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Abstract. We characterise groups in which every abelian subgroup has finite index in its characteristic closure. In a
group with this property every subgroup H has finite index in its characteristic closure and there is an upper bound
for this index over all subgroups H of G. For every prime p we construct groups G with this property that are infinite
nilpotent p-groups of class 2 and exponent p2 in which G′ = Z(G) is finite and Aut G acts trivially on G/G′.

We also characterise abelian groups with the dual property that every subgroup has finite index over its characteristic
core.

In 1955, in his paper [5], B.H. Neumann began a systematic study of finiteness conditions in group theory defined
by restrictions on the conjugacy classes of subgroups. Among other results he proved that every subgroup H of a
group G has finite index in its normal closure HG if and only if G′ is finite; as Tomkinson pointed out in [10] the
same conclusion may be drawn if the finiteness of |HG : H | is required only for abelian subgroups. Several results of
a similar nature, and many generalizations, have appeared in the literature. A dual condition was considered in [1]: a
group G is called core-finite (or CF ) if H/HG is finite for all H ≤ G; as usual HG denotes the normal core of H in G.
The class of CF -groups is rather more elusive than the class considered by B.H. Neumann. In fact the existence of
many infinite groups all of whose proper subgroups are finite, like Tarski groups, makes clear that a simple description
of CF -groups is out of range. Nonetheless, it was proved that CF -groups are abelian-by-finite under rather general
hypotheses: for instance if they have no periodic quotient which is not locally finite (see [8]).

Here we shall consider another variation along the same lines. Instead of considering normal closures and cores of
subgroups we deal with characteristic closures and cores. In other words, we deal with properties related to orbits
under the action of the full automorphism group AutG of a group G on subgroups, rather than (G-)conjugacy classes.
This can be compared, for instance, to [4, 7], where groups G with finite (AutG)-orbits of subgroups are studied.

For every subgroup H of the group G let H! and H" be the characteristic closure and the characteristic core
of H in G, respectively, that is: H! is the smallest characteristic subgroup of G containing H and H" is the largest
characteristic subgroup of G contained in H . The absence of a reference to G in this notation will never cause
ambiguity in what follows. We say that G has the property P! (respectively P") if |H! : H | (respectively |H : H"|)
is finite for every subgroup H of G. We define the property P!

a by weakening the condition and requiring only that
|H! : H | is finite for all abelian subgroups H of G. We will also say that G satisfies P! (respectively P") boundedly if
there is a (finite) upper bound for |H! : H | (respectively |H : H"|), where H ranges over all subgroups of G.

It is clear that P!
a -groups have the property considered by B.H. Neumann and Tomkinson, hence they are finite-by-

abelian, while P"-groups are core-finite, hence they are abelian-by-finite under suitable hypotheses. However, even in
these classes it is not immediately obvious how to set apart groups which are P! or P" from the others. For instance,
the well-known examples of complicated abelian torsion-free groups in which the inversion map is the only nontrivial
automorphism and so all subgroups are characteristic suggest that there is no hope of obtaining a completely explicit
description of the groups in these classes. We shall classify abelian groups in P! or in P" up to the description of the
just-mentioned torsion-free groups (see Theorems 2.2 and 2.6). It turns out that the two properties are equivalent for
periodic abelian groups, but in the nonperiodic case P" is a stronger property than P!. Another consequence of these
results is that every abelian group satisfying either of the two properties satisfies it boundedly.

It is worth remarking that, unlike what happens in the abelian case, nonabelian P"-groups need not satisfy P!.
Indeed, if G = U ! 〈x〉, where |AutU | = 2 and U is infinite, x has order 2 and ux = u−1 for all u ∈ U (for instance, G
might be the infinite dihedral group) then G ∈ P" but G′ = U2 is infinite, hence G /∈ P!. Apart from this observation,
we shall not here carry on the study of P"-groups to the nonabelian case, but we extend the results on abelian P!-groups
to arbitrary groups. We shall prove the following:
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Theorem. For a group G the following are equivalent properties:

(i) G satisfies P!
a ;

(ii) G satisfies P!;
(iii) G satisfies P! boundedly.

The proof will follow from a characterisation of P!
a -groups, which is split into Theorems 4.5 and 4.9. A remarkable

feature is the following. In the case of the property considered by Neumann and Tomkinson, the fact that in a
group G such that |HG : H | is finite for all H ≤ G these indices are boundedly finite follows from the existence of
a finite subgroup (namely G′) such that all subgroups containing it are normal—in this sense we can say that the
only groups satisfying the property are those satisfying it trivially. The case of property P! is different in that there
exist P!-groups G in which no finite subgroup plays a rôle corresponding to that of G′, since every finite subgroup
is contained in a noncharacteristic one. It is noteworthy that there is nonetheless an upper bound for the indices
considered.

Some interesting examples of periodic P!-groups are those constructed in Theorem 3.1: they are nilpotent p-groups G
of class 2 and exponent p2 (p an arbitrary prime) such that G′ = Z(G) is finite and [G, Aut G] ≤ G′, that is, the only
automorphisms of G are the central ones and AutG is canonically isomorphic to Hom(G/G′, G′). Thus all subgroups
of G containing G′ are characteristic, so that G satisfies P! (boundedly) trivially, in the sense of the previous paragraph.

Besides what has been introduced in the previous paragraphs, notation is standard. Note that π(G) is the set of
all primes p such that the group G has an element of order p, and that ‘H char G’ means that H is a characteristic
subgroup of G.

1. Some preliminary lemmas

Lemma 1.1. Let G be a group with a direct product Dri∈I Hi as a subgroup, such that either

(a) G satisfies P!
a and for all i ∈ I the subgroup Hi is a direct factor of G; or

(b) G satisfies P" and is abelian-by-finite, and for all finite subsets F of I the subgroup 〈Hi | i ∈ F 〉 is a direct factor
of G.

Then, for all but finitely many i ∈ I, every subgroup of Hi is characteristic in Hi.

Proof. Let J be the set of all i ∈ I such that Hi has a cyclic subgroup Ki which is not characteristic in Hi, and
therefore not in G, because Hi is a direct factor of G. Let K = Dri∈J Ki. For all i ∈ J we have Ki < (Ki)! ∩ Hi,
hence |K! : K| ≥ |J | and J is finite if (a) holds. Now suppose that (b) holds. Since G is abelian-by-finite all but
finitely many of the subgroups Hi are abelian, hence we may assume that 〈Hi | i ∈ I〉 is abelian. Let n = |K/K"| and
suppose that J is infinite. Let F be an n-element subset of J , so that H := Dri∈F Hi is a direct factor of G and G
has an automorphism α such that Hα

i = Hi and Kα
i " Ki for all i ∈ F , and [G,α] ≤ H . If L = 〈Ki | i ∈ F 〉 then

Lα ∩ K = Lα ∩ L and so |LαK/K| = |Lα : Lα ∩ L| > n. On the other hand |KαK/K| = |Kα/Kα ∩ K| ≤ |Kα/K"| =
|K/K"| = n. This contradiction shows that J must be finite. !

