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ON GROUPS SATISFYING THE MAXIMAL CONDITION

ON NON-NORMAL SUBGROUPS

Giovanni Cutolo

Abstract: The aim of this paper is the classification of non-noetherian locally
graded groups satisfying the maximal condition on non-normal subgroups.

1. Introduction

In his papers [4,6,7] S.N.Černikov studied groups with the minimal condition on non-abelian sub-
groups, on non-normal subgroups, on abelian non-normal subgroups respectively.

This kind of researches on groups with the minimal condition on subgroups not verifying a
certain property P is related to two different topics in infinite group theory. On one side, they
are part of Černikov’s investigation on groups with the minimal condition on given systems of
subgroups; on the other side, they are connected with the problem of studying groups with many
P-subgroups. In particular, the minimal condition on non-P-subgroups may be regarded as a
generalization of the property “every infinite subgroup has P” (considered for instance in [5] and
[16]) and is clearly related to the property “every proper subgroup has P” as well.

In this spirit Phillips and Wilson [17] (see also [2,3,12]) and Kurdachenko and Pylaev [13] have
proved for a number of properties P (the property of being either serial or locally nilpotent and
other stronger properties in [17]; the property of having finitely many conjugates in [13]) that a
group G satisfying the minimal condition on non-P-subgroups and some extra hypoteses is either
a Černikov group or a group all proper subgroups of which have the property P. In particular,
generalizing a Černikov’s result, Phillips and Wilson have shown that a locally graded group with
the minimal condition on non-normal subgroups is either a Dedekind group or a Černikov group.
Recall that a group G is locally graded if every non-trivial finitely generated subgroup of G has a
non-trivial finite quotient. Every locally (soluble-by-finite) group is locally graded.

Aim of this paper is the study of the dual condition, the maximal condition on non-normal
subgroups, which we will denote by Max-n–. In contrast to the above-quoted result, it turns out
that there exist non-noetherian non-Dedekind groups which satisfy Max-n–. In fact, we obtain the
following:

Theorem. A locally graded group G satisfies Max-n– if and only if it is of one of the following
types:
(a) G is a noetherian group
(b) G is a Dedekind group
(c) G is a central extension of Z(p∞) by a finitely generated Dedekind group
(d) G is the direct product of Q2 and a finite hamiltonian group.

In particular a non-noetherian locally graded group with Max-n– is nilpotent of class 2 (Corol-
lary 2.5). By studying groups with Max-n– the class of those groups whose non-normal subgroups
are finitely generated arises in a natural way. We will denote this class by D. In §2 some properties
of groups in Max-n– or in D are stated, the Theorem is proved and some of its consequences are
pointed out. In §3 nilpotent D-groups not in Max-n– are discussed. It is also shown that a nilpo-
tent group with the maximal condition on abelian non-normal subgroups satisfies Max-n–. Finally
we mention that a very special case of our problem has been recentely considered by Hekster and
Lenstra [11].

Our notation is mostly standard. In particular we refer to [18] and [19].
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2. The class Max-n–

Lemma 2.1. Let G be a group satisfying the maximal condition on non-normal subgroups. Then:
(a) G is a D-group.
(b) The commutator subgroup G′ of G satisfies the maximal condition. In particular G is locally

noetherian.
(c) The group G either is soluble or satisfies the maximal condition on abelian subgroups.

Proof — (a) Let H be a non-normal subgroup of G. Suppose, by contradiction, that H is not
finitely generated. Let K be a subgroup of H which is maximal with respect to the condition of
being finitely generated and non-normal in G. Since H is not finitely generated, K < H. For each
x ∈ H rK, the subgroup 〈K,x〉 is normal in G. Hence H =

⋃
x∈HrK 〈K,x〉 is normal in G. By

this contradiction H is finitely generated.
(b) Let K be a cyclic subgroup of G. The interval [KG/K] of the subgroup lattice of G

satisfies the maximal condition. It follows by a standard argument that KG satisfies the maximal
condition on normal subgroups, and hence KG satisfies the maximal condition on subgroups. If
G is a Dedekind group, then G′ is finite. If not, let H be a subgroup of G which is maximal
with respect to the condition of being non-normal in G. Then H is finitely generated and, by the
above, HG satisfies the maximal condition. Moreover, by the choice of H, the quotient G/HG is a
Dedekind group, and so G′/(G′ ∩HG) ' G′HG/HG is finite. Therefore G′ satisfies the maximal
condition.

