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In [2] we proved that the full automorphism group of a group is quite rarely isomorphic to a p-group
of maximal class, where p is a prime—never, for instance, if p > 3. A special case of our theorem is
that if p is an odd prime then AutG cannot be isomorphic to the (standard) wreath product Cp o Cp

of two groups of order p, for any group G. This is false of course if p = 2, since C2 o C2, the dihedral
group of order 8, is isomorphic to its own automorphism group.

Here we pursue the same kind of investigation with reference to more general wreath products,
namely, for any prime p, wreath products of two nontrivial cyclic p-groups. As for the wreath products
of two groups of order p it emerges that the groups that we consider are never isomorphic to the full
automorphism group of any group if p is odd. Even for p = 2 we have that this happens in two cases
only. Our main theorem is the following.

Theorem. Let p be a prime, and let λ and µ be positive integers. Then there exists a group G such
that AutG ' Cpλ o Cpµ if and only if pλ = 2 and pµ ∈ {2, 4}.

As is well-known, AutG ' C2 o C2 if and only if G ' C2 o C2 or G ' C4 × C2; our proof will show
that if AutG ' C2 oC4 then G is necessarily an infinite nilpotent group of class 3, with fairly restricted
structure (see Proposition 3.10).

In contrast with this result we mention that for any prime p and any finite nontrivial group K,
Heineken and Liebeck [6] (see Zureck [11] for the case p = 2, and also [5], [8], [10]) have constructed
a finite p-group G of nilpotency class 2 such that AutG is isomorphic to the wreath product of an
abelian p-group of exponent p or 4 by K.

This research was begun while the first author was enjoying the excellent hospitality of the Mathe-
matics Department of Bucknell University, partially supported by UPIMDS of Università Federico II,
Napoli. He expresses his gratitude to both institutions.
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1. Preparation

Much of our argument will involve describing certain normal subgroups of the automorphism group
AutG of a group G under the hypothesis that AutG be decomposable as a wreath product of two
nontrivial cyclic p-groups. We shall be mainly concerned with the group of inner automorphisms
InnG, its centralizer AutcG, that is, the group of central automorphisms of G, and with centralizers
in AutG of other characteristic subgroups and quotients of G. Thus it seems convenient to collect
here some elementary facts about the normal structure of such wreath products.

For the lemmas in this section we fix the following notation: p is a prime, λ, µ ∈ N and A = 〈β〉o〈α〉,
where β and α have orders pλ and pµ respectively. Furthermore, B = 〈β〉A is the base subgroup of A.

Lemma 1.1. Let Γ be a normal subgroup of A not contained in B. Suppose that either of pλ and
|ΓB/B| is greater than 2. Then CA(Γ ) is a subgroup of B of rank |A/ΓB|.

Proof — Let γ ∈ Γ r B. If pλ = 2 choose γ such that γ2 /∈ B. Then no nontrivial power of α
commutes with [β, γ], which belongs to Γ . Hence CA(Γ ) ≤ CA

(
[β, γ]

)
= B. Now, let q = |A/ΓB|.

Then B can be decomposed as a direct product of 〈αq〉-invariant subgroups: B = Drq−1
i=0 Bi, where

Bi = 〈βαi〉〈αq〉 for each i. Also, for each i, the subgroup Bi〈αq〉 is isomorphic to the wreath product
〈β〉 o 〈αq〉. Therefore CBi(Γ ) = CBi(α

q) is cyclic (of order pλ) for each i, and CA(Γ ) = Drq−1
i=0 CBi(Γ )

has rank q. ut

Lemma 1.2. Let Γ be a normal abelian subgroup of A not contained in B. Then pλ = 2 and
Γ = CA(Γ ) = [B,α0]〈γ〉 ≤ B〈α0〉 for some γ ∈ Γ rB, where α0 is the element of order 2 in 〈α〉, and
B ∩ Γ = [B,α0].

Proof — Lemma 1.1 shows that pλ = 2 = |ΓB/B|. Hence Γ = (B ∩ Γ )〈γ〉, for some γ ∈ Bα0. Since
B ∩ Γ ≥ [B, γ] = [B,α0] = CB(α0) = CB(γ) ≥ B ∩ Γ we have that B ∩ Γ = [B,α0] = CB(γ). Now,
CA([B,α0]) = B〈α0〉 = B〈γ〉, so that Γ = CA(Γ ). ut

Lemma 1.3. Let q be a proper factor of pµ and let D be a subgroup of B such that [B,αq] ≤ D.
Then rk

(
D/[D,αq]

)
≥ q. Moreover, if rk

(
D/[D,αq]

)
= q then D is a direct factor of B.

Proof — As in the proof for Lemma 1.1 we can write B = Drq−1
i=0 Bi, where Bi = 〈βαi〉〈αq〉 for each i.

Let ¯̄D = D/Dp. Then αq acts on ¯̄D and the mapping given by x 7→ [x, αq] is an endomorphism of ¯̄D,
thus ¯̄D/CD̄(αq) ' [ ¯̄D,αq]. It follows that

∣∣ ¯̄D/[ ¯̄D,αq]
∣∣ = |CD̄(αq)|. Now

∣∣D/Dp[D,αq]
∣∣ =

∣∣ ¯̄D/[ ¯̄D,αq]
∣∣,

hence, to prove that rk
(
D/[D,αq]

)
≥ q, what we have to show is that |CD̄(αq)| ≥ pq.

Since [B,αq] ≤ D we have that [Bp, αq] = [B,αq]p ≤ Dp. Then CD̄(αq) contains (BpCB(αq) ∩
D)/Dp. Let t = pµ/q, the order of αq. Also let c0 = ββαq

βα2q · · ·βα(t−1)q

, a generator of CB0(α
q),

and x0 = β−tc0. Then x0 =
∏t−1

i=0[β, α
iq] ∈ [B0, α

q]. Next, for every i ∈ {1, 2, . . . , q−1}, let xi = xαi

0 .
Then xi ∈ [Bi, α

q] ≤ Bi ∩D and xi ∈ BpCB(αq), hence xiD
p ∈ CD̄(αq) for all i ∈ {0, 1, . . . , q − 1}.

Also, the elements xi are clearly independent modulo Bp, hence modulo Dp. Therefore, if H :=
〈x0, . . . , xq−1〉, then HDp/Dp has order pq and is contained in CD̄(αq). Thus rk

(
D/[D,αq]

)
≥ q.

Also note that since HBp/Bp has order pq as well, we have Bp ∩H ≤ Dp.
Finally, suppose that the rank of D/[D,αq] is exactly q. Then HDp/Dp = CD̄(αq). Since

(Bp ∩D)/Dp ≤ CD̄(αq) we get Bp ∩D = Bp ∩HDp = (Bp ∩H)Dp = Dp. Since B is homocyclic,
therefore D is a pure subgroup of B, hence a direct factor. ut

Lemma 1.4. Let Γ be a normal subgroup of A not contained in B. Suppose that either of pλ and
|ΓB/B| is greater than 2. Then Γ cannot be generated by |A/ΓB| elements.