We recall from the introduction that the hypothesis that G be abelian-by-finite is much weaker than it appears at
first sight, since groups in P" are core-finite and then they are abelian-by-finite under very general hypotheses. The
conclusion of the previous lemma prompts the following remark. It is certainly well-known and we include it only for
the sake of further reference.

Lemma 1.2. Let G be a group in which all subgroups are characteristic. Then G is abelian and its torsion subgroup
is locally cyclic.

Proof. That G is abelian is obvious, since hamiltonian groups have non-characteristic subgroups. If P is a primary
component of T = tor G such that rkP > 1 then it is possible to decompose G as U × V × W where U, V ≤ P and
rk(U) = rk(V ) = 1; the fact that at least one of Hom(U, V ) and Hom(V, U) is non-zero makes it impossible that
both U and V are characteristic in G. !

Lemma 1.3. Let G be a group and G/N a torsion-free abelian quotient of G. If G satisfies either P!
a or P", then

every subgroup of G containing N is characteristic in G.

Proof. Let H/N be a cyclic subgroup of G/N . It will be enough to show that H is characteristic in G. Suppose first
that G satisfies P!

a . Then N !/N is periodic, hence trivial, and N char G. We have H = N〈h〉 for some h, hence
H! = N〈h〉!, so that H!/H is finite. Since G/N is torsion-free it follows that H!/N is cyclic. We deduce easily that
H is characteristic. In the dual situation, when G satisfies P", observe first that N is characteristic in G, because
N/N" = tor(G/N"), and let K/H" = tor(G/H"), thus K/N is the pure closure of H"/N in G/N . Then K/N has rank 1,
so that all subgroups of its periodic image K/H" are characteristic. Since K is characteristic in G and H" ≤ H ≤ K
it follows that H is characteristic in G. !
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Lemma 1.4. Let G be a group and suppose that F is a torsion-free characteristic subgroup of G. For every odd
integer n, if Z(G) has an element of order n then F ≤ G′Gn.

Proof. It will be enough to show that F is contained in every normal subgroup N of G such that G/N is cyclic of
prime-power odd order and Z(G) has an element x of the same order |G/N |. Fix such N and x, and let y ∈ G be
such that G = N〈y〉. We shall construct an automorphism α of G that centralises N and is such that 1 (= [g, α] ∈ 〈x〉
for every g ∈ G # N . It will follow that the characteristic closure of every subgroup of G not contained in N contains
some nontrivial torsion elements, hence F ≤ N .

If G = N〈x〉 then G = N × 〈x〉, and we can define α by letting xα = x−1 (and [N,α] = 1). Otherwise, N〈x〉 < G.
Let ε be the endomorphism of G defined by yε = x and Nε = 1, and let α = 1 + ε. Now α induces the identity on N
and an automorphism on G/N (because N〈x〉 < G), hence α ∈ AutG. Thus α satisfies the required properties, and
this completes the proof. !

If n is even the proof breaks down in the case when G = N〈x〉, because the automorphism α constructed in the
proof centralises the subgroup of 〈x〉 of order 2 in this case. This is a genuine exception: let G = 〈a〉 × 〈x〉, where a
has infinite order and x has order 2. Then

〈

a2x
〉

is characteristic in G but not contained in 〈a〉.

Lemma 1.5. Let G = X × Y be a group satisfying P", where Y is abelian. Then Hom(X, Y ) has finite exponent and
it is finite if Y is finite.

Proof. Every ε ∈ Hom(X, Y ) yields an automorphism α of G defined by [Y, α] = 1 and xα = xxε for all x ∈ X ; clearly
X ∩ Xα = ker ε. This shows that Hom(X, Y ) ) Hom(X/X", Y ). The result follows. !

The centre of a group with the properties that we are considering is certainly subject to strong restrictions. One is
the following:

Lemma 1.6. Let G be a group satisfying P!
a or P", and assume that G is abelian-by-finite if it satisfies P". Then

Z(G) does not contain any subgroup isomorphic to the direct product of two isomorphic Prüfer groups.

Proof. Suppose that C = P × Q ≤ Z(G) and P ) Q ) Cp∞ for some prime p. As G is either abelian-by-finite or
finite-by-abelian C has a near-complement in G (that is, a subgroup X such that both C ∩X and |G : CX | are finite).
This implies that the cohomology class of the natural extension C ↪→ G " G/C has finite order, necessarily a power q
of p (see, for instance, [6], (2.5)). As a consequence, every automorphism of C of the form 1 + qε, where ε ∈ EndC,
can be extended to an automorphism of G acting trivially on G/C (see [6], (4.3)). Let α : P → Q be an isomorphism.
Let ε ∈ EndC be defined by xε = xα for all x ∈ P and Qε = 1. Then β = 1 + qε ∈ Aut C, and β can be extended to
an automorphism of G. Since [x, β] = xqα for all x ∈ P we obtain that Q ≤ P ! and |P"| ≤ q. This is a contradiction
because G satisfies either P!

a or P". !

2. Abelian groups with P! or P"

The preparation in the previous section will help us in describing abelian groups satisfing P! or P". We consider the
periodic case first.

Lemma 2.1. Let G be an abelian group satisfying either P! or P". Set T = torG. Then:

(i) for all primes p the primary component Tp of T is either finite or Prüfer-by-finite;
(ii) for all but finitely many primes p the primary component Tp of T is locally cyclic.

Proof. If H is a direct factor of a primary component of T and rk(H) > 1 then H contains a direct factor of G of
rank 2. It follows that if either T has infinitely many primary components of rank at least 2, or at least one of them has
infinite rank, then it is possible to construct a subgroup of G that is the direct product of infinitely many rank-2 direct
factors of G, also satisfying the extra condition in Lemma 1.1 (b). Thus Lemmas 1.1 and 1.2 yield a contradiction.
Hence T has finite rank and all but finitely many of its many primary components have rank 1 at most—thus we
obtain (ii). By Lemma 1.6, G cannot contain two isomorphic Prüfer subgroups, hence also (i) holds. !

Theorem 2.2. For a periodic abelian group G the following conditions are equivalent:

(a) G satisfies P!;
(b) G satisfies P";
(c) G has characteristic subgroups M and N such that both M and G/N are finite and every subgroup of G which

either contains M or is contained in N is characteristic;
(d) G = F × C, where F is finite and C is locally cyclic.

Proof. Each of (a) and (b) implies (d), by Lemma 2.1, and (d) implies (c): let M = G[n], where n = expF , and
N = Gn. Finally, it is obvious that (c) implies both (a) and (b). !
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Now we consider the nonperiodic case. We begin with a very elementary observation.

Lemma 2.3. Let G be an abelian group and let x be an element of infinite order in G. Let {xi | i ∈ I} be a set of
elements of G such that for every i ∈ I there exists λi ∈ N such that xλi

i = x, and λi and λj are coprime whenever
i (= j. Then 〈xi | i ∈ I〉 is torsion-free.

Proof. Let X = 〈xi | i ∈ I〉, let p be a prime and let Xp be the p-component of X . Since the integers λi are pairwise
coprime Xp〈x〉/〈x〉 ≤ 〈xi〉/〈x〉, for some i ∈ I. As 〈xi〉 is torsion-free, Xp = 1. !