(c) Suppose that G contains an abelian subgroup A which is not finitely generated. Then A
is normal in G and G/A is a Dedekind group by (a) and (b). Hence G is soluble. ut

The proof of (a) in the previous lemma shows that a group with the maximal condition on
finitely generated non-normal subgroups is a D-group. Therefore Max-n– is equivalent to the
maximal condition on finitely generated non-normal subgroups.

The next two lemmas establish some restrictions for the centre of a non-Dedekind D-group.

Lemma 2.2. Let G be a non-Dedekind D-group. Then Z(G) = T ×K, where T is either finite
or direct product of a finite group and a Prüfer p-group (p prime) and K is torsion-free of finite
rank. Furthermore:
(i) if T is infinite, K is finitely generated and every p′-subgroup of G is normal in G;

(ii) if G has a finite non-normal subgroup, then K is finitely generated.

Proof — Let H be a cyclic non-normal subgroup of G. Suppose that Z(G) has two subgroups A
and B which are not finitely generated and such that A ∩B = H ∩ Z(G). Then AH and BH are
normal in G, since they are not finitely generated. Hence H = HA ∩HB is normal in G, which
is a contradiction. The first part of the lemma follows now readily. Moreover, if T = torZ(G) is
infinite, then K is finitely generated. Let H be a cyclic non-normal q-subgroup of G (q prime). If
L is a subgroup of Z(G) with no element of order q, then H is the q-component of HL, hence HL
is not normal in G and L is finitely generated. By using this observation, the proof can be easily
completed. ut

Lemma 2.3. Let G be a D-group. Suppose that Z(G) contains a torsion-free subgroup A such
that G/A is not periodic and A is not finitely generated. Then G is abelian.

Proof — Let H/A be a cyclic subgroup of G/A. Since H is abelian and A is not finitely generated,
H is not finitely generated and so it is normal in G. Hence G/A is a Dedekind group. Since G/A is
non-periodic, it is abelian. We proceed now by induction on the rank r of A (which may be assumed
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finite by Lemma 2.2) to prove that G is abelian. Let r = 1 and assume that G is not abelian. Since
G is generated by its elements which have infinite order modulo A, there exists a ∈ G r Z(G) of
infinite order modulo A and b ∈ G such that c = [a, b] 6= 1. Clearly c ∈ A, and the p′-component
of A/〈c〉 is infinite for a suitable prime p. Let H = 〈cp〉 and let P/H be the p′-component of A/H.
Since P 〈a〉 is not finitely generated it is normal in G, so that c ∈ P 〈a〉∩A = P (〈a〉∩A) = P . Since
c has order p modulo H, this is impossible. Hence G is abelian if r = 1. Suppose now r > 1 and
let H1, H2 be two nontrivial cyclic subgroups of A such that H1 ∩H2 = 1. For i = 1, 2 let Ti/Hi

be the torsion subgroup of A/Hi. Then T1 ∩ T2 = 1. If one of the subgroups T1 and T2 is not
finitely generated, then, by the case r = 1, G is abelian. If T1 and T2 are both finitely generated,
then A/T1 and A/T2 are not finitely generated, so that, by induction, G/T1 and G/T2 are abelian
and G′ ≤ T1 ∩ T2 = 1. ut

Proposition 2.4. A torsion-free nilpotent D-group G is either finitely generated or abelian.

Proof — Assume that G is not abelian. It follows from Lemma 2.3 that Z(G) is finitely generated.
By induction on the nilpotency class of G, we obtain that G/Z(G) is abelian and, in particular, G′

is finitely generated. For any subgroup H of G, the quotient H/HG satisfies the maximal condition,
so that G/Z(G), and hence G, is finitely generated (see [8], Theorem 5.9). ut

Let p be a prime and let Qp be the additive group of all rational numbers whose denominator
is a power of p. Let α be the automorphism of Qp defined by xα = px. Then Qp o 〈α〉 is an
example of a non-abelian finitely generated torsion-free metabelian D-group.