Proof — Let q = |A/ΓB|. There exists ξ ∈ B such that Γ = D〈γ〉, where D = Γ ∩B and γ = αqξ—
of course, ξ is only determined modulo D. Then D contains [B, γ] = [B,αq], thus satisfying the
hypothesis of Lemma 1.3. Let F be the Frattini subgroup of Γ . Then Γ/F = 〈γF 〉 ×DF/F . Since
〈γF 〉 6= 1, it will be enough to prove that DF/F has rank at least q. Set D∗ = Dp[D,αq], so that
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F = D∗〈γp〉. The group DF/F is an epimorphic image of D/D∗: the latter is an extension of the
cyclic group F ∩ D/D∗ by D/F ∩ D ' DF/F . Hence rk(DF/F ) = rk(D/D∗) − rk(F ∩ D/D∗) ≥
rk(D/D∗) − 1. Thus what we have to prove is that either rk(D/D∗) > q or rk(D/D∗) = q and
F ∩D = D∗. We have rk(D/D∗) ≥ q by Lemma 1.3, so we may assume that rk(D/D∗) = q. Then, by
the same lemma, B = D×E for some E. We can redefine γ in such a way that ξ ∈ E. We have to prove
that F ∩D = D∗, that is, 〈γp〉∩D ≤ D∗. Now, 〈γp〉∩D = 〈γ〉∩D = 〈γt〉, where t = pµ/q = |ΓB/B|.
Let us compute γt modulo D∗. Since [αq, ξ] lies in D and so commutes with αq modulo D∗, it
follows that γt ≡ αqtξt[ξ, αq]t(t−1)/2 (mod D∗). Now, αqt = αpµ

= 1. Since γt, [ξ, αq] ∈ D it also
follows that ξt ∈ D, but ξ ∈ E, and so ξt = 1. Therefore γt ≡ [ξ, αq]t(t−1)/2 (mod D∗). If t > 2
then p divides t(t − 1)/2, hence [ξ, αq]t(t−1)/2 ∈ Dp ≤ D∗ and γt ∈ D∗. If t = 2 then ξ2 = 1, but
expB = 2λ > 2 by hypothesis, so ξ ∈ B2. Hence [ξ, αq] ∈ [B2, αq] = [B,αq]2 ≤ D2 ≤ D∗. Therefore
γt ∈ D∗ in this case as well, as we wanted to show. ut

Another important property of the normal subgroups of A that we will make use of is that, in
the above notation, the normal subgroups of A contained in the socle of B are totally ordered by
inclusion (see [9], Lemma 6.2.4 for instance).

Finally, for ease of reference we record three elementary and certainly well-known remarks, whose
proofs are omitted:

Lemma 1.5. If λ ≤ µ then Z(A) ≤ A′.

Lemma 1.6. Let G be a nilpotent group of class 2 and let X be a subgroup such that Z(G) ≤ X ≤ G
and G/X is cyclic. Then exp

(
G/Z(G)

)
= exp

(
X/Z(G)

)
.

Lemma 1.7. Let G be a group such that |G/G2| = 8 and |G′| = 2. Then |G/Z(G)| = 4.

2. An example

In this section we shall construct a group G such that AutG ' C2 oC4. The results in the next section
will show that all groups having this property share much of their structure with this example.

Let us start with the group G0 defined as follows:

G0 =
(
〈c, z〉o 〈a〉

)
o 〈b〉,

where 〈c, z〉 is isomorphic to V4, the noncyclic group of order 4, both a and b have infinite order,
c = [a, b] and z = [c, a] = [c, b] ∈ Z(G0). Thus G′

0 = 〈c, z〉 ' V4 and G0/G
′
0 is free abelian on aG′

0

and bG′
0. Also, G0 is nilpotent of class 3 and γ3(G0) = 〈z〉. Therefore the next lemma may be applied

to G0.

Lemma 2.1. LetG be a nilpotent group of class 3 such thatG′ has exponent 2. ThenG4 ≤ Z(G) and
the mapping g ∈ G 7→ g4 ∈ G4 is an epimorphism. Furthermore G2 is abelian and [G2, G] ≤ γ3(G).

Proof — Let K = γ3(G). Then ¯̄G = G/K is a class-2 nilpotent group whose derived subgroup
has exponent 2, hence ¯̄G2 ≤ Z( ¯̄G). Thus [G2, G] ≤ K, in particular G2 ≤ Z2(G). It follows that
[G2, G2] = [G4, G] = [G2, G]2 ≤ K2 = 1, hence G2 is abelian and G4 ≤ Z(G). Next, for every
x, y ∈ G, we have (xy)2 = x2y2[y, x][y, x, y] and so (xy)4 = x4y4, because G′ has exponent 2. ut

It is easy to check that G0 has an automorphism α̂ defined by:

a 7−→ b 7−→ a−1 and, consequently, c 7−→ cz, z 7−→ z.

Let (pi)i∈N be a family of primes congruent to 1 modulo 4 and such that pi 6= pj if i 6= j. For
every i ∈ N there exists λi ∈ Z such that λ2

i ≡ −1 (mod pi); choose such a λi and let hi = abλi .
Define recursively an ascending chain of groups as follows. For every i ∈ N let Gi be a central
product Gi−1〈zi〉, where 〈zi〉 is infinite cyclic, h1−pi

i = zpi

i and zi /∈ Gi−1 (the latter condition being
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a consequence of the previous ones anyway), hence |Gi/Gi−1| = pi. To check that these groups
are well-defined, note that at each stage the hypotheses of Lemma 2.1 are satisfied by Gi−1 and so
h1−pi

i ∈ G4
0 ≤ Z(Gi−1). Define G as the direct limit of the groups Gi for i ranging over N0. We

have that G′ = G′
0 and G satisfies the hypotheses of Lemma 2.1. Moreover, G′ is torG, the torsion

subgroup of G. Indeed, G0/G
′ is torsion-free and G/G0 is periodic and has the subgroups 〈zi〉G0/G0

as primary components, each of order pi. If G/G′ is not torsion-free then there exist some i ∈ N and
some g ∈ G0 such that gzi is periodic. Hence (gzi)pi ∈ torG0 = G′. But (gzi)pi = gpih1−pi

i , thus
hi ∈ G′

0G
pi

0 , which is false. Therefore G/G′ is torsion-free, as claimed.
We shall extend α̂ to an automorphism of G. To this end, note that for every i ∈ N we have

hi = (hizi)pi and, modulo G′
0G

pi

0 :