Lemma 2.4. Let G be a nonperiodic abelian group satisfying either P! or P". Then G has a free abelian characteristic
subgroup F such that G/F is periodic.

Proof. There exists a free abelian subgroup B of G such that G/B is periodic. If G satisfies P" let F = B". If G
satisfies P! then B!/B is finite, of order t, say, and we set F = (B!)t. In either case F has the properties required. !

Lemma 2.5. Let G be a non-periodic abelian group satisfying either P! or P", and let T = torG. Then:

(i) for every n ∈ N the group G/T has a quotient of exponent n;
(ii) every primary component of T is finite.

Proof. Let p be a prime. Then G = Tp × U for some subgroup U , as follows from Lemma 2.1. If Up = U then let
α be the automorphism of G defined by [Tp, α] = 1 and uα = up for all u ∈ U . Then α induces on ¯̄G := G/T an
automorphism which does not fix all subgroups of ¯̄G. This is a contradiction, by Lemma 1.3. Hence Up < U . Now,
U is an extension of T/Tp—which is p-divisible—by ¯̄G, hence the latter cannot be p-divisible. Since ¯̄G is torsion-free

and so ¯̄G ) ( ¯̄G)pλ

for every positive integer λ, it follows that (i) holds if n is assumed to be a power of p. The general
case is an easy consequence.

Assume now that G has a Prüfer subgroup, say P ) Cp∞ . Then G = Tp ×U , as above, and since U has p-quotients
of arbitrarily high exponent it follows that, for every n ∈ N, there is a homomorphism εn : U → P whose image has
order pn and hence an automorphism αn of G such that [Tp, αn] = 1 and uαn = uuεn for all u ∈ U . Then U/U"

is infinite, and P ≤ U !, because P =
⋃

n∈N
[U,αn]. This yields a contradiction which, together with Lemma 2.1,

proves (ii). !

Theorem 2.6. Let G be a non-periodic abelian group. Then:

(a) G satisfies P! if and only if G = T × U for some finite subgroup T and some torsion-free subgroup U such that
|AutU | = 2.

(b) G satisfies P" if and only if G = T × U as in (a) with the extra condition that U/Un is finite, where n = exp T .

Proof. Suppose that G satisfies either P! or P". Let F be a torsion-free characteristic subgroup of G such that G/F
is periodic (see Lemma 2.4), and let x be any nontrivial element of F . Assume that T = torG is infinite. Then, by
Lemmas 2.1 and 2.5, the set of all odd primes p such that Tp is cyclic and nontrivial is infinite. Write this set as
{pi | i ∈ N}, where pi (= pj if i (= j. For every i ∈ N let 〈ai〉 = Tpi

and qi = |Tpi
|, then G = 〈ai〉 × Gi for some Gi ≤ G.

Because of Lemma 1.4 we have F ≤ Gqi = Gqi

i , so there exists xi ∈ Gi such that xqi

i = x. Let H = 〈aixi | i ∈ N〉.
We have (aixi)qi = x for all i ∈ N; it follows from Lemma 2.3 that H is torsion-free. For all i ∈ N consider the
automorphism αi defined by aαi

i = a−1
i and [Gi, αi] = 1. Then [aixi, αi] = a−2

i generates 〈ai〉, so ai ∈ HHαi ; as H
and Hαi are torsion-free it follows that qi divides both |HHαi/H | and |H/H ∩ Hαi | = |HHαi/Hαi |. Therefore both
H!/H and H/H" are infinite; this contradiction shows that T is finite. Now G splits over T , so G = T × U for some
torsion-free U . Since every automorphism of U extends to G Lemma 1.3 shows that |AutU | = 2. If G has P" then
Hom(U, T ) is finite by Lemma 1.5, hence U/U expT is finite. Thus G must have the structure described in (a) or in
(b), according to which of P! or P" it satisfies.

Conversely, let G = T ×U as in (a). Then every subgroup of G containing T is characteristic in G, hence H! ≤ HT
for all H ≤ G, thus showing that G satisfies P!. Also, if H ≤ G and U/Un is finite, where n = exp T , then H/H ∩Un

is finite. Now, Un = Gn char G, and Un ) U . Therefore every subgroup of Un is characteristic in Un and hence also
in G. This proves (b). !

It is not hard to see that the groups described in (b) have finitely many automorphisms only. Therefore if G is a
nonperiodic abelian group satisfying P" then AutG is finite; note that the converse does not hold: there are torsion-free
abelian groups with finitely many, but more than two, automorphisms; a detailed discussion of such groups is in [3],
Section 116.

There exist torsion-free groups U such that |AutU | = 2 and U/Up is infinite for every prime p; for instance they
can be constructed as in [3], Lemma 88.3 (but also see [7], p. 281), by starting from an infinite rigid system of groups
with two automorphisms only and extending their direct product with an elementary abelian group without elements



FINITENESS CONDITIONS ON CHARACTERISTIC CLOSURES AND CORES OF SUBGROUPS 5

of order 2. This shows that properties P" and P! are not equivalent for mixed abelian groups, unlike what happens
in the periodic case. What remains true in comparison with Theorem 2.2 is that an abelian group G satisfies P!

(respectively P") if and only if it has a subgroup N which is finite (respectively of finite index) and is such that every
subgroup of G containing (respectively contained in) it is characteristic.

As a consequence, we have:

Corollary 2.7. Let G be an abelian group satisfying P! (respectively P"). Then G satisfies P! (respectively P")
boundedly.

We shall see that this Corollary holds true for nonabelian groups as well.

3. p-groups with few automorphisms

For every prime p, every infinite nilpotent p-group G must have 2|G| automorphisms (see [2]). In the case when G is
not abelian and has finite exponent this is an immediate consequence of the fact that the group of all automorphisms
of G acting trivially on G/G′ ∩ Z(G) is isomorphic to Hom(G/G′, G′ ∩ Z(G)). In this section we shall construct a
family of examples of p-groups of class 2 and finite exponent having no automorphisms other than these.

Theorem 3.1. For every prime p there exist countably infinite p-groups G of nilpotency class 2 and exponent p2 such
that G′ = Z(G) is elementary abelian of rank 3 and AutG acts trivially on G′ and on G/G′.

These groups are relevant in our context because they obviously satify P! (boundedly): in such a group G all
subgroups containing G′ are characteristic and H! ≤ HG′ for all H ≤ G. Examples sharing some of these properties
are constructed in [7], Proposition 3.

Note that easier examples of nonabelian groups satisfying P! can be obtained starting from abelian groups with
the same property. In fact, it follows from Theorem 2.2 and Theorem 2.6 that every extension of a finite group by an
abelian group with P! still satisfies P!. As is clear, the groups in Theorem 3.1 are not of this kind.