Proof of the Theorem

Let G be a group in Max-n– which is neither noetherian nor a Dedekind group. Suppose first
that G is soluble-by-finite. For each subgroup H of G, the quotient H/HG has the maximal condi-
tion. Since G′ is poycyclic-by-finite (see Lemma 2.1(b)), this implies that G/Z(G) is polycyclic-by-
finite by Theorem 5.9 of [8]. In particular Z(G) is not finitely generated. By Lemma 2.1 it follows
that G/Z(G) is a Dedekind group, so that G is nilpotent. By Proposition 2.4, either G′ ≤ torG
or G/ torG is finitely generated. In the latter case torG is not finitely generated, thus G/ torG is
abelian. Then G′ is torsion and so finite in any case. Hence G/Z(G) is periodic and so finite.

Let T = torZ(G). Suppose first that G/T is finitely generated. Then, by Lemma 2.2, it
follows that T contains a subgroup A ' Z(p∞) such that G/A is finitely generated. We conclude
that G/A is a Dedekind group and G is of type (c) in our statement. Assume now that G/T is
not finitely generated. Since G/Z(G) is finite, it follows by Lemma 2.2 that T is finite and that
every finite subgroup of G is normal. Then G contains a non-normal infinite cyclic subgroup H.
As H ∩G′ = 1, we have HG = H ∩Z(G) 6= 1 and H/HG is a finite non-normal subgroup of G/HG.
By the above part of the proof, G/HG contains a central subgroup P/HG ' Z(p∞) such that G/P
is a finitely generated Dedekind group. Then P ≤ Z(G) and P = P0 × P1, where P0 is finite and
P1 ' Qp. The quotient G/P1 is a Dedekind group and, since G′ ∩P1 = 1, it is hamiltonian and so
finite. Hence |G′| = 2 and G/Z(G) has exponent 2. By Lemma 2.2, every p′-subgroup of G/HG is
normal, so that H/HG is a p-group and p divides |G/Z(G)|. Hence p = 2 and P1 ' Q2. Let V/P1

be the 2′-component of G/P1. Then V is abelian, since V ′ ≤ G′ ∩ P1 = 1. Hence V = V0 × V1 ,
where V0 is finite and V1 ' Q2. Also G/V1 is a finite hamiltonian group. Let U/V1 be the Sylow
2-subgroup of G/V1. Then G′ ≤ U and V1G

′/G′ ' V1 ' Q2 , so that there exists a subgroup B
of U containing G′ such that U = (V1G

′)B and V1G
′ ∩ B = G′ (see [9], vol.I, p.223). Hence

U = V1 × B and B is finite. Therefore G = UV = V (V1 × B) = V1 × (BV0) and BV0 ' G/V1 is
hamiltonian. Then G is of type (d) and the theorem holds for soluble-by-finite groups.
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Let now G be locally graded. Let N = G′′ be the second term of the derived series of G
and let H be a subgroup of finite index in N . It follows from Lemma 2.1(b) that HG has finite
index in N . By the first part of the proof, the non-noetherian group G/HG is metabelian, so that
HG = N and N has no proper subgroups of finite index. By the definition of locally graded group,
N = 1 and G is soluble. The necessity of the condition is proved.

Conversely, a group of type (a) or (b) satisfies trivially Max-n–. Let G be a group of type (c).
Then G = NA, where A ' Z(p∞) is contained in Z(G), the quotient G/A is a Dedekind group, N
is polycyclic (and obviously normal). Assume that G has an infinite, strictly ascending sequence
of non-normal subgroups

K1 < K2 < · · · < Kn < · · ·
and let K be the union of the Ki. Since G/A is finitely generated, K/(A ∩K) has Max, so that
A ∩ K /∈ Max and A ∩ K = A. Then A ≤ K. Since G/A is a Dedekind group, K / G. Since
N satisfies the maximal condition, there exists an integer n such that K ∩ N = Kn ∩ N , and so
K ∩N ≤ Kn < K /G. But K/(K ∩N) ' KN/N ' Z(p∞), so that Kn must be normal in G. This
contradiction shows that G satisfies Max-n–. Let finally G = Q× F be a group of type (d), where
Q ' Q2 and F is a finite hamiltonian group. Let K1 ≤ K2 ≤ · · · ≤ Kn ≤ · · · be an ascending
chain of non-normal subgroups of G and let K be its union. It is clear that N = K1 ∩ Q 6= 1;
thus Q/N = A × D, where A ' Z(2∞) and D is a finite abelian group of odd order. Hence
G/N = A × D × (FN/N) is a group of type (c), and so it belongs to Max-n–. It follows that
K = Kn for some integer n. Therefore G ∈ Max-n–. ut

Remark. The proof of the Theorem also shows that a PC-group which is a D-group satisfies
Max-n–. Here a PC-group is a group G such that G/CG(xG) is polycyclic-by-finite for each
element x of G (see [8]).