hα̂
i =

(
abλi

)α̂ ≡ a−λib ≡
(
abλi

)−λi = h−λi
i ∈ Gpi

i ,

hence hα̂
i ∈ G′

0G
pi

i = Gpi

i , since G′
0 has order 4 and pi is odd the former is contained in Gpi

i . Thus
zpiα̂
i = (hα̂

i )1−pi ∈ Gpi

i .
The fact that the mapping given by x 7→ x4 is an endomorphism of Gi whose image is contained

in Z(Gi) implies that the mapping given by x 7→ xpi is an epimorphism from Gi to Gpi

i —an isomor-
phism actually, since torGi = G′ has order 4; it is relevant here that pi ≡ 1 (mod 4). Thus there
exists ri ∈ Gi such that rpi

i = zpiα̂
i . Since pi ≡ 1 (mod 4) and G4

i ≤ Z(Gi) we have that ri ∈ Z(Gi);
also ri /∈ Gi−1, because rpi

i = (hα̂
i )1−pi /∈ Gpi

0 and pi does not divide |Gi−1/G0|, and this makes clear
that, as claimed, α̂ can be extended to an automorphism α of G by mapping each zi to ri.

To simplify the argument it is perhaps useful to remark that the automorphisms of G are deter-
mined by their actions on {a, b}. Indeed, G = 〈a, b〉G4, hence if γ ∈ AutG is such that aγ = a and
bγ = b then γ acts trivially on G/G4. On the other hand, Gab is torsion-free and has {aG′, bG′}
as a maximal independent subset, hence γ acts trivially on Gab too. Now, G′ is the kernel of the
epimorphism x ∈ G 7→ x4 ∈ G4, hence G4 ' G/G′ is torsion-free, therefore G4∩G′ = 1 and so γ = 1.
This establishes our claim.

Since α2 maps a and b to their inverses we have that α has order 4. For any x ∈ G let x̃ be
the inner automorphism of G determined by x. Let β := ãα2; clearly β 6= 1. Also, β2 = ãα2ãα2 =
ã(ã)α2

= ã(aα2
)̃ = ãã−1 = 1, so β has order 2. Next, βα = (ãα2)α = ãαα2 = b̃α2, so that

ββα = ãα2b̃α2 = ãb̃α
2

= ãb−1 and βαβ = b̃α2ãα2 = b̃ãα2
= b̃a−1 =

(
ãb−1

)−1
.

Now, ab−1 centralizes c, hence G′, and so [(ab−1)2, G] = [ab−1, G]2 = 1, because G′ has exponent 2.
Therefore (ab−1)2 ∈ Z(G), which proves that ββα = βαβ. The next conjugate of β that we take into
account is βα2

= α2(ãα2)α2 = α2ã. We have ββα2
= ãα2α2ã = ã2 and βα2

β = α2ããα2 = (ã2)α2
=

ã−2. As a4 ∈ Z(G) then ββα2
= βα2

β. Therefore β commutes with both βα and βα2
. Since α

has order 4 we have that B := 〈β〉〈α〉 is (elementary) abelian (of rank at most 4). By our previous
calculation [β, α] = ββα = ãb−1, and it follows that [β, α, α2] is the inner automorphism determined
by [a−1, b], which is not trivial. Therefore α induces an automorphism of order 4 on [B,α], hence
rk

(
[B,α]

)
≥ 3 and rkB = 4 (here, as elsewhere, rk(X) denotes the rank of the group X). This shows

that 〈α, β〉 is a subgroup of AutG isomorphic to the wreath product C2 oC4. We shall prove that this
subgroup is actually the whole of AutG. It will be enough to show that |AutG| ≤ 26.

By considering {aG′, bG′, hiziG
′ | i ∈ N} as a set of generators of Gab it is immediately checked

that Gab is isomorphic to one of the groups in [4], p. 271, Example 1, whose automorphism groups
are cyclic of order 4. Thus AutGab ' C4. As |G′| = 4 and AutG centralizes 〈z〉 = γ3(G) it is clear
that

∣∣AutG/CAut G(G′)
∣∣ ≤ 2. Hence it will suffice to show that Γ := CAut G(G′) ∩ CAut G(Gab) has

order 8 at most. We know that Γ is isomorphic to D := Der(Gab, G
′). Since the elements of Γ are

determined by their actions on a and b, by a remark above, the elements of D are determined by
their actions on ā := aG′ and b̄ := bG′. Thus |D| ≤ |G′|2 = 16; it will be enough to show that not
every mapping from {ā, b̄} to G′ gives rise to a derivation. Let δ ∈ D. From āb̄ = b̄ā we obtain
(āδ)bb̄δ = (b̄δ)aāδ, hence āδ[āδ, b]b̄δ = b̄δ[b̄δ, a]āδ and so [āδ, b] = [b̄δ, a]. Since ab−1 centralizes G′, and
so [āδ, b] = [āδ, a], this means that āδ and b̄δ must be congruent modulo CG′(a) = 〈z〉. It follows that
|D| ≤ 8, as required. This proves that AutG = 〈α, β〉 ' C2 o C4.
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3. Proof of the Theorem

We fix some notation and hypotheses that will hold throughout this section. Let p be a prime and λ, µ
positive integers. We assume that G is a group whose automorphism group A := AutG is isomorphic
to the standard wreath product Cpλ o Cpµ . Thus we can write A = 〈α, β〉 = B o 〈α〉 for suitable
automorphisms α, β of G, of orders pµ and pλ respectively, where B = Drpµ−1

i=0 〈β〉αi

corresponds to
the base subgroup of the wreath product 〈β〉 o 〈α〉. In agreement with notation in Section 1 we denote
by α0 an element of order p in 〈α〉. We set I := InnG. Since we are not interested in the trivial case
when A is dihedral we also stipulate that A 6' D8, that is to say, at least one of pλ and pµ is greater
than 2.

We can apply to G results proved or quoted in Section 1 of [2] on every group whose automorphism
group is a finite p-group.

In particular, the periodic elements of G form a finite subgroup T , which is a finite p-group if G
is infinite, and still in this case G/T is a torsion-free abelian group whose automorphism group is
finite and which therefore has finite quotients (modulo characteristic subgroups) of arbitrarily high
exponent. By a theorem of Hallett and Hirsch (see [4], Theorem 116.1), A/CA(G/T ) is a group of
exponent at most 12. Since expA = pλ+µ does not divide 12 it follows that T 6= 1.

As a further piece of notation, let Z := Z(G) and S := T ∩ Z; obviously G/Z also is a finite
p-group and S 6= 1.

Since Z(A) is cyclic A has a unique normal subgroup of order p, namely the socle Z(A)[p] of Z(A).
We can then reproduce the argument in [2], Lemma 2.2 to show that G has exactly one characteristic
subgroup of order p, say N , and exactly one characteristic subgroup of index p, which we will denote
throughout by M , and that Z(A)[p] = CA(G/N) ∩ CA(M). Then we have:

Lemma 3.1. CA(M) is a nontrivial cyclic subgroup of B.