To construct a group G as in Theorem 3.1 we start with the 2-regular tree whose edges are coloured by three
colours, indicated here by flags (or their absence):

x0
• !

x1
•

x2
• "

x3
•

x4
• !

x5
•

x6
• "

x7
•

x8
• !

x9
•

x10
• "

x11
• · · · · · ·

•
x−1

" •
x−2

•
x−3

" •
x−4

•
x−5

! •
x−6

•
x−7

" •
x−8

•
x−9

" •
x−10

•
x−11

! •
x−12

· · · · · ·

Thus, every second edge has the no-flag colour; the flag-down colour appears at every second flagged edge on one of
the two branches rooted on the vertex x0, and appears at every third flagged edge on the other branch. This coloured
tree has no nontrivial automorphism; more than that, it is not isomorphic to any tree obtained by permuting the
colours nontrivially and then applying an automorphism of the underlying (non-coloured) tree.

Fix a prime p and consider the variety V consisting of all groups V such that V ′V p ≤ Z(V ) and V p2

= 1. We use
the coloured tree just described to define the commutator relations of a group G ∈ V generated by elements a, b, c
and xi, where i ranges over the integers, and with the following extra relations: for all i, j ∈ Z,

xp
i = wi; [xi, xj ] = 1, if |i − j| (= 1; [xi, xi+1] =











a, if i ∈ A

b, if i ∈ B

c, if i ∈ C

, (Rel)

where each wi is a word in a, b, c and {A, B, C} is the partition of Z defined thus: C is the set of all negative multiples
of 6 and all nonnegative multiples of 4; B is the set of all remaining even integers and A = 1 + 2Z is the set of all
odd integers. Thus [xi, xi+1] is a, b or c according to whether the edge joining xi and xi+1 has the no-flag colour, the
flag-up colour or the flag-down colour respectively.

It is clear that Z := 〈a, b, c〉 = Z(G) = G′; also, G can be realised easily as a quotient of a free group in V, thus
showing that the elements xi are Zp-independent modulo Z and Z is elementary abelian of rank 3.

Our first claim is that, in such a group G, all subgroups 〈xi〉Z are characteristic. Thereafter we will see that for
some suitable choice of the power relations in (Rel) (that is, a choice of the words wi) G has the property required by
Theorem 3.1.

Throughout this section we consider fixed the notation used so far for G and later for its distinguished subgroups
and elements as introduced. Every g ∈ G can be written (uniquely) as

g = z
∏

i∈Z

xλi

i (∗)
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for some z ∈ Z and integers λi ∈ {0, 1, 2, . . . , p − 1}, where all but finitely many of the λi are zero and the factors in
the product are ordered according to the standard ordering of the integers. We shall often use this notation too.

Lemma 3.2. If g ∈ G # Z then a ∈ [g, G].

Proof. Suppose that g = z
∏

i∈Z
xλi

i as in (∗), and let r = max{i ∈ Z | λi (= 0}. If r is odd, then [g, xr+1] =
[xλr

r , xr+1] = aλr , so we may assume that r is even. Let s be the least even integer such that λs (= 0. Then λs−2 = 0,
hence [xs−1, g] = [xs−1, xλs

s ] = aλs and the proof is complete. !

Once this has been proved it is also easy to see that, still with reference to the notation in (∗), we have b ∈ [g, G]
(respectively c ∈ [g, G]) if and only if λi (= 0 or λi+1 (= 0 for some i ∈ B (respectively i ∈ C). For, if j ∈ Z then
[g, xj ] = [xj−1, xj ]λj−1 [xj+1, xj ]λj+1 , and one of [xj−1, xj ] and [xj , xj+1] is a (which is in [g, G] anyway as long as
g /∈ Z), the other is either b or c depending on the value of j. By considering the various possible cases the claim is
established. It follows that:

X := {g ∈ G | [g, G] = 〈a, b〉} ∪ Z = 〈xi, xi+1 | i ∈ B〉Z

Y := {g ∈ G | [g, G] = 〈a, c〉} ∪ Z = 〈xi, xi+1 | i ∈ C〉Z

and
[g, G] = Z for all g ∈ G # (X ∪ Y ).

Therefore
〈a〉 =

⋂

g∈G!Z

[g, G] char G.

Also, an automorphism of G can either fix X and Y or interchange them. But X ′ = 〈a, b〉, while Y ′ = 〈c〉, so X and
Y are not isomorphic. Hence X and Y are also characteristic in G, and the same holds for 〈c〉 = Y ′.

For all i ∈ Z let Li = 〈xj | i ≥ j ∈ Z〉Z and Ri = 〈xj | i ≤ j ∈ Z〉Z. We shall show that these subgroups are
characteristic in G. Observe first that, for all i ∈ Z,

Li−2 = CG(Ri) and Ri+2 = CG(Li); also: CG(xi) = Li−2〈xi〉Ri+2.

Another pair of relevant centralizers, which certainly are characteristic, are

CG(Y ) = 〈xi, xi+1 | 0 > i ≡ 3 (mod 6)〉Z and

CG

(

CG(Y )
)

= 〈xi, xi+1 | 0 > i ≡ 0 (mod 6)〉R0 = (Y ∩ L−1)R0.

These equalities are checked as follows: CG(Y ) is the intersection of the centralizers Li−2Ri+3 of all subgroups 〈xi, xi+1〉
where i ranges over C; this explains the first equality, the second one is proved similarly. Now

X+ := X ∩ R0 = 〈xi, xi+1 | 0 < i ∈ B〉Z = X ∩ CG

(

CG(Y )
)

char G,

and so, by arguing as for CG(Y ), we arrive at a key step:

L0 = CG(X+) char G.

Lemma 3.3. Let (u, U) be one of (a, A), (b, B) and (c, C), and let i ∈ U . Then each of Li and Ri+1 is the centralizer
of the other modulo 〈u〉 in G:

i) {g ∈ G | [g, Ri+1] ≤ 〈u〉} = Li;
ii) {g ∈ G | [g, Li] ≤ 〈u〉} = Ri+1;

Proof. Let g = z
∏

j∈Z
x

λj

j , as in (∗), and suppose that [g, Ri+1] ≤ 〈u〉. Let r = max{j ∈ Z | λj (= 0}. Assume, for a

contradiction, that r > i. Then xr+1 ∈ Ri+1 and [g, xr+1] = [xr, xr+1]λr ∈ 〈u〉, hence r ∈ U . Since i ∈ U and U does
not contain consecutive integers, this implies that r (= i + 1 and so xr−1 ∈ Ri+1; moreover, v := [xr−1, xr] (= u. Then
[g, xr−1] = [xr−2, xr−1]λr−2v−λr ∈ 〈u〉. However, this is impossible because v is linearly independent (over Zp) from u
and [xr−2, xr−1]. This shows that r ≤ i, that is, g ∈ Li. On the other hand Li centralises Ri+1 modulo 〈u〉, hence (i)
is proved. The proof of (ii) is dual. !

Lemma 3.4. For all nonnegative integers i both Li and Ri+2 are characteristic in G. Therefore 〈xi〉Z char G for all
integers i ≥ 2.