Corollary 2.5. Let G be a non-noetherian locally graded group in Max-n–. Then G is a nilpotent
central-by-finite group of class at most 2.

Proof — We have only to prove that a group G of type (c) (see Theorem) has class 2. We may
assume that G is a 2-group and that G/A is a finite hamiltonian group, where the subgroup A is
isomorphic with Z(2∞). Clearly the Schur multiplicator M(G/Z(G)) of G/Z(G) has exponent 2,
so that G′ ∩ Z(G) has exponent 2 and |A ∩ G′| ≤ 2. It follows that |G′| ≤ 4. Hence, for each
x ∈ G, we have |G : CG(x)| ≤ 4. But A ≤ CG(x) and each subgroup of G/A of index ≤ 4 contains
G′A/A, so that G′ ≤ Z(G) and G has class 2. ut

Corollary 2.6. Every non-Dedekind group G in Max-n– is countable.

Proof — By Lemma 2.1(b), the union of any chain of soluble subgroups of G is still soluble. Hence
we can apply Zorn’s Lemma to obtain a maximal soluble subgroup H of G. We may assume
that H < G. Then H is polycyclic by Lemma 2.1(c) and HG satisfies the maximal condition on
subgroups. Hence HG has only countably many subgroups, so that |G : NG(H)| is countable. But
NG(H) = H, so the corollary is proved. ut

3. Other results and counterexamples

Examples of soluble non-noetherian D-groups which are not nilpotent (and so do not satisfy the
maximal condition on non-normal subgroups) are easily obtained (for instance the example given
in §2, or any non-central extension of a Prüfer group by a finitely generated Dedekind group).
Even in the nilpotent case the property D does not imply Max-n–, as the following example shows.
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Example 3.1. Let p be a prime and A be a torsion-free abelian group of rank n > 1 with
no infinite cyclic quotients containing a finitely generated subgroup B such that A/B ' Z(p∞)
(for the existence of such groups, see [10] or [9], vol.II, p.128). Since A is p-minimax, the Schur
multiplicator M(A) of A is also p-minimax. It is well-known that M(A) has torsion-free rank
n(n−1)/2 > 0. On the other hand, Hom(M(A) , Z) � Hom(A⊗A , Z) = 0, so that M(A) has no
infinite cyclic quotients and hence it has a quotient isomorphic with Z(p∞). Consider C ' Z(p∞)
as a trivial A-module and let ϕ : M(A) � C be an epimorphism. Then ϕ determines a central
extension:

C � G� A

where G′ = C. Assume that there exists a subgroup H of G which is not finitely generated and
does not contain G′. Then H ∩G′ is finite and HG′/G′ is not finitely generated. Let K/G′ be a
finitely generated subgroup of G/G′ such that G/K ' Z(p∞). Then HK/K ' HG′/((H ∩K)G′)
is not finitely generated, and so G = HK. Then G/HG′ is finitely generated, hence finite, since
G/G′ ' A has no infinite cyclic quotient. Therefore H is a near-complement of G′ in G. This
is impossible, since the cohomology class of C � G � A has infinite order (see [20]). This
contradiction proves that every subgroup of G which is not finitely generated contains G′ and so
is normal. Thus G is a nilpotent D-group. On the other hand, G does not satisfy Max-n–, since
G′ is infinite. ut

It is well-known that a soluble group satisfies the maximal condition on subgroups if and
only if its abelian subgroups have the same property, and a similar result holds for soluble groups
satisfying the minimal condition on subgroups (see [18]). On the other hand there exist soluble
groups which are not Min-by-Max whose abelian subgroups are Min-by-Max. The structure of
groups of this type has been investigated by Newell [14,15]. Our next result gives a description
of those nilpotent D-groups which do not satisfy Max-n– as groups with the property considered
above.