Proof — Both CA(M) and CA(G/N) are normal in A and abelian, because they stabilize the series
1 < M < G and 1 < N < G respectively. Since the A-invariant subgroups of the socle B[p] of B
form a chain and clearly Z(A) ≤ B, we have Z(A)[p] = CB[p](X) where X is either G/N or M ,
and CB(X) is cyclic. Moreover, if CA(X) � B then Lemma 1.2 shows that expB = pλ = 2 and
CB(X) = [B,α0], which is false because CB(X) is cyclic and A 6' D8. Thus CA(X) ≤ B. Finally,
CA(G/N) ' Hom(G/N,N) is not cyclic, since G/Z is not, hence X = M . ut

By the arguments in Lemma 1.4 and Lemma 2.3 of [2] we also have:

Lemma 3.2. M contains all proper characteristic subgroups of G whose index is finite and a power
of p. Moreover, G is not abelian.

Lemma 3.1 yields that Hom(G/M,S) ' CA(G/S) ∩ CA(M) is cyclic. On the other hand this
group is isomorphic to the socle of S. Therefore:

Lemma 3.3. S is cyclic.

Next we have two key lemmas on some normal subgroups of A. Recall that I denotes InnG.

Lemma 3.4. I ≤ B〈α0〉. If pλ > 2 then I ≤ B ≤ AutcG and G has nilpotency class 2.

Proof — The subgroup CA(G/S[p]) ∩ CA(Z) of AutcG is isomorphic to Hom(G/Z, S[p]) and hence
to the Frattini factor group I/I ′Ip of I. Thus rk(AutcG) ≥ d, where d is the minimal number of
generators of I. Suppose that I � B and that either |IB/B| > 2 or pλ > 2. Then rk(AutcG) =
|A/IB| by Lemma 1.1. On the other hand, Lemma 1.4 shows that d > |A/IB|, and this is a
contradiction. Therefore |IB/B| ≤ 2, hence I ≤ B〈α0〉, and I ≤ B if pλ > 2. In this latter case
AutcG = CA(I) ≥ B and I is abelian; since G is not abelian (Lemma 3.2) we have that G has class 2.

ut
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Lemma 3.5. Suppose that G is infinite and T � Z. Then CA(T )∩CA(G/T ) � AutcG and pλ = 2.

Proof — Since S < T there exists a characteristic subgroup R of T in which S is maximal, by
Lemma 1.4 of [2]. Then R ≤ Z2(G). As |R/S| = p and S is cyclic we therefore have that [R,G] = S[p]
and so

∣∣G/CG(R)
∣∣ = p. But CG(R) is characteristic in G, thus CG(R) = M by Lemma 3.2. Let

r ∈ RrS, and let pt be the order of r. We claim that there exists L ≤M such that T ≤ L and G/L is
cyclic of order pt+1. Indeed, ¯̄G := G/TGpt+1

is a finite abelian group of exponent pt+1, by Lemma 1.3
of [2]. Let ¯̄M = M/TGpt+1

. By Lemma 3.2 all elements of order at most pt in ¯̄G belong to ¯̄M . As ¯̄M
is maximal in ¯̄G it easily follows that ¯̄G = 〈a〉×U for some element a of order pt+1 and some U such
that ¯̄M = 〈ap〉 × U . Define L as the preimage of U in G; all the required properties hold and the
claim is established. Now let x ∈ G be such that G = L〈x〉. We can define an automorphism γ of G
by mapping every element of L to itself and letting xγ = xr. That γ is well-defined follows from the
fact that r ∈ Z(L) and that (xr)pt+1

= xpt+1
rpt+1

= xpt+1
; the latter equalities hold because 〈x, r〉

has nilpotency class 2 and commutator subgroup of order p. Now [T, γ] = 1 and r ∈ [G, γ] r Z, so
that γ is not central, but it centralizes T and G/T . Thus CA(T ) ∩ CA(G/T ) � AutcG.

Finally, assume that pλ > 2. Since CA(T ) ∩ CA(G/T ) is abelian and normal in A, Lemma 1.2
shows that this subgroup is contained in B. On the other hand, by Lemma 3.4, we have B ≤ AutcG,
and this contradicts what we have just proved. ut

We are now in position to begin the actual proof of the theorem by examining which values of p,
λ and µ may occur at all. We will first exclude the case that p is odd. The proof follows an argument
from [2], proof of Theorem 2.11.

Lemma 3.6. p = 2.

Proof — Suppose that p > 2. If G is infinite then T ≤ Z, by the previous lemma. But then G has
an automorphism that centralizes T and acts like the inversion map on G/T ([2], Lemma 1.5); this
automorphism has order 2, which is impossible. Thus G is finite. Since A has no nontrivial abelian
direct factor it is easy to see that the p′-component of G has order at most 2 (see Lemma 2.1 of [2])
and we may assume that G is a p-group. By applying [7], Hilfssatz III.7.5 to GoA we see that G has
a noncyclic characteristic subgroup P of order p2. By Lemma 3.2 then P ≤M . Let P̃ be the group of
those inner automorphisms of G determined by elements of P . Then P̃ C A and clearly |P̃ | ≤ p, hence
P̃ ≤ Z(A)[p] ≤ CA(M). Thus P ≤ Z(M). Now CA(M) = CA(M) ∩ CA(G/M) ' Der

(
G/M,Z(M)

)
,

and this derivation group is isomorphic to K := ker(1 + σ + σ2 + · · · + σp−1), where σ is the
automorphism of Z(M) induced by conjugation by an element of G r M . It is straightforward to
check that P ≤ K, since σ induces on P an automorphism of order p at most. Hence P can be
embedded in CA(M). This is a contradiction, because CA(M) is cyclic. ut

Once it has been proved that p = 2 our previous lemmas suggest that we treat the cases λ = 1
and λ > 1 separately. Let us begin by disposing of the latter case.

Lemma 3.7. λ = 1.

Proof — Suppose that λ > 1. Then G has class 2, as shown in Lemma 3.4. Assume first that G is
infinite. Then T ≤ Z by Lemma 3.5, and T is cyclic by Lemma 3.3. As T/G′ is obviously a direct
factor of Gab, if G′ < T then G = TK for some proper subgroup K of G such that T ∩ K = G′.
By Lemma 1.3 of [2] there exists an epimorphism ε : K � T (so G′ ≤ ker ε). Since T ≤ Z we can
construct two automorphisms of G as follows:

γ :
{
k ∈ K 7→ k
t ∈ T 7→ t1+|T |/2 δ :

{
k ∈ K 7→ kkε

t ∈ T 7→ t
.