Proof. The second half of the statement follows from the first since 〈xi〉Z = Li ∩ Ri. To prove the first half, suppose
that Li char G for some nonnegative, even integer i. Then Ri+2 = CG(Li) char G. Since 〈a〉 char G and i + 1 ∈ A
Lemma 3.3 shows that Li+1, the centralizer of Ri+2 modulo 〈a〉 in G, is also characteristic. Now, let K be that one
of X and Y such that xi ∈ K, and let K∗ = K ∩ Ri+2. Then xi+4 ∈ K∗ ≤ Ri+4 (we are using here the fact that
i ≥ 0) and one can see that CG(K∗) = Li+2. Therefore Li+2 char G. Since we already know that L0 char G this is
enough to prove the Lemma. !
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A consequence of Lemma 3.4 is that 〈b〉 char G, since 〈b〉 =
[

〈xi〉Z, 〈xi+1〉Z
]

for any positive i ∈ B. This allows us
to use Lemma 3.3 in its full strength.

Lemma 3.5. For all integers i, the subgroup 〈xi〉Z is characteristic in G.

Proof. Let i ∈ Z and suppose that Li char G. Then Ri+1 char G, because of Lemma 3.3 and the fact that each of 〈a〉,
〈b〉 and 〈c〉 is characteristic in G. Therefore Li−i = CG(Ri+1) char G. By an obvious induction argument it follows
that all subgroups Li are characteristic, and the same is true of all Ri = CG(Li−2) and 〈xi〉Z = Li ∩ Ri. !

To complete the proof of Theorem 3.1 we have to make sure that it is possible to choose the words wi in (Rel) in
such a way that [AutG, G] ≤ Z. There are many such choices, as the following lemma makes clear.

Lemma 3.6. If xp
0 = xp

1 = xp
2 = xp

3 (= 1 then [Aut G, G] ≤ Z.

Proof. Let y = xp
0 and let α ∈ AutG. For all i ∈ Z let λi be that integer such that 0 < λi < p and xα

i ≡ xλi

i modulo Z;
the existence of λi is granted by Lemma 3.5. Then yα = yλ0 ; if i ∈ {1, 2, 3} we also have y = xp

i , hence yα = yλi and

λi = λ0. Therefore cα = [x0, x1]α = [xλ0

0 , xλ0

1 ] = cλ2
0 and, similarly, aα = aλ2

0 and bα = bλ2
0 . Thus yλ0 = yα = yλ2

0 and
λ0 = 1. Therefore α acts trivially on G′. Finally, for all i ∈ Z we have [xi, xi+1] = [xi, xi+1]α = [xi, xi+1]λiλi+1 , hence
λiλi+1 ≡p 1. It follows that λi = 1 for all i ∈ Z. This proves the result. !

At this point the proof of Theorem 3.1 is complete. We may observe that if p = 2 then any choice for the words wi

in (Rel) yields a group G such that [Aut G, G] ≤ Z, but this is not true of any other prime p. However, even for any
odd prime, our construction gives rise to 2ℵ0 pairwise nonisomorphic examples. The following two remarks justify
these comments.

Remark 3.7. Let p be an odd prime. Define G by letting, in (Rel), wi = 1 for all i ∈ Z. Then G has an automorphism
defined by xi /→ xi if i is even and xi /→ x−1

i if i is odd, and z /→ z−1 for all z ∈ Z. This automorphism does not fix
〈xixi+1〉Z, for any i ∈ Z. Hence G does not satisfy the conclusion of Theorem 3.1. More than that, G does not even
satisfy P!.

Remark 3.8. The construction carried on in this section provides, for each prime p, 2ℵ0 pairwise nonisomorphic
p-groups G with the properties listed in Theorem 3.1. To prove this, suppose that G is a p-group defined as in this
section, that is on generators xi, where i ∈ Z, a, b, c and relations (Rel) in the variety V, and let ¯̄G be defined similarly,
on generators x̄i, ā, b̄, c̄ in place of xi, a, b, c and by choosing words w̄i on {ā, b̄, c̄} to replace the words wi. Suppose
that θ : G → ¯̄G is an isomorphism. Then, by repeating the arguments used above to show that various subgroups of G
are characteristic one can see that θ maps each of Z, X , Y , Li and Ri, for all i ∈ Z, onto the analogously defined
subgroups of ¯̄G. Thus, if ¯̄Z :=

〈

ā, b̄, c̄
〉

, we have (〈xi〉Z)θ = 〈x̄i〉 ¯̄Z for all i ∈ Z, which implies 〈wi〉
θ = 〈w̄i〉 (by

considering p-th powers); moreover 〈a〉θ = 〈ā〉, 〈c〉θ = 〈c̄〉 and 〈b〉θ = [〈x2〉Z, 〈x3〉Z]θ =
〈

b̄
〉

.
This proves that, given a group G presented as in (Rel), if we replace some of the words wi with some w̄i ∈ Z such

that 〈w̄i〉 (= 〈wi〉 then we obtain a group which is not isomorphic to G. Together with Lemma 3.6 this is enough to
justify our remark.

4. Nonabelian groups with P!

The examples of P!-groups described so far all share the property of satisfying P! (boundedly) for a very straightforward
reason: each has a finite subgroup such that every subgroup containing it is characteristic. As we shall see there exist
groups with no such finite subgroups, but satisfying P! for less obvious reasons—our characterisation will show that
they all satisfy P! boundedly nonetheless.

As stated in the Introduction, it also turns out that P! is equivalent to the seemingly weaker property P!
a . Thus

the general hypothesis will be that our groups satisfy P!
a . Our strategy in studying such groups consists in finding

information on the structure of the centre and the torsion part. The starting-point is the observation, already made,
that the derived subgroup of a P!

a -group G must be finite. Therefore the periodic elements of G form a subgroup.
Another useful consequence is that G/Z(G) has finite exponent. This fact plays a key rôle in the proofs of this section.
Also, G/Z(G) is residually finite. Better than that, we have:

Lemma 4.1. Let G be a group satisfying P!
a . Then Z(G) is the intersection of characteristic subgroups of finite index

in G.

Proof. For each x ∈ G let Cx = CG(〈x〉!). Since 〈x〉! is cyclic-by-finite and finite-by-abelian, hence finite-by-cyclic,
Aut(〈x〉!) is finite and so G/Cx is finite. As Z(G) =

⋂

x∈G Cx the result follows. !

Therefore, if G satisfies P!
a then every divisible subgroup of G lies in Z(G). Thus Lemma 1.6 shows that G has at

most one Prüfer p-subgroup for each prime p.
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Lemma 4.2. Let G be a P!
a -group. Then all but finitely many primary components of Z(G) are locally cyclic and

the torsion subgroup of Z(G) has finite rank.

Proof. First we prove that for every prime p the p-primary component Zp of Z(G) has finite rank. To this end, assume
that Zp has infinite rank for some prime p, let S be the socle of Zp and let L be an infinite subgroup of S such that S/L
is also infinite. Suppose first that G has a subgroup M of index p and containing G′L. Let x ∈ G#M . For every y ∈ L
there exists an automorphism of G centralising M and mapping x to xy. Therefore L ≤ 〈x〉!, a contradiction. Thus
there exists no such subgroup M , which amounts to saying that G/LG′ is p-divisible. Let P/G′ be the p-component
of G/G′, so that P/LG′ is divisible. Also, SG′/LG′ ) S/L(G′ ∩ S) has infinite rank, so P/LG′ also has infinite rank.
It follows that P pG′/G′ is divisible of infinite rank. Since G′ is finite this shows that P p has a divisible p-subgroup of
rank 2, and this is impossible in view of Lemma 1.6. Therefore Zp has finite rank.

