of c divides both the
order of g and that of h, hence h is a q-element. If Q is a Sylow q-subgroup of G containing g, there
exists x ∈ G such that hx ∈ Q. Since θ acts on Q as a power automorphism (see Theorem A (ii)),
then [g, θ, hx] = 1. By Theorem 3.3 (iii) G′ ≤ CG([G,QAutG]) ≤ CG([g, θ]), so that the latter is
normal in G and h centralizes [g, θ], a contradiction. ut

Theorem 3.6. Let G be a finite, central extension of a Prüfer p-group A. If the Sylow p-subgroups
of G/A are abelian, then every quasi-power automorphism of G is central.

Proof. Assume false. By Lemma 3.5 and Lemma 3.2 there exist p-elements g and h of G and
θ ∈ QAutG such that c = [g, θ, h] 6= 1. Arguing as in the previous lemma, we may assume that g

and h belong to the same Sylow p-subgroup P of G. By hypothesis hg
−1

= ha for a suitable a ∈ A.
Moreover, by Proposition 2.4, there exists a p-adic unit π such that θ−1 induces on both A and P/A

the universal power automorphism of exponent π. Let hθ
−1

= hπb (b ∈ A). Then

(hθ
−1

)g
−1

= (hπb)g
−1

= (hg
−1

)πb = hπaπb = (hg
−1

)θ
−1
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which amounts to saying [g, θ, h] = 1, a contradiction. ut

As a final observation we note:

Proposition 3.7. Let p be an odd prime, let G be a finite, central extension of a Prüfer p-group
and let θ ∈ QAutG. Then θ is a central automorphism of G if and only if it acts trivially on G′.

Proof. By Lemma 3.5, it is enough to prove that [g, h, θ] = [g, θ, h2] holds for all g, h ∈ G. Since
G′ ≤ CG([G,QAutG]), by Lemma 3.1 the element gh = hg[g, h] centralizes [g−1h−1, θ]. Hence,
applying Lemma 3.2, we get:

[g, h, θ] = [g−1h−1, θ] [gh, θ] = [g−1, θ]
h−1

[g, θ]
h[h,θ]

= [g−1, θ]
h−1

[g, θ]
h

=
(

[g, θ]
−1

[g, θ]
h2
)h−1

= [g, θ, h2]
h−1

= [g, θ, h2]. ut

Example 3.4 shows that Proposition 3.7 does not hold if p = 2.

§4. Quasi-power automorphisms of Prüfer-by-finite groups and proof of Theorem B

A theorem by Cooper ([2], Theorem 2.3.1) states that the group of power automorphisms of a finite
group G can be embedded in the direct product of the power automorphism groups of the Sylow
subgroups of G. A result of the same type holds for quasi-power automorphisms of Prüfer-by-finite
groups.

Lemma 4.1. Let G be a finite extension of a Prüfer p-group. Let P be a Sylow p-subgroup of G,
let q1, q2, . . . , qn be the primes in π(G) different from p and let Qi be a Sylow qi-subgroup of G for

each i ≤ n. Then QAutG can be embedded in D = QAutP ×
n

Dr
i=1

PAutQi.

Proof. Every θ ∈ QAutG defines by restriction a power automorphism θi on each Qi (Theorem
A (ii) ) and a quasi-power automorphism θ0 on P (Lemma 2.2). Consider the homomorphism
ϕ : θ ∈ QAutG 7−→ (θ0, θ1, . . . , θn) ∈ D. Let θ ∈ kerϕ. Since G is clearly generated by P and the
Qi’s, then θ = 1 and ϕ is a monomorphism. ut

If G is nilpotent the monomorphism θ of the proof above is actually an isomorphism. Hence,
modulo the description of power automorphisms of finite groups of prime-power order, the study of
QAutG may be reduced to the case that G is a p-group. Thus quasi-power automorphisms of infinite
nilpotent groups are described by Proposition 2.4 above. In some cases a more explicit description
can be given.

Theorem 4.2. Let the nilpotent p-group G be extension of a Prüfer group A by a finite abelian
group Q. Let pt = |G′|. If p 6= 2 or G is abelian, then:
(i) PAutG is isomorphic with the group of the p-adic units π such that π ≡ 1 (mod pt).

(ii) QAutG = PAutG× Γ , where Γ = CAutG(A) ∩ CAutG(Q) ' Q.

Proof. (i) Let p 6= 2. By the identity (xy)n = xnyn[y, x]
n(n−1)

2 , which holds in G for any integer n,
as G has class at most 2, it follows that the map απ : x 7→ xπ (π a p-adic unit) is a monomorphism
in G if and only if π ≡ 1 (mod pt). Clearly the same holds if G is abelian. Furthermore, if π ≡
1 (mod pt), then απ is an automorphism of G, since Aαπ = A and G/A is finite. Finally PAutG =
{απ |π≡1(modpt)} by Proposition 2.4 (i).