Let N be the socle of T . Then γ belongs to CA(G/N) ∩ CA(N), which is abelian and normal in A
and so is contained in B by Lemma 1.2; thus γ ∈ B. Similarly δ ∈ B, because δ centralizes T and
G/T . But it is easy to check that γ and δ do not commute. This is a contradiction, which proves
that G′ = T . Now consider Γ := CA(G/T ). Since T ≤ Z we have Γ ≤ AutcG. As is well-known all
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central automorphisms act trivially on the derived subgroup, hence Γ is the stabilizer of the series
1 < T < G. Therefore Γ is abelian, hence Γ ≤ B, and Γ ' Hom(G/T, T ). Also, by the theorem
of Hallett and Hirsch already quoted, ¯̄A := A/Γ is a group of exponent at most 4 in which all
elements of order 2 lie in the centre. Since A is two-generator | ¯̄A| ≤ 32 and | ¯̄A′| ≤ 2, and ¯̄A is even
abelian if µ = 1. As A′ is homocyclic of rank 2µ − 1 it follows that A′ ∩ Γ has the same rank and
exponent 2λ. Therefore exp(G/Z) = |T | ≥ expHom(G/T, T ) ≥ 2λ > 2. We use [2], Lemma 1.5 again
to produce an automorphism ϕ of G of order 2 that centralizes T and acts like the inversion map
on G/T . By what we have just proved ϕ /∈ AutcG, hence ϕ /∈ B by Lemma 3.4. It is immediate to
check that the socle Γ [2] of Γ is CA(G/G2) ∩ CA(N) ' Hom(G/G2, N) ' G/G2 and centralizes ϕ.
By Lemma 1.1 it follows that rk(G/G2) = rk(Γ ) ≤ |A/B〈ϕ〉| = 2µ−1. We have already shown that
rk(Γ ) ≥ rk(A′ ∩ Γ ) = 2µ − 1, hence µ = 1. Thus G/G2 is cyclic, but this is a contradiction because
G/Z is not cyclic.

Therefore G is finite. Let Σ be the centralizer in A of Z and G/Z. Then Σ ' Hom(G/Z,Z) '
G/Z ' I, because Z is cyclic and G′ ≤ Z, so exp(G/Z) = |G′| ≤ |Z|. On the other hand I ≤ Σ, so
I = Σ. It follows that A′ ≤ I, because A′ ≤ B ≤ AutcG by Lemma 3.4, hence A′ centralizes G/Z,
and A′ centralizes Z as well, as Z is cyclic. Thus A′ ≤ I ≤ B; since CA(A′) = B it follows that
AutcG = B. Also, |G′| = exp I = 2λ. Now G has no nontrivial abelian direct factor, because
Z is cyclic. By a theorem of Adney and Yen [1] it follows that |AutcG| =

∣∣ Hom(G,Z)
∣∣. But

expGab ≤ exp(G/Z) · |Z/G′| = |G′| · |Z/G′| = |Z|, hence Hom(G,Z) ' Hom(Gab, Z) ' Gab. Thus
the above equality becomes |B| = |Gab|. By the main theorem in [3] we have that |G| ≤ |A|; since
|G| = |G′| · |Gab| = 2λ|B| and |A| = 2µ|B| we deduce that λ ≤ µ. Hence Z(A) ≤ A′ by Lemma 1.5.
This can be used to bound the size of Z. Indeed, the mapping θ : g ∈ G 7→ g1+2λ+1 ∈ G is an
automorphism, hence it lies in Z(A) and therefore in A′. But A′ ≤ I, hence θ centralizes Z, so
|Z| ≤ 2λ+1. As |G′| = 2λ and |B| = |Gab| = |I| · |Z/G′| we get that |B : I| ≤ 2. Since λ > 1 this
implies that rk(G/Z) = rk(I) = rk(B) = 2µ. Now let u be any element of G r M . The A-orbit
of u generates a characteristic subgroup of G which is not contained in M , hence is G itself. Thus,
by the last remark, this orbit must contain 2µ elements which are independent modulo ZG2. Since
B = AutcG centralizes u modulo ZG2 and |A : B| = 2µ it follows that B is the centralizer in A
of u modulo ZG2. So, to reach a contradiction it will be enough to find such a u and a noncentral
automorphism of G that fixes u modulo G2. To this end, note first that the set of all elements g ∈ G
such that [g,G] ≤ (G′)2 is a proper characteristic subgroup of G, so it is contained in M . Hence, if
we choose any u ∈ GrM we can find v ∈ G such that G′ =

〈
[u, v]

〉
. We may clearly choose v /∈M :

if v ∈M we simply replace it by uv. At the expense of interchanging u and v if needed, we may also
assume that the order of u is not smaller than that of v. Then u2λ

and v2λ

both belong to Z, which
is cyclic, hence v2λ

= ut2λ

for some integer t. Let w = u−tv. Then w2λ+1
= 1 and [u,w] = [u, v].

Let u1 := uw2. Then u2λ

1 = u2λ

w2λ+1
[w, u]2

λ(2λ−1) = u2λ

, because |G′| = 2λ. As [u,w] = [u1, w]
has order 2λ = exp(G/Z), we have that 〈u〉 ∩ 〈w〉Z = 〈u2λ〉 = 〈u1〉 ∩ 〈w〉Z. This shows that there
exists an automorphism of H := 〈u,w〉Z which centralizes Z and w, and maps u to u1. Now let
C := CG(H) = CG({u,w}). Then |G : C| ≤ 22λ. On the other hand, u and w are independent
modulo Z(H), so

∣∣H/Z(H)
∣∣ = 22λ. It follows that G is factorized as a central product HC; also

H ∩ C = Z(H) = Z and so the above automorphism of H can be extended to an automorphism ψ
of G acting trivially on C. It is clear that ψ is not central, since [w2, u] 6= 1 and so w2 /∈ Z, but it
fixes u modulo G2. This contradiction completes the proof. ut

Therefore pλ = 2, so we have identified the first factor of the wreath products that we are dealing
with. Since we have excluded the case where A is isomorphic to D8 we also have µ > 1. Moreover,
Lemma 3.1 now gives that |CA(M)| = 2 and so CA(M) = Z(A). Furthermore, this also implies that
CA(M) ≤ I, hence CG(M)/Z ' CA(M). As CG(M) ≤M by Lemma 3.2, then CG(M) = Z(M) and
|Z(M)/Z| = 2.

It is also relevant that the Hallett-Hirsch Theorem now gives stronger information, in the case
that G is infinite. Indeed, as we already mentioned, this theorem implies that all elements of order 2
in ¯̄A = A/CA(G/T ) are central; since B has exponent 2 this means that ¯̄A is abelian, hence A′
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centralizes G/T .
Lemma 3.4 shows that I ≤ B〈α0〉, which has class 2. Hence G has nilpotency class 3 at most.

