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Abstract. A subgroup H of a residually finite-p group G is almost p-closed in G if H has finite
p′-index in ¯̄H, its closure with respect to the pro-p topology on G. We characterise polycyclic

residually finite-p groups in which all subgroups are almost p-closed and discuss a few conditions
that are sufficient for particular subgroups H to be almost p-closed. We also present, for each

prime p, an example of a polycyclic residually-p group G for which | ¯̄H : H| takes on all possible

values, including infinity, as H varies.

1. Introduction

If p is a prime, G is residually a finite p-group and H is a subgroup of G, we shall say that H is
almost p-closed in G if the index of H in its closure with respect to the pro-p topology of G is a
finite p′-number. Recall that the pro-p topology on G is that topology having the set of all normal
subgroups of finite p-power index as a fundamental system of neighbourhoods of the identity. If
G is soluble-by-finite and finitely generated then {Gpn | n ∈ N} is another, often more convenient,
equivalent fundamental system. Throughout the paper, we will use bars to denote closures with
respect to this topology.

It is a well-known result due to Mal’cev that in a polycyclic-by-finite group all subgroups are
closed with respect to the profinite topology (see for instance [2], 5.4.16). It is easy to see that
every infinite polycyclic group G in the class RFp of groups that are residually (finite-p) has some
subgroup H which is not closed with respect to the pro-p topology. However, it is equally easy
to show that if G is also abelian then every subgroup of G is almost p-closed in G. The second
author was asked some time ago whether this is the general rule, that is: if G is a polycyclic
group in RFp, is every subgroup H of G almost p-closed? The general answer is in the negative;
we will characterise the groups for which the answer is in the positive as those in which all finite
quotients are p-nilpotent (Theorem 2.2). This includes the case of nilpotent-by-finite groups (see
Corollary 2.3), hence, for instance, that of supersoluble groups. By contrast, in the case of arbitrary
polycyclic groups in RFp the index | ¯̄H : H| need not even be finite and, if it is finite, it can be any
positive integer (see Remark 3.2). Nevertheless, it turns out that every polycyclic group G has a
residually-p subgroup of finite index in which all subgroups are almost p-closed (Corollary 2.4).
Finally, in Theorem 3.7 we will find a condition that is sufficient for all subgroups contained in
the hypercentre of a polycyclic group in RFp to be almost p-closed.

2. Groups in which all subgroups are almost p-closed

We begin by recalling some elementary, well-known facts about the (Hausdorff) topology that
we are discussing. If G is a group in RFp and H ≤ G then the closure of H in the pro-p
topology of G is ¯̄H =

⋂
{HN | N C G and N ∈ N}, where N is any fundamental system of

neighbourhoods of the identity. In particular, ¯̄H =
⋂
{HN | N C G and G/N is a finite p-group};

and ¯̄H =
⋂
{HGpn | n ∈ N} if G is polycyclic-by-finite. It follows that if V is a variety and H

is maximal among the subgroups (resp. normal subgroups) of G in V then H is closed. When
H C G this latter condition means exactly that G/H ∈ RFp. Thus, a soluble-by-finite group G
in RFp for some prime p is necessarily soluble. For, the soluble radical S of G is closed in the pro-p
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topology, being a maximal normal subgroup of G in the variety generated by itself. Hence G/S is
a finite group in RFp, that is, a finite p-group. By a similar argument, the Fitting subgroup FitG
of any polycyclic group in RFp is closed. Also, all finite subgroups and all centralizers are closed,
hence such is Z(G) and, in our case, Z(FitG). All these properties will be used throughout the
paper without further comments.

We also make use of the following very elementary remark.

Lemma 2.1. Let G be a polycyclic group and let H ≤ G. If |G : H| is infinite then for every
prime p there exists a subgroup K of finite index in G such that H < K and p divides |G : K|.

Proof. We may assume that H is maximal among the subgroups of G for which the statement
fails. Then every subgroup of G properly containing H has finite index. If |G : G(n)H| is infinite,
for some positive integer n, then G(n) ≤ H. Thus there exists a term A of the derived series
of G such that |G : AH| is finite and A′ ≤ H. Let B = A ∩H; then A/B is (finitely generated)
infinite abelian and, for every prime p, we have that A/ApB is a nontrivial finite p-group. Now,
|AH : ApH| = |A : ApB|, so ApH has the the property required for K. �

Theorem 2.2. Let p be a prime. For a polycyclic group G ∈ RFp the following are equivalent
conditions:

(i) every subgroup of G is almost p-closed;
(ii) every normal subgroup of finite index in G is almost p-closed;

(iii) every finite quotient of G is p-nilpotent.