(ii) Clearly Γ /AutG, as A is characteristic in G. By Corollary 2.5 we have only to prove that
QAutG = Γ PAutG. Let α ∈ QAutG. There exists a p-adic unit π such that aα = aπ for all a ∈ A.
By Proposition 3.6 α is central and so acts trivially on G′ ≤ A. Hence π ≡ 1 (mod pt). Therefore
απ : x 7→ xπ is a power automorphism of G and α−1π α ∈ Γ . Thus QAutG = PAutG× Γ . ut

- 7 -



Since power automorphisms of abelian groups are very well understood, the above theorem totally
describes quasi-power automorphisms of abelian groups.

It is worth remarking that the proof of Theorem 4.2 actually shows this more general result: Let
the nilpotent p-group G of class at most 2 be extension of a Prüfer group A by a finite group Q. Let
pt be the exponent of G′. If p 6= 2 or G is abelian, then PAutG is isomorphic with the group of the
p-adic units π such that π ≡ 1 (mod pt) and the group of the central quasi-power automorphisms of
G is PAutG× Γ , where Γ = CAutG(A) ∩ CAutG(Q) ' Qab.

A result weaker than Theorem 4.2 holds when p = 2.

Proposition 4.3. Let the nilpotent 2-group G be an extension of a Prüfer group A by a finite
abelian group Q. Let 2t = |G′|. If G is not abelian, then:
(i) PAutG is isomorphic with the group of the 2-adic units π such that π ≡ 1 (mod 2t+1).

(ii) Let Γ = CAutG(A) ∩ CAutG(Q). Then PAutG× Γ is a subgroup of index 2 of QAutG.

Proof. (i) can be proved like the analogous statement of Theorem 4.2. To prove (ii) consider the
homomorphism ϕ of QAutG in the group of the 2-adic units, defined by aα

ϕ

= aα for all a ∈ A.
As in the proof of Theorem 4.2 we see that PAutG × Γ is the preimage under ϕ of the group of
all 2-adic units π ≡ 1 (mod 2t+1). It will be enough to show that the image of ϕ is the group of
the 2-adic units π ≡ 1 (mod 2t). A 2-adic unit π belongs to imϕ if and only if there exists an
automorphism of G inducing on both A and Q the universal power automorphism of exponent π.
By the Universal Coefficients Theorem, the cohomology class of A� G� Q may be identified with
a homomorphism f : M(Q) → A, where M(Q) is the Schur multiplicator of Q. Hence π ∈ imϕ if
and only if π2f = πf . Since the image of f is G′, the order of f is 2t, so that imϕ is the set of the
2-adic units ≡ 1 (mod 2t), as we wanted to show. ut

In the case that the factor Q is not abelian, we can describe periodic quasi-power automorphisms.

Proposition 4.4. Let the nilpotent p-group G be an extension of a Prüfer group A by a finite
nonabelian group Q. Then tor QAutG = CAutG(A) ∩ CAutG(Q) ' Qab.

Proof. Consider the exact sequence

CAutG(A) ∩ CAutG(Q) � QAutG
ϕ−→ U

where U is the group of p-adic units and ϕ is defined as in the proof of Proposition 4.3. If 1 6= π ∈
imϕ, then, by Proposition 2.4, Q has a universal power automorphism of exponent π. This implies
−1 6= π ≡ 1 (mod p) (by a direct argument or by a theorem by Huppert, see [2], Theorem 5.1.1).
Therefore π has infinite order. Thus imϕ is torsion-free and the proposition is proved. ut

Proof of Theorem B
The fact that Q̄AutG is finite is a direct consequence of Theorem A. We prove now that Q̄AutG�
Q̄AutP , where P is a Sylow p-subgroup of G. By Step 7 in the proof of Theorem A, every quasi-
power automorphism θ of G induces by restriction a quasi-power automorphism θ0 on P . It will be
enough to show that θ ∈ PAutG if θ0 ∈ PAutP . Assume then θ0 ∈ PAutP . By Theorem A (ii),
we have only to show that Hθ = H for all p-subgroups H of G. We distinguish two cases.
– G is Prüfer-by-finite. Let C = CG([G, θ]). By Theorem 3.3 (iv) and Lemma 3.5, we have
PC = G. It follows that the Sylow p-subgroups of G form a unique conjugacy class under the action
of C. In particular there exists c ∈ C such that Hc ≤ P . Thus (Hc)θ = Hc. Since [c, θ] ∈ Z(G) (by
Lemma 3.2 (i) ) we get Hθ = H.
– G is not Prüfer-by-finite. In this case θ is central by Theorem 3.3 (iv). Assume Hθ 6= H. Since

Θ(G) is finite it is easy to show that P ∩Θ(G) is a Sylow p-subgroup of Θ(G). As H ≤ Θ(G), there
exists x ∈ Θ(G) such that Hx ≤ P ∩ Θ(G) ≤ P . As in the previous case, from [x, θ] ∈ Z(G) it
follows Hθ = H.