Let us see that the class is exactly 3.

Lemma 3.8. G has nilpotency class 3.

Proof — Suppose that G has class 2. Then I is an abelian subgroup of B〈α0〉 and so is (elementary
abelian)-by-cyclic. By Lemma 1.6 then exp(G/Z) = 2. Now, G′ is contained in S and hence is cyclic
(Lemma 3.3). Thus |G′| = 2.

Suppose that G is finite. Then the mapping θ : g ∈ G 7→ g5 ∈ G is an automorphism. Hence
θ ∈ Z(A). Thus M4 = [M, θ] = 1. Therefore Z, which is a cyclic subgroup of M , has order 4 at
most. If M is abelian then |M/Z| = |Z(M)/Z| = 2, hence |M | ≤ 8 and |G| ≤ 16. Either M is
cyclic or Z has a complement in M , so either |M | ≤ 4 or M ' C4 × C2. In any case |AutM | ≤ 8.
Since CA(M) = Z(A) has order 2 it follows that |A| ≤ 16. But |A| = 22µ+µ ≥ 26, a contradiction.
Therefore M is not abelian. Let u, v ∈ M be such that [u, v] 6= 1, and let H = 〈u, v〉. Then
u4 = v4 = 1 because M has exponent 4, and both u2 and v2 belong to the socle G′ of Z. So |H| = 8.
Also, G is the central product HC, where C = CG(H). If H ' Q8 then H has an automorphism of
order 3, which can be extended to G by letting it act trivially on C. This is a contradiction, hence
H ' D8. We may assume that u has order 4, hence v2 = 1. If C has an element c of order 4 then
H1 := 〈u, vc〉 ' Q8 and we get a contradiction as above. Thus expC = 2. So C is abelian, hence
C ≤ Z. But then C ≤ H and G = H, a contradiction again. This proves that G cannot be finite.

Suppose then that G is infinite. Clearly Gab splits over T/G′, hence there exists a subgroup
V ≤ G such that TV = G and V ∩ T = G′. Lemma 1.5 of [2] shows that V has an automorphism
acting like the inverting map on V/G′. Since V 2 ≤ Z this can be exended to an automorphism ϕ
of G centralizing T . Note that [G,ϕ] ≤ G2 ≤ Z. Thus we have:

ϕ ∈ CA(T ) ∩AutcGr CA(G/T ).

Assume that G′ = T . Let Γ = CA(G/T ). By the Hallett-Hirsch Theorem A/Γ is an abelian
group of exponent at most 4, hence A′A4 = [B,α]〈α4〉 ≤ Γ . On the other hand Γ is abelian, since
|T | = 2 and so [Γ, T ] = 1, actually Γ ' Hom(G/T, T ) ' G/G2. Thus Γ ≤ CA(A′) = B. Hence
α4 ∈ 〈α〉 ∩ B = 1 and so µ = 2. It is easy to see that [ϕ, Γ ] = 1, because ϕ centralizes G/G2

and T , hence ϕ ∈ B. Then we have A′ ≤ Γ ≤ B and ϕ ∈ B r Γ ; as A′ l B it follows that Γ = A′

(we use the symbol ‘l’ for ‘is a maximal subgroup of’). Therefore G/G2 ' Γ has rank 3, thus
|G/Z| = 4 by Lemma 1.7. Hence I is [B,α2], the only A-invariant subgroup of B of order 4, so that
AutcG = B〈α2〉. Also, I ≤ CA(G/Z)∩CA(Z) ' Hom(G/Z, T ) ' G/Z ' I, so I = CA(G/Z)∩CA(Z).
Therefore [Γ,Z] 6= 1, because I < Γ ; we shall see that this leads to a contradiction. Let ϕ∗ and
α∗ be the automorphisms induced on Z by ϕ and α respectively. It is clear that ϕ∗ = −1 + ε,
where ε is an endomorphism of Z such that im ε ≤ T . For every x ∈ G we have xxϕ ∈ T , hence
x2ϕ =

(
x−1(xxϕ)

)
2 = x−2. Thus G2 ≤ ker ε. As G2 l Z then α acts trivially on Z/ ker ε, and likewise

on im ε, obviously. It follows that α∗ commutes with ε and hence with ϕ∗. Therefore [ϕ, α] ∈ CA(Z).
But Γ = A′ = 〈[ϕ, α]〉A, hence we obtain that [Γ,Z] = 1, the expected contradiction. Therefore
G′ < T .

Since G/T has quotients of arbitrary finite exponent ([2], Lemma 1.3) and S is cyclic the exponent
of Σ := CA(G/S) ∩ CA(S) ' Hom(G/S, S) is |S|. Also note that I ≤ Σ ≤ AutcG and Σ ≤ B〈α0〉
by Lemma 1.2, hence |S| ≤ 4. We claim that S 6= T . Indeed, if S = T then |S| = 4 because
G′ < T , and Σ has exponent 4. Since Σ has an elementary abelian subgroup of index 2 we have that
|Σ2| = 2. Moreover Q := G/S is torsion-free, and Σ ' Hom(Q,S) ' Q/Q4, whence |Q2/Q4| = 2 and
so |Q/Q2| = 2. This means that SG2 l G, which is impossible, as it would imply that G is abelian.
Thus our claim is proved, therefore T � Z. As a consequence, by Lemma 3.5:

Γ := CA(G/T ) ∩ CA(T ) � AutcG.

If I � B then Lemma 1.2 shows that I = CA(I) = AutcG. However the automorphism ϕ considered
above is central but is certainly outer, since it does not centralize G/T . By this contradiction I ≤ B
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and consequently B ≤ AutcG. Now Γ ≤ B〈α0〉, because Γ is abelian, so as Γ � AutcG it follows
that AutcG = B. Moreover, A′ centralizes G/T by the Hallett-Hirsch Theorem, hence ϕ ∈ B r A′

and so B = 〈ϕ〉A. Since ϕ ∈ CA(T ) C A this shows that [B, T ] = 1. But this is impossible, as I ≤ B
and T � Z. ut

Lemma 3.9. I = A′〈βα0〉. Moreover:

(i) the set of all characteristic subgroups of G containing Z is totally ordered by inclusion;

(ii) M2 ≤ Z;

(iii) |S| = 2;

(iv) ZG′ is a maximal subgroup of G2 = Z2(G) and G2/Z ' G/G2 has rank 2µ−1. Also, G2 is
abelian.

Proof — From Lemma 3.4 we know that I ≤ B〈α0〉. Since I is not abelian, by Lemma 3.8, we have
that I = (I ∩ B)〈γ〉, where γ ∈ I r B and [I ∩ B, γ] 6= 1. Also, it is clear that CB(γ) = CB(α0) =
[B,α0] = [B, γ] ≤ I, because I C A, and that CA(I ∩ B) = B because γ does not centralize I ∩ B,
thus

AutcG = CA(I) = Z(I) = [B,α0] < I ∩B. (?)