Proof. Obviously (i) implies (ii). Suppose that (ii) holds and let G/N be a finite quotient of G.
Then the closure ¯̄N of N is normal in G and ¯̄N/N is a p′-group. On the other hand, G/ ¯̄N is a
p-group, as a finite group in RFp. Thus G/N is p-nilpotent and (iii) holds. Finally, assume (iii)
and let H ≤ G. By Lemma 2.1, if | ¯̄H : H| is infinite there exists K such that H < K < ¯̄H
(so that ¯̄K = ¯̄H) and | ¯̄H : K| is finite and divisible by p. So, aiming at proving that | ¯̄H : H|
is a finite p′-number, we may assume that | ¯̄H : H| is finite. Since H is closed in the profinite
topology of G there exists a normal subgroup N of finite index in G such that NH ∩ ¯̄H = H. Let
Q/N be the Hall p′-subgroup of G/N . Then G/Q is a finite p-group, hence ¯̄H ≤ HQ. Therefore
| ¯̄H : H| = |N ¯̄H : NH| divides |QH : NH|, which is a p′-number. This completes the proof. �

For the sake of brevity, for every prime p we will call N(p) the class of those groups whose finite
quotients are all p-nilpotent. It is easy to check that all finite sections of a polycyclic N(p)-group
must be p-nilpotent. Also, every nilpotent-by-finite group G in RFp is in N(p), for F = Fit(G) is
closed and so G/F is a p-group. Thus we have:

Corollary 2.3. Let p be a prime and G a finitely generated nilpotent-by-finite group in RFp.
Then every subgroup of G is almost p-closed.

On the other hand there exist polycyclic N(p)-groups that are not nilpotent-by-finite, as the
following remarks make clear.

It is well known that, for every prime p, every polycyclic group has a residually-p subgroup of
finite index (this is a result by Šmelkin [5], also see [4], p. 19, Theorem 4(ii)). On the other hand,
as remarked by Roseblade ([3], also see [1], Lemma 11.2.16), for each prime p, every polycyclic
group has a characteristic N(p)-subgroup of finite index, namely the intersection of the centralizers
of all chief factors of p-power order. Thus we obtain:

Corollary 2.4. Let G be polycylic group and let p be a prime. Then G has a characteristic
subgroup G1 of finite index with the property that all subgroups of G1 are almost p-closed in G1.

We can also look again at Theorem 2.2 and note that, as a consequence of Šmelkin’s result
(rather than of Corollary 2.4), polycyclic groups in N(p) are themselves close to being residually-p,
in yet another sense.

Corollary 2.5. Let p be a prime and G a polycyclic-by-finite N(p)-group. Then G has a finite
normal p′-subgroup F such that G/F is residually-p and has all subgroups almost p-closed.
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Proof. There exists H C G such that G/H is finite and H ∈ RFp. For every normal subgroup N
of finite index in G let N∗/N be the Hall p′-subgroup of G/N . Let q = |H∗/H|. For all n ∈ N,
let Hn = Hpn

; then H∗ = HH∗n and (H∗n)q ≤ Hn. Let F be the (finite-p) residual of G; then

F =
⋂
NCG

G/N is finite

N∗ and so F q ≤
⋂
NCG

G/N is finite

(N∗)q ≤
⋂
n∈N

(H∗n)q ≤
⋂
n∈N

Hn = 1.

Thus F is finite, of exponent at most q. The final observation follows now from Theorem 2.2. �

3. Examples and further results

The following construction contrasts with the results in the previous section and with Corol-
lary 2.4 in particular, by showing how far away from being almost p-closed subgroups of polycylic
residually-p groups can be.

Proposition 3.1. Let p be a prime and let G = A o 〈x〉, where A is free abelian of finite rank
but not cyclic and x has infinite order, such that the following properties hold:

(P1)
∣∣A/Ap[A, x]

∣∣ = p;
(P2) x acts rationally irreducibly on A;
(P3) p does not divide the order of the automorphism induced by x on A/Ap.