Proposition 3.2. Let G be a nilpotent group and let T be the torsion subgroup of G. Then G is
a D-group not in Max-n– if and only if it satisfies the following conditions:

(i) G′ ' Z(p∞) and T/G′ is finite;

(ii) every abelian subgroup of G is Min-by-Max but G is not Min-by-Max.

Proof — Let G be a nilpotent D-group not in Max-n–. The remark following the Theorem shows
in particular that G′ is infinite. Assume that T contains two infinite subgroups A and B such that
A ∩ B = 1. Then A and B are normal in G and the factor groups G/A and G/B are Dedekind
groups. Hence G′/(A∩G′) ' AG′/A and G′/(B ∩G′) ' BG′/B are finite, so that G′ is finite. By
this contradiction, it follows that T does not contain such a pair A,B. It follows that each abelian
subgroup of T is either finite or direct product of a finite group by a Prüfer group. Hence T is a
Černikov group. By the Theorem, G/T is not finitely generated, so that G is not Min-by-Max and
G′ ≤ T by Proposition 2.4. Then T is infinite and contains a subgroup of finite index P ' Z(p∞).
Now G/P is a Dedekind group and so is abelian, as T < G. Thus G′ = P and (i) holds. Let A be
a maximal abelian subgroup of G. Since G′ ≤ Z(G), then G′ ≤ A and A = G′ × B for a suitable
subgroup B of A. Since G′∩B = 1 and B is not contained in Z(G), it follows that B is not normal
in G and so it is finitely generated. Whence A is Min-by-Max and also (ii) is proved.

Conversely, let G satisfy (i) and (ii) and let H be a subgroup of G which is not finitely
generated. Then H contains an abelian subgroup A which is not finitely generated. Since A is
Min-by-Max, the torsion subgroup of A must be infinite, so that A contains G′ and G′ ≤ H. Hence
H / G and G is a nilpotent D-group. Since G′ is infinite, G does not belong to Max-n–. ut
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Corollary 3.3. Let G be a nilpotent D-group with torsion-free rank 1. Then G satisfies the
maximal condition on non-normal subgroups.

Proof — Assume that G does not satisfy Max-n–. Then it follows from Proposition 3.2 that
G′ ≤ Z(G) and G/G′ has a locally cyclic torsion-free subgroup of finite index A/G′. Clearly A is
abelian and G is abelian-by-finite, which is impossible by Proposition 3.2. ut

By Proposition 3.2 and a result of Baer [1], nilpotent D-groups not in Max-n– are minimax
groups. More precisely, we have:

Corollary 3.4. Let G be a nilpotent D-group which is not in Max-n–. If A = G′ × B is any
maximal abelian subgroup of G, then G/A is an infinite p-group with the minimal condition and
A = BG.

Proof — The quotient G/A is isomorphic with a group of automorphisms of A which centralizes
G′ ' Z(p∞) and A/G′ ' B, so that G/A embeds in Hom (B,Z(p∞)), which is a p-group with the
minimal condition, since B is finitely generated by Proposition 3.2. Since G is not Min-by-Max,
G/A is infinite. Finally CG(BG) = CG(A) = A, so that BG is not finitely generated and A = BG.ut

It follows easily from Corollary 3.4 that every nilpotent D-groups which is not in Max-n– has a
normal subgroup of the type described in Example 3.1. The corollary above also has the following
consequence:

Corollary 3.5. Let the nilpotent group G satisfy the maximal condition on abelian non-normal
subgroups. Then G satisfies the maximal condition on non-normal subgroups.

Proof — The same argument used in the proof of Lemma 2.1(a), shows that every abelian non-
normal subgroup of G is finitely generated. Let H be any non-normal subgroup of G. Since H
is generated by its maximal abelian subgroups, H must contain a maximal abelian subgroup U
which is not normal in G. Hence U is finitely generated and it follows easily that also H is finitely
generated. Thus G is a D-group. If G does not satisfy Max-n– and A = G′ × B is a maximal
abelian subgroup of G, then BG/B = A/B does not satisfy the maximal condition on subgroups.
This contradiction proves that G ∈ Max-n–. ut

The hypothesis of nilpotency in Corollary 3.5 cannot be weakened. In fact, if A is the direct
product of a Prüfer 2-group and a cyclic group of order 4 and α is the inversion automorphism of A,
the hypercentral metabelian group G = Ao 〈α〉 has the maximal condition on abelian non-normal
subgroups, but is not a D-group.
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