Besides proving statements (i)–(iv) we shall check that I ∩ B = A′ and that βα0 ∈ I, thus making
βα0 a suitable choice for γ.

The natural conjugation epimorphism ∼: G � I gives rise to the bijection X 7→ X̃—an isomor-
phism from the lattice of the characteristic subgroups of G containing Z to that of the A-invariant
subgroups of I. As we mentioned in Section 1, the A-invariant subgroups of B (which equals its
socle) form a chain. Now I ∩B C A and |I/I ∩B| = 2, hence Lemma 3.2 yields I ∩B = M̃ and (i).
Since M/Z ' M̃ , we also get (ii) as an immediate consequence. Let J := 〈γ ∈ I r B | γ2 = 1〉. For
every η ∈ B we have (ηα0)2 = [η, α0], and this shows that all given generators of J lie in CB(α0)α0,
thus J ≤ CB(α0)〈α0〉, which is abelian. Since I is not abelian it follows that J < I. But then (i)
shows that J ≤ I ∩ B = M̃ , which means that J = 1. Hence every element of I r B has order 4,
in particular, α0 /∈ I. Fix γ ∈ I r B. Then γ = σα0 for some σ ∈ B r I. Thus I ∩ B < B; as
A′ l B the total ordering property gives that I ∩B ≤ A′. The mapping f : η ∈ B 7→ [η, α0] ∈ B is a
homomorphism with kernel [B,α0] ≤ I ∩B. Since σ /∈ I ∩B we have that σf /∈ (I ∩B)f = [I ∩B,α0].
But σf = [σ, α0] = γ2 and [I ∩B,α0] = [I ∩B, γ] = I ′, hence γ2 /∈ I ′. This shows that G/ZG′ ' I/I ′

has exponent 4. Now AutcG = [B,α0] has exponent 2, hence the same holds for its subgroup
CA(G/S) ∩ CA(S) ' Hom(G/S, S). As exp(G/ZG′) > 2 it now follows that expS = 2. Since S
is cyclic, |S| = 2, and so (iii) is proved. Now, S < G′, because G has class 3, hence there exists
a characteristic subgroup V of G of order 4 contained in G′ (see [2], Lemma 1.4). As S < V then
I � CA(V ) and |A/CA(V )| = 2. Hence I � A2 = A′〈α2〉, so that γ /∈ A′〈α2〉. Since α0 ∈ 〈α2〉
we deduce that σ /∈ A′. But then A′ = [B,α] = [σ, 〈α〉] = [γ, 〈α〉] ≤ I and so I ∩ B = A′. Now
σ ∈ B rA′ = A′β, hence we have that I = A′〈βα0〉, as required.

It remains to prove (iv). Firstly, Z2(G)/Z ' Z(I), and we know from (?) that the latter is
also equal to AutcG = [B,α0], an elementary abelian group of rank 2µ−1. Next, the fact that
AutcG ≤ I shows that AutcG actually is the stabilizer of the series 1 < Z < G, hence it is
isomorphic to Hom(G/Z,Z) ' Hom(G/Z, S) ' G/ZG2. On the other hand one subgroup of AutcG
is CA(G/S) ' Hom(G/S, S) ' G/G2. By comparing orders we therefore have AutcG = CA(G/S)
and Z ≤ G2. Further, ZG′/Z ' I ′ = [A′, α0], a maximal subgroup of [B,α0], hence ZG′ l Z2(G);
moreover I2 = I ′〈γ2〉, where γ = βα0, and γ2 /∈ I ′, hence |I2| =

∣∣[B,α0]
∣∣ and so I2 = [B,α0] by (i).

This proves that G2 = Z2(G). Finally, since G′ is central in Z2(G) it is now clear that G2 is abelian.ut

We can now complete the proof of the Theorem. It will be obtained by the example constructed
in Section 2 and the next proposition, that sums up the content of this section.
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Proposition 3.10. Let p be a prime and let G be a group such that AutG ' Cpλ o Cpµ for some
positive integers λ and µ. Then pλ = 2 and µ is either 1 or 2.

In the former case either G ' D8 or G ' C4 × C2; in the latter case G is an infinite nilpotent
group of class 3 such that:
(i) G′ = torG is a noncyclic group of order 4;

(ii) Gab is an abelian torsion-free group whose automorphism group is finite and has exponent 4 or 12;
(iii) G = HL, where H is isomorphic to the group G0 described in Section 2 and L is a torsion-free

abelian subgroup of Z(G).

Proof — By a previous lemma pλ = 2. The case in which µ = 1, that is, AutG ' D8 is well-known,
and we shall disregard it. So, going back to notation used thus far in this section, in view of what we
have already proved, we may assume that A ' C2 o C2µ for some integer µ > 1.

We shall first prove that G is infinite. Assume that G is finite. The characteristic subgroups of G
form a chain, as follows from Lemma 3.9 (i) and from the fact that Z has order 2 (Lemma 3.9 (iii) )
and so is contained in every nontrivial characteristic subgroup of G. As G2 ≤ M and M2 ≤ Z by
Lemma 3.9 (ii), the socle U of G2 has index 2 at most in G2. Since U is characteristic in G and
G′ < G2 it follows that G′ ≤ U , hence expG′ = 2. Consequences of this fact are:

[x, xg] = 1,
∀x, y ∈M ∀g ∈ G [x, g, y] = [y, g, x],

[x, g2] = 1 ⇒ [x, g, g] = 1.

(∗)

For, as M2 ≤ Z we have 1 = [x2, g] = [x, g]x[x, g], so [x, g]x = [x, g]−1 = [x, g], which is equivalent to
the first identity. By applying it to x, y and xy we have 1 = [x, xg] = [y, yg] = [xy, (xy)g]. Now M has
nilpotency class 2 (at most), so [xy, (xy)g] = [x, yg][y, xg]. Again, since expG′ = 2 this means that
[x, yg] = [y, xg]. But [x, yg] =

[
x, y[y, g]

]
= [y, g, x][x, y] and similarly [y, xg] = [x, g, y][y, x], which

proves the second identity. Finally, if [x, g2] = 1 then we have 1 = [x, g][x, g]g, so [x, g] = [x, g]−1 =
[x, g]g. Thus all of (∗) is proved.

Next we describe the structure of M . Recall that |Z(M)/Z| = 2, thus |Z(M)| = 4. This makes
it impossible that G′ < Z(M), hence Z(M) ≤ G′ and Z(M) ' V4, the noncyclic group of order 4.
In particular M is not abelian and M2 = M ′ = Z. Let c ∈ Z(M) r Z. Then M = L× 〈c〉 for some
maximal subgroup L of M , which is immediately seen to be extraspecial.