Suppose that p is a prime not in π := π
(

G/Z(G)
)

. Then Zp is a direct factor of G, because it is a direct factor
of Z(G). It follows from Lemmas 1.1 and 1.2 that there is a cofinite subset ψ of the complement π′ of π (in the set of
all primes) such that the ψ-component of Z(G) is locally cyclic. Since π is finite the lemma follows. !

Lemma 4.3. Let G be a P!
a -group. Then G has a characteristic subgroup V of finite index such that Z(G) ≤ V and

all subgroups of V containing Z(G) are characteristic in G. Also, G has a characteristic subgroup J containing Z(G)
such that J/Z(G) is finite and all subgroups of G containing J are characteristic.

Proof. Assume that there is no such subgroup V , and let N be any characteristic subgroup of finite index in G
containing Z(G). Then N has an element x1 such that K := 〈x1〉Z(G) is not characteristic in G. Let S = K!, then
S/Z(G) is finite (recall that G/Z(G) is periodic) and S ≤ N ; by Lemma 4.1 and since G′ is finite CN (S) contains
a subgroup N1 which is both characteristic and of finite index in G, such that S ∩ N1 = Z(G). Similarly, N1 has
an element x2 such that 〈x2〉! " 〈x2〉Z(G), and a subgroup N2 which is of finite index and characteristic in G,
centralises 〈x1, x2〉! and is such that 〈x1, x2〉! ∩ N2 = Z(G). By iterating this construction it is possible to produce
a sequence (xi)i∈N of noncentral, pairwise commuting elements of G such that none of the subgroups Ki = 〈xi〉Z(G)
is characteristic in G and the characteristic closures of these subgroups generate their direct product modulo Z(G).
This is impossible, because of property P!

a . Thus we have proved the existence of V . The second statement follows
easily: let T be a transversal for V in G and let J = 〈T 〉!Z(G); then J/Z(G) is finite, because G/Z(G) is periodic and
〈T 〉! = 〈〈t〉! | t ∈ T 〉 is finitely generated. Moreover, G/J is (Aut G)-isomorphic to V/V ∩ J , so J has the required
property. !

As we did in Section 2 for abelian groups, we shall discuss periodic and nonperiodic P!
a -groups separately, starting

with the periodic case. If G is a periodic group with a direct, coprime factorisation G = X × Y , in the sense that
π(X) ∩ π(Y ) = ∅, then there is a natural isomorphism between AutG and AutX × AutY , so G satisfies P!

a (or P!,
or P") if and only if both X and Y have the same property. Also, G satisfies the property boundedly if and only if
the same holds for X and Y . Therefore the next lemma (together with Theorem 2.2) reduces the study of periodic
groups G satisfying P!

a to the case when π(G) is finite.

Lemma 4.4. Let G be a periodic P!
a -group and let π = π(G′)∪ π

(

G/Z(G)
)

, a finite set of primes. Then G = P ×A,
where P is a π-group and A is the π′-component of Z(G).

Proof. The π′-elements of G lie in Z(G), hence they form a subgroup A. Since G/A is a π-group and A ∩ G′ = 1, A
has a complement in G and the result follows. !

Theorem 4.5. Let G be a periodic group. Then G satisfies P!
a if and only if G = P ×A, where π(P )∩π(A) = ∅ and:

(a) A is an abelian group satisfying P!;
(b) P ′ is finite, and P has a Černikov subgroup J containing Z(P ) such that the finite residual of J is locally cyclic

and every subgroup of P containing J is characteristic in P .

If G satisfies P!
a then it satisfies P! boundedly.

Proof. Suppose that G satisfies P!
a . Let P and A be defined as in Lemma 4.4, so that G = P ×A and π(P )∩π(A) = ∅.

Moreover, both P and A satisfy P!
a , hence (a) holds and P ′ is finite. By Lemma 4.3 we know that there exists J ≤ P

such that Z(P ) ≤ J , all subgroups of P containing J are characteristic in P and J/Z(P ) is finite. By Lemma 4.2
and since π(P ) is finite Z(P ) is a Černikov group, so J is a Černikov group. Its finite residual is contained in Z(P ),
thus (b) follows from Lemma 1.6.

Conversely, suppose that G has the structure specified. In view of the remarks preceding Lemma 4.4 and by
Corollary 2.7, to prove that G satisfies P! boundedly it will be enough to prove the same of P . Let C be the finite
residual of J , thus J/C is finite. Then C ≤ Z(P ), because P ′ is finite; for the same reason P/Z(P ) has finite exponent.
Moreover, P/P ′ splits over CP ′/P ′, hence P has a subgroup K such that P = KC and K∩C is finite. Thus n = exp K
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is finite, and also F := J ∩ K is finite. We may replace K with {x ∈ P | xn ∈ P ′} (and then redefine n), to have
K char P also. Let H ≤ P . If kc ∈ H1 := HF , where k ∈ K and c ∈ C then cn ∈ H1, so c ∈ S := {x ∈ C | xn ∈ H1}
and H1 ≤ KS. Note that |H1S : H1| = |S : H1 ∩ S| ≤ n, as S is locally cyclic. Since C is characteristic and locally
cyclic, S too is characteristic in P . Now J ∩ KS = FS ≤ H1S ≤ KS, hence H1S = H1J ∩ KS. Both H1J and KS
are characteristic, so H1S char P . Now |H1S : H | = |H1S : H1||H1 : H | ≤ n|F | is finite. Thus every subgroup of P
has index at most n|F | in its characteristic closure (in P , therefore in G). Since this bound is independent of H the
proof is complete. !

In Theorem 4.5 we can choose P and A in such a way that A is locally cyclic, as follows from Theorem 2.2. In
this case all subgroups of G containing the subgroup J referred to in (b) are characteristic, not only those in P . Thus
every periodic P!-group has a Černikov subgroup J such that H char G for all H with J ≤ H ≤ G. It can happen
that no such J is finite. An example is given here.

Example 4.6. Let K = G×C, where G is a p-group as in Theorem 3.1, for an odd prime p, and C ) Cp∞ . Then K
satisfies P! and every finite subgroup of K is contained in some subgroup of K that is not characteristic.

Proof. That K satisfies P! follows from Theorem 4.5, as Z(K) = CG′ has the property required for J . Suppose that
K has a finite subgroup F such that H char K whenever F ≤ H ≤ K. Let z be an element of C of order greater than
exp F . Let {xi | i ∈ Z} be the generating set used to define G in Section 3. For all i ∈ Z we have 〈zxi〉F char K. An
automorphism of K is defined by letting g /→ g and h /→ h−1 for all g ∈ G and h ∈ C. It follows that z−1xi ∈ 〈zxi〉F ,
hence xi ∈ 〈zxi〉F and there exists ti ∈ N such that ztixti−1

i ∈ F . Since F is finite there exist two different integers,

i, j such that ztixti−1
i = ztj x

tj−1
j , that is, zti = ztj and xti−1

i = x
tj−1
j . This latter equality implies that ti ≡p 1. But

then ztixti−1
i has the same order as z, which is impossible since it belongs to F . !