Therefore Q̄AutG� Q̄AutP . We have now to prove that Q̄AutG is a p-group.
By the above, we may assume that G is a p-group. Let α be a quasi-power automorphism of G

of prime-power order modulo PAutG and let H be a cyclic subgroup of G such that Hα 6= H. It
will be clearly enough to prove that αp

n

fixes H, for a suitable positive integer n.
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Assume first G is soluble-by-finite. Then, by Theorem A (iii), G has a subgroup A isomorphic
with Cp∞ and [A,H] = 1. Since α fixes the abelian group AH and Q̄AutAH is a p-group by
Theorem 4.2, the claim is proved in this case.

Let now G be not soluble-by-finite. Consider C = CG(H) and D = CC(C ∩Θ(G) ). Obviously
H ≤ D and |G : D| is finite by Theorem A. Let now E = D′H. Since G is not soluble-by-finite,
D′ is infinite and not abelian. In particular Eα = E. Moreover α acts trivially on D′, as α is a
central automorphism by Theorem 3.3 (iv). By the choice of D, it is clear that every subgroup of
E which is not contained in Z(E) is fixed by α. Further Z(E)/Z(D′) = HZ(D′)/Z(D′) is cyclic,
so that α fixes every subgroup between Z(D′) and Z(E). Thus α induces a power automorphism
on E/Z(D′) = (D′/Z(D′) ) × (Z(E)/Z(D′) ). Since α centralizes D′/Z(D′) 6= 1, it must centralize

the subgroup of order p of Z(E)/Z(D′) and so αp
t

centralizes Z(E)/Z(D′) for a suitable positive

integer t. Hence αp
t

induces on E a periodic automorphism which acts trivially on E/Z(D′) and
Z(D′). This can be identified with an element of Hom(E/Z(D′), Z(D′) ), whose torsion subgroup
is a p-group. Therefore there exists a positive integer n such that [E,αp

n

] = 1. In particular αp
n

fixes H, as we wanted to show.
The last part of the statement follows from Theorem 4.2. ut

A consequence of Theorem B and Corollary 5.1.2 of [2] is that if G is a nonabelian p-group
generated by elements of bounded order, then QAutG is an abelian p-group of finite exponent.

Our last result is an observation about quasi-power automorphisms of a group G which is finite
noncentral extension of a Prüfer subgroup A. It follows by Theorem 3.3 that QAutG centralizes A.
In view of Lemma 4.1, we are mainly interested in the case that G is a p-group. Obviously this is
possible only when p = 2.

Proposition 4.5. Let G be a finite noncentral extension of a Prüfer group A. Then, QAutG is
finite. Moreover, if G is a 2-group, then also QAutG is a 2-group.

Proof. It holds G = AF for a suitable finite subgroup F of G fixed by QAutG. Since QAutG acts
trivially on A, then QAutG can be embedded in AutF and so is finite.

If G is a 2-group, let C = CG(A). Then G/C has order 2 and C is clearly centralized by every
power automorphism of G. Thus, if z ∈ Gr C, then PAutG can be embedded in Aut 〈z〉, which is
a 2-group. The statement follows now by Theorem B. ut

REFERENCES

[1] I.S.Ashmanov and A.Yu.Ol’shanskii, Abelian and central extensions of aspherical groups,
Izv. Vyss. Uchebn. Zaved. Mat. 29 (1985) n.11, 48–59 = Soviet Math. (Iz. VUZ.) 29 (1985)
n.11, 65–82.

[2] C.D.H.Cooper, Power automorphisms of a group, Math. Z. 107 (1968) 335–356.

[3] M.Curzio, S.Franciosi and F.de Giovanni, On automorphisms fixing infinite subgroups of
groups, Arch. Math. (Basel) 54 (1990) 4–13.

[4] G.Cutolo, A note on central automorphisms of groups, Atti Accad. Naz. Lincei Rend. Cl. Sci.
Fis. Mat. Natur., to appear.

[5] M.L.Newell, Normal and power endomorphisms of a group, Math. Z. 151 (1976) 139–142.

[6] D.J.S.Robinson, “A Course in the Theory of Groups”, Springer-Verlag, Berlin, 1982.

[7] E.Schenkman, On the norm of a group, Illinois J. Math. 4 (1960) 150–152.

- 9 -