Let g ∈ G r M and C = CM (g2). By Lemma 3.9 (iv), expGab > 2, hence g2 /∈ G′; a fortiori
g2 /∈ Z(M). Since |M ′| = 2 we have |M/C| = 2. The mapping f : x ∈ M 7→ [x, g]Z ∈ G′/Z is
an epimorphism whose kernel is Z2(G) = G2, because M/Z is abelian (and by the same lemma).
If Cf ≤ Z(M)/Z then |C/G2| ≤ 2 and |G/G2| ≤ 8, so that Lemma 3.9 (iv) once again shows that
µ = 2.

Suppose that µ > 2. Then we may choose x ∈ C such that a := [x, g] /∈ Z(M). Also, [C, g, x] 6= 1.
Indeed, if [C, g, x] = 1 then [a,C] = [x, g, C] = 1 by (∗); since a /∈ Z(M) and C l M we have
C = CM (a). But in a group whose derived subgroup has order 2, two elements may have the
same centralizer only if they are congruent modulo the centre. Hence a−1g2 ∈ Z(M), which is a
contradiction because a ∈ G′ ≥ Z(M) and g2 /∈ G′. Having established this, we may choose y ∈ C
such that b := [y, g] does not commute with x. From (∗) we obtain that [a, x] = [b, y] = [a, g] =
[b, g] = 1, moreover [a, b] = 1 because G′ is abelian. If [x, y] 6= 1 we may replace y with yb, which does
commute with x—note that [yb, g] = b. Finally, [a, y] = [x, g, y] = [y, g, x] = [b, x] 6= 1 Now we have
that H := 〈x, y, a, b〉 is the central product of the two nonabelian groups 〈x, b〉 and 〈y, a〉, that both
have order 8, because M2 = Z has order 2. We know that a and b have order 2, because expG′ = 2,
(so our two groups are in fact dihedral) and we can redefine also x and y to make them have order 2:
if, say, x has order 4 then replace it with bx: all the required properties are preserved (in particular,
[bx, g2] = 1) and bx has order 2. Similarly we may assume that y2 = 1. Now let K := CM (H). Then
M is the central product HK with H ∩K = Z(H) = Z. Clearly both H and K are g-invariant and
g2 ∈ K. We can define an automorphism of G by letting it act trivially on 〈g〉K and as follows on
the generators of H:

y 7→ x 7→ xyc b 7→ a 7→ ab
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(recall that c ∈ Z(M) rZ). To check that the automorphism is well-defined, note that the images of
the four generators x, y, a, b still have order 2, the mutual commutators are preserved as is the action
of g (because [c, g] is the generator of Z, hence [c, g] = [a, y] and so [xyc, g] = ayb[c, g] = ab). This
automorphism clearly has order 3, and this is a contradiction. Therefore µ = 2. Lemma 3.9 shows
now that |G| = 32 and the above argument restricts the structure of G strongly. Indeed, the maximal
subgroup M is a direct product of a nonabelian group of order 8 by a group of order 2. Again let
g ∈ GrM . Since g2 /∈ Z(M) the group G can be described as follows: G = 〈g, h〉, where H := 〈g2, h〉
is nonabelian of order 8 and its normal closure is M = H × 〈c〉, where c = [g, h]. There are three
possibilities for the isomorphism type of such a group: H may be chosen to be isomorphic to D8

or Q8, the quaternion group of order 8, and, in the former case, g may be chosen to have order 8 or 4
(and this order is the exponent of G). These choices indeed provide three pairwise nonisomorphic
groups. Direct inspection reveals that two of them (those of exponent 8) have 27 automorphisms,
while the third one has automorphism group of the same order (26) as, but not isomorphic to C2 oC4.
This shows that G cannot be finite.

Thus G is infinite. By Lemma 1.3 of [2], TG2 is a proper (characteristic) subgroup of finite
index in G containing T . Hence T ≤ M by Lemma 3.2. Then T 2 ≤ T ∩M2 ≤ T ∩ Z = S ≤ G′,
by Lemma 3.9 (ii) and (iii). This implies that G2

ab is torsion-free, hence G′ = T ∩ G2. Then
T ∩ ZG′ = G′(T ∩ Z) = G′ = T ∩ G2. On the other hand ZG′ < G2 by Lemma 3.9 (iv). This
yields that TZ = TZG′ < TG2 and so G2 � TZ, hence TZ < G2 by part (i) of the same lemma.
Consider the natural conjugation A-epimorphism ∼: G � I again. The image of G2 = Z2(G) is
Z(I) = [B,α0] = [A′〈β〉, α0] = [A′〈βα0〉, α0] = [I, α0]. Thus [G,α0]Z = G2 > TZ. But the Hallett-
Hirsch Theorem shows that [G,α4] ≤ T , hence [G,α0]Z > [G,α4]Z and so α0 /∈ 〈α4〉. Therefore
µ < 3, that is to say, µ = 2.

We still have to justify statements (i)–(iii). That T = G′ is clear now, since we just showed
that G′ = T ∩ G2 and thereafter that T < G2. Since |G′Z/Z| = 2 = |S| = |G′ ∩ Z| we have that
|G′| = 4. Now, CG(G′) is a characteristic subgroup of index 2 in G, hence CG(G′) = M . Suppose
that G′ is cyclic, say G′ = 〈c〉, and let g ∈ G r M . Then cg = c−1. It easily follows that gM 7→ c
defines a derivation from G/M to G′, hence G has an automorphism centralizing M and mapping
g to gc. But this automorphism has order 4 while we know that CA(M) = Z(A) has order 2. By
this contradiction G′ ' V4, hence (i) is proved. Next, AutGab = Aut(G/T ) is finite and, by the
Hallett-Hirsch Theorem, its order divides 12. To prove (ii) we therefore only have to check that G/T
has an automorphism of order 4. If this is false then A/CA(G/T ) has exponent 2 (at most), hence
A2 centralizes G/T . On the other hand A2 certainly does centralize T , which has order 4, hence
A2 ≤ CA(G/T ) ∩ CA(T ). But this latter intersection is abelian, while A2 is not. This proves (ii).
Finally, Lemma 3.9 shows that we can write G as 〈a, b〉Z2(G) for suitable a, b ∈ G r M . Then
c := [a, b] ∈ G′ rZ and [c, a] = [c, b] is the generator of G′ ∩Z = S, because CG(G′) = M . It follows
that H := 〈a, b〉 is isomorphic to the group G0 defined in Section 2. As |H/Z(H)| = 16 = |G/Z| (see
Lemma 3.9 again), then G = HZ, but T ≤ H and so G = HL, if L is any complement to S in Z. ut
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