Then G ∈ RFp and A = 〈g〉 for every g ∈ A \ Ap[A, x], and if n is either a positive integer or ℵ0

then there exists H ≤ A such that | ¯̄H : H| = n.
Moreover, for every n ∈ N there exists H C G such that H ≤ A and | ¯̄H : H| = pn(r−1), where

r = rk(A).

Proof. For every t ∈ N let Bt = Ap
t

[A, xp
t

] and Gt = 〈xpt〉Bt. Then it is clear that Bt and Gt are
normal in G and Bt = A ∩Gt; moreover Gp

2t ≤ Gt ≤ Gp
t

.
Since

⋂
t∈N Gt ≤ A, in order to prove that G ∈ RFp it will suffice to show that B :=

⋂
t∈N Bt =

1. As B C G, by (P2) this amounts to proving that A/B is infinite or, equivalently, that the
(descending) sequence of subgroups (Bt)t∈N does not stop after finitely many steps. Fix t ∈ N, let
asterisks denote images modulo Bpt and let y = (x∗)p

t

. Then G∗t = B∗t o 〈y〉. If (G∗t )
′ = B∗t then

the endomorphism θ of A∗ defined by ū 7→ [ū, y] maps the socle B∗t of A∗ onto itself. Since A∗ is
finite this yields that θ is an automorphism, hence that [A∗, y] = A∗. However, this is false, since
Ap[A, x] < A, by (P1). Therefore (G∗t )

′ < B∗t . This shows that G∗t /(G
∗
t )
′ has a quotient isomorphic

to a rank-2 elementary abelian p-group, hence the same is true of Gt. Therefore Bt 6≤ Gpt (recall
that Gt/Bt is cyclic). As G2(t+1) ≤ Gp

2(t+1) ≤ (Gp
2t

)p ≤ Gpt we have that Bt 6≤ G2(t+1), hence
B2(t+1) = A ∩G2(t+1) < Bt. This shows that A/B is infinite, so B = 1, as we claimed. Therefore
G ∈ RFp.

We now compute closures (with respect to the topology on G) of subgroups of A. Note that
{Gt | t ∈ N} is a fundamental system of neighbourhoods of 1. If H ≤ A then ¯̄H =

⋂
t∈N HGt ≤

¯̄A = A and so ¯̄H =
⋂
t∈N HBt. Let t ∈ N. By (P3), x acts with p′-order on A/Ap, hence

ApBt = Ap[A, xp
t

] = Ap[A, x] is maximal in A, by (P1). Therefore A/Bt is cyclic with maximal
subgroup Ap[A, x]/Bt. It follows that 〈g〉Bt = A for all g ∈ A\Ap[A, x]. This proves that 〈g〉 = A
for all such g, in agreement with our statement. Moreover, for every n ∈ N and for every such g
there exists H ≤ A such that g ∈ H and |A/H| = n. As ¯̄H = A this proves the first part of the
proposition. To complete the proof, fix n ∈ N and compute the closure of Ap

n

. Let m be the
least positive integer such that |A/Bm| ≥ pn (such m does exist, by the first part of the proof).
For all integers t ≥ m we have that Ap

n

Bt/Bt is the subgroup of index pn in A/Bt, and hence
Ap

n

Bt = Ap
n

Bm. Therefore
Apn =

⋂
m≤t∈N

Ap
n

Bt = Ap
n

Bm

and ∣∣Apn/Ap
n ∣∣ =

|A/Apn |
|A/Apn |

=
pnr

pn
= pn(r−1).

Since Ap
n

C G the proof is complete. �
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The proposition just proved prompts a number of remarks. Firstly, we claim that in the case
when the rank r of the subgroup A is 2 or 3, verification of condition (P2) reduces to checking that
no nontrivial cyclic subgroup of A is normal in G, that is to say, that no nontrivial element of A
is centralised or inverted by the action of x. In fact, if A is not rationally irreducible and r ≤ 3
then A has a G-invariant subgroup N such that either N or A/N is infinite cyclic. In the latter
case the image of one of the endomorphisms of A defined by u 7→ [u, x] or u 7→ uux is contained
in N , hence this endomorphism’s kernel is nontrivial and contains an infinite cyclic G-invariant
subgroup. So, in either case, A has a nontrivial cyclic G-invariant subgroup. This justifies our
claim.