The nonperiodic case is harder to deal with, and the description that we shall give in this case is less explicit than
the one in Theorem 4.5. The key piece of information is the following.

Lemma 4.7. Let G be a nonperiodic P!
a -group. Then tor(Z(G)) is finite and torG has finite exponent.

Proof. Let T = tor G and Z = Z(G). Since exp(G/Z) is finite it is clear that expT is finite if torZ = T ∩ Z is finite,
hence it will be enough to prove this latter fact. We begin by showing that G has no Prüfer subgroups. Suppose that
Cp∞ ) P ≤ G. Then G = PK for some subgroup K such that P ∩ K ≤ G′. Let bars denote images modulo T . Since
P ≤ Z every homomorphism ε : ¯̄G = G/T → P gives rise to an automorphism of G, defined by x /→ xx̄ε for all x ∈ G,
hence ¯̄Uε ≤ U ! for every U ≤ K. If the abelian torsion-free group ¯̄G is p-divisible then also ¯̄Z is p-divisible, because
G/Z has finite exponent. Then there exists S ≤ TZ such that T ≤ S and TZ/S ) Cp∞ . As TZ is a direct factor in G
modulo S there exists ε ∈ Hom( ¯̄G, P ) such that ¯̄Zε = P . But ¯̄Z = (Z ∩ K)T/T , hence P ≤ (Z ∩ K)!. If, instead, ¯̄G
is not p-divisible and x̄ ∈ ¯̄G # ¯̄Gp then x has order pn modulo TGpn

, for every n ∈ N; it follows that P ≤ 〈x〉!. In
either case we obtain a contradiction. Therefore T is reduced, and, in view of Lemma 4.2, to establish the lemma we
only need to prove that π(Z) is finite.

Let π be the set of all odd primes p ∈ π(Z) # π(G/Z) such that the p-component Zp of Z is cyclic. By Lemma 4.2,
and since G/Z has finite exponent, π(Z) # π is finite. To complete the proof we shall assume that π is infinite and
derive a contradiction. For all p ∈ π let 〈ap〉 = Zp and note that G = 〈ap〉 × Kp for some Kp ≤ G; let αp be the
automorphism of G defined by a

αp
p = a−1

p and [Kp, αp] = 1.
If Z has infinite torsion-free rank, we can choose in it an (infinite) independent subset {xp | p ∈ π} (here xp (= xq

if p (= q). At the expense of replacing xp by apxp where needed, we can also assume that xp /∈ Kp for all p ∈ π,
hence 1 (= [xp, αp] ∈ 〈ap〉. Then S := 〈xp | p ∈ π〉 is a torsion-free abelian subgroup such that S! has infinite torsion
subgroup. This contradiction shows that Z has finite torsion-free rank.

Now let p ∈ π and suppose that Z(Kp) is p-divisible. The six-term homology sequence (see [9], Theorem V.2.2)
shows that if X is a centre-by-finite group of finite exponent e then the Schur multiplier of X has finite exponent
dividing e2. Hence the Schur multiplier of Kp/Z(Kp) has finite exponent, involving primes in π(G/Z) only. By
the Universal Coefficients Theorem ([9], section II.5), the cohomology group H2

(

Kp/Z(Kp), Z(Kp)
)

also has finite
exponent involving primes in π(G/Z) only. Thus, as p /∈ π(G/Z), there exists n ∈ N such that q := pn ≡ 1
modulo the order of the cohomology class of the extension Z(Kp) ↪→ Kp " Kp/Z(Kp). It follows that Kp has an
automorphism inducing the identity on Kp/Z(Kp) and the mapping x /→ xq on Z(Kp). This automorphism extends to
an automorphism of G that does not induce a power automorphism on G/T . This is a contradiction, by Lemma 1.3,
hence Z(Kp) is not p-divisible. Since tor(Z(Kp)) is a p′-group this means that Z/ torZ ) Z(Kp)/ tor(Z(Kp)) is not
p-divisible. Therefore, for every p ∈ π we can choose gp ∈ Z # TZp.

Next we prove that no element x of Z has finite p-height for infinitely many p ∈ π; this is clear if x is periodic.
Let x be not periodic and let ψ be the set of all p ∈ π such that x has finite p-height. For each p ∈ ψ there exists
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yp ∈ Z # Zp such that x = y
rp
p for some power rp of p. By Lemma 2.3, S := 〈yp | p ∈ ψ〉 is torsion-free. Fix p ∈ ψ and

set y = yp. Note that y /∈ G′Gp, because G/Z is a p′-group and y /∈ Zp. Recall the automorphism αp defined earlier
by using the direct decomposition G = 〈ap〉 × Kp. If y /∈ Kp then [y, αp] is a nontrivial p-element in 〈y〉!. If y ∈ Kp

then y /∈ 〈ap〉G′Gp. Therefore a suitable homomorphism from G/〈ap〉G′Gp to 〈ap〉 gives rise to an automorphism of G
mapping y to yb, where b is an element of order p in 〈ap〉, thus b ∈ 〈y〉!. In either case 〈y〉! has nontrivial p-elements.
Thus S# contains elements of order p for all p ∈ ψ, and this shows that ψ is finite, as claimed.

Going back to the nonperiodic elements gp fixed earlier (where p ∈ π), we are now able to define a sequence (qi)i∈N

of (pairwise distinct) primes in π such that, for all i ∈ N, the element gqi
has infinite qj -height for all integers j > i.

Since Z has finite torsion-free rank there exist n, m ∈ N such that 1 (= gm
qn

∈ H :=
〈

gq1
, gq2

, . . . , gqn−1

〉

. But the
elements of H have infinite qn-height, while gqn

is not qn-divisible modulo T ∩ Z. This is the final contradiction, and
the proof is now complete. !

For every group G let LG denote the set of all subgroups of G. If U ≤ G we say that a mapping θ : LU → LG is
join-preserving if 〈X | X ∈ S〉θ =

〈

Xθ | X ∈ S
〉

for all S ⊆ LU .

Lemma 4.8. Let U ≤ G, where G is an FC-group, and let θ : LU → LG be a join-preserving mapping. If Aθ is finite
for all countable abelian subgroups A of U then Uθ is finite.

Proof. Suppose that Uθ is infinite. Let H be a finitely generated subgroup of U . Then Hθ is generated by finitely many
images (under θ) of cyclic subgroups, hence it is finite. Moreover, U = KCU (H) for some finitely generated K ≤ U ,
hence Kθ is finite and it follows that

(

CU (H)
)

θ is infinite. Suppose that we have chosen elements x1, x2, . . . , xn ∈ U

such that H := 〈x1, x2, . . . , xn〉 is abelian and 〈xi+1〉θ " 〈x1, x2, . . . , xi〉
θ for all positive integers i < n. Then, since

(

CU (H)
)

θ is infinite, there exists xn+1 ∈ CU (H) such that 〈xn+1〉θ " Hθ. This suggests how to construct an infinite
sequence of elements of U generating a (countable) abelian subgroup A such that Aθ is infinite. Thus we obtain a
contradiction; the result follows. !

Theorem 4.9. Let G be a nonperiodic group. Then G satisfies P!
a if and only if one of the following holds:

(a) there exists F ≤ G such that F is finite and H char G for all H such that F ≤ H ≤ G;
(b) both G′ and tor(Z(G)) are finite, Z(G) has finite rank and G has a subgroup J containing Z(G) as a subgroup of

finite index such that every subgroup of G containing either torG or J is characteristic in G.

If G satisfies P!
a then it satisfies P! boundedly.

Proof. Let T = torG and Z = Z(G). Let G satisfy P!
a . We know from Lemma 1.3 that H char G for all H

such that T ≤ H ≤ G, so, to prove that either (a) or (b) holds, we may assume that T is infinite. We can also
assume that (b) does not hold; in view of Lemmas 4.3 and 4.7 this means that Z has infinite torsion-free rank. Let
Γ := CAut G(G/T ). Since AutG acts on G/T by means of power automorphisms either AutG = Γ or |AutG : Γ| = 2
and every α ∈ Aut G # Γ induces the inversion map on G/T . Define a map θ : LG → LG by setting, for each X ≤ G,
Xθ = G′[X,Γ]〈xxα | x ∈ X, α ∈ Aut G # Γ〉. Then θ is join-preserving; moreover Xθ ≤ T and X!G′ = XXθ for all
X ≤ G. It is apparent that Gθ char G and AutG acts on G/Gθ by means of power automorphisms. Hence to prove
that (a) holds it will suffice to prove that Gθ is finite and set F = Gθ.

If A is an abelian subgroup of G and torA is finite then Aθ ≤ T ∩ A!G′ = G′ tor(A!), which is finite because
of P!

a . Since expT is finite by Lemma 4.7, there exists K ≤ G such that G′ = K ∩ T and G = KT . By the previous
remark Aθ is finite for all abelian subgroups A of K, hence Kθ is finite by Lemma 4.8 (applied to a restriction of θ).
Next, K ∩ Z has infinite torsion-free rank, because Z/K ∩ Z is periodic . Let {ai | i ∈ N} be an independent set in
K ∩ Z (here ai (= aj if i (= j). Let A = 〈ai | i ∈ N〉, let B = {bi | i ∈ N} be a countable abelian subgroup of T and
S := 〈aibi | i ∈ N〉. Then S is torsion-free abelian, implying that Sθ is finite, as is Aθ. Now Bθ ≤ (AS)θ = AθSθ,
hence Bθ is finite. We can use Lemma 4.8 again to conclude that T θ is finite. Therefore F := Gθ = T θKθ is finite
and (a) holds.

Conversely, it is obvious that G satisfies P! boundedly in case (a). To complete the proof we only need to show
that the same conclusion can be drawn from (b). Assume that (b) holds. As G′ and torZ are finite both G/Z and
T have finite exponent. If H ≤ G then H splits over H ′, because exp(tor H) is finite, hence H = (H ∩ T )V for
some V ≤ H such that V ∩ T = H ′. Of course H! = (H ∩ T )!V !. Now, F := J ∩ T is finite, because J/Z is finite,
and (H ∩ T )F = (H ∩ T )J ∩ T char G by hypothesis, hence |(H ∩ T )! : H ∩ T | ≤ |F |. Thus we need only consider V .
By hypothesis V T ∩ V J char G, hence V ! ≤ V T ∩ V J = V (T ∩ V J). But rk(V ) ≤ rk(G′) rk(G/T ) and exp(G/J)
is finite, hence |V J/J | ≤ n for some integer n independent of H . Thus |V ! : V | ≤ |T ∩ V J | ≤ n|F |. It follows that
the index of H in H! = (H ∩ T )!V ! is finite and bounded above by a number independent of H . Thus G satisfies P!

boundedly and the proof is complete. !
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Together with Theorem 4.5 this result proves the Theorem in the Introduction: P! and P!
a , and also the property

of satisfying P! boundedly, are equivalent.
Our final remarks provide further examples of P!-groups. If T is any P!-group of finite exponent and U is an

(abelian) torsion-free group of finite rank such that |Aut U | = 2 then G := T × U ∈ P!. For Z(T ) is finite by
Lemma 4.2, Theorem 4.5 (see the remark following it) implies that T has a finite subgroup J0 such that all subgroups
of T containing it are characteristic in T , and it follows that UZ(T )J0 has the property required for J in condition (b)
of Theorem 4.9. If T 2 is infinite (which is the case, for instance, if T is isomorphic to one of the groups constructed in
Theorem 3.1 when the prime p is odd) then no finite subgroup of G has the property required for F in Theorem 4.9(a).
In fact, suppose that F ≤ T and all subgroups of G containing F are characteristic. Let 1 (= u ∈ U and t ∈ T , then
tu−1 ∈ F 〈tu〉 because F 〈tu〉 char G and G has an automorphism centralising T and inverting every element of U .
Hence tu−1 = xtnun for some x ∈ F and n ∈ Z. As x ∈ T we have t = xtn and u−1 = un. Therefore n = −1
and t2 = x. Hence T 2 ≤ F , so F is infinite. Thus we have more examples of groups satisfying P! for a non-trivial
reason, which shows that condition (b) in Theorem 4.9 cannot be dismissed. By comparison, if we modify this last
example by letting U have infinite rank then certainly G does not satisfy P! unless T 2 is finite, this also follows from
Theorem 4.9 and the above argument. A further variation is the following. It provides examples of groups of type (a)
in Theorem 4.9 with possibly infinite torsion-free rank, in which T = torG is not a factor in a central decomposition
of G. It also shows that, even in this case, it is not necessary that AutG acts trivially on G/T : the groups obtained
for p = 2 have an automorphism centralising T and inverting every element of U .

Example 4.10. Let p be a prime and let G = T ! U where T is a p-group isomorphic to one of the groups in
Theorem 3.1 and U is an abelian torsion-free group such that |Aut U | = 2. If TCG(T ) < G then G satisfies P!.

Proof. It is clear that T = torG char G. As we know from Section 3, AutT is abelian; this implies that [G, AutG] ≤
CG(T ). If, furthermore, [G, AutG] ≤ T then [G, Aut G] ≤ CG(T ) ∩ T = Z(T ); as Z(T ) is finite the result follows
in this case. The only nontrivial automorphism of G/T is the inversion mapping. Now, AutT is a p-group, hence
G/TCG(T ) is a nontrivial (by hypothesis) p-group centralised by AutG. If p > 2 it follows that [G, AutG] ≤ T . Thus
we may assume that p = 2. Since (Aut T )2 = 1 we have G2 ≤ CG(T ). Then every automorphism of G inducing the
identity (respectively the inversion) on G/T also induces the identity (respectively the inversion) on G/CG(T ), and
therefore on G/Z(T ). The result follows. !
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