Remark 3.2. Examples of groups satisfying the hypotheses of the previous proposition are now
easily obtained for every prime p. If p is odd let G = Ao 〈x〉, where A = 〈a〉 × 〈b〉 is free abelian
of rank 2 and the action of x on A is defined by ax = abp and bx = abp−1. Then x acts on the
factor A/Ap as an automorphism of order 2 and Ap[A, x] = Ap

〈
abp−2

〉
is maximal in A. Moreover

the matrix expressing the action of x with respect to the basis (a, b) has neither 1 nor −1 as an
eigenvalue, so that conditions (P1)–(P3) in Proposition 3.1 are satisfied. This gives, for every
odd prime p, an example of a polycyclic residually-p group with subgroups which are not almost
p-closed (also in some rather strong sense), thus answering the original question.

For p = 2 the construction must be slightly different: in this case conditions (P1) and (P3) are
incompatible with A having rank 2. However, an example is obtained as G = Ao 〈x〉 where A is
free abelian of rank 3 and x acts, with respect to a fixed basis of A, according to the matrix1 2 0

1 0 1
0 1 −1

 ,

of order 3 modulo 2.

Remark 3.3. It is also worth observing that the proof of Proposition 3.1 is somewhat simpler and
more informative when p > 2. In fact, in the notation used in the proof the factors G/Gt are
metacyclic; hence, if p > 2, they are regular p-groups. It follows that they have exponent pt, so
Gt = Gp

t

for all t ∈ N. A consequence that can be read off from the proof is that Bt+1 < Bt for
all t, hence |A/Bt| = pt, and so Apn = Bn for all n ∈ N.

Corollary 3.4. Let p be an odd prime and n a positive integer. Then there exist an abelian-by-
cyclic, polycyclic group G in RFp and H C G such that | ¯̄H/H| = n.

Proof. Let n = qpλ, where p does not divide q and λ is a non-negative integer. Let G0 be the
residually-p group constructed in Remark 3.2. Then, by the last part of Proposition 3.1, G0 has
a normal subgroup H0 of index pλ in its closure K. Let G = G0 × C where C is infinite cyclic,
and let H = H0C

q. Then K is also the closure of H0 in G, and it is easy to check that the closure
of H is ¯̄H = KC, so that | ¯̄H/H| = n. �

It remains open whether, in our usual setting, normal subgroups can have infinite index in their
closures. Note that the subgroups considered in Proposition 3.1 are subnormal of defect 2 at most.

Next we will look at sufficient conditions for a subgroup of a polycylic residually-p group to be
almost p-closed. First we state and prove a simple lemma.

Lemma 3.5. Let X be a polycyclic group having a normal p-subgroup P contained in the hyper-
centre of X and such that X/P ∈ RFp ∩N(p). Then X ∈ RFp ∩N(p).

Proof. Note first that X ∈ N(p): every finite quotient of X is p-nilpotent modulo its hypercentre
and is therefore p-nilpotent. As X is residually finite, there is a normal subgroup N of finite index
in X such that N ∩ P = 1. If Q/N is the Hall p′-subgroup of X/N then X/Q is a finite p-group
and Q ∩ P = 1. Thus Q embeds in X/P ; therefore Q ∈ RFp and so X ∈ RFp. �

In [3], Corollary A3, Roseblade proves that the weak Artin-Rees property holds for all finitely
generated modules over a group ring JG, where J has prime characteristic p and G is polycyclic,
if and only if G ∈ N(p). We will use only the ‘if’ part of this statement, in the following slightly
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simplified form that can also be proved by elementary, standard arguments. We use multiplicative
notation for the module operation.

Lemma 3.6. Let p be a prime, G an N(p)-group and M a finite G-module of p-power order.
Then for every submodule U of M there exists n ∈ N such that [M, nG] ∩ U ≤ [U,G].

Theorem 3.7. Suppose that p is a prime and G is a polycyclic, abelian-by-N(p) group in RFp
and that H is a subgroup of the hypercentre of G. Then H is almost p-closed in G.

Proof. Suppose that H is not almost p-closed in G. First we settle the case when H ≤ Z(G). We
may assume that H is maximal among the subgroups of Z(G) which are not almost p-closed in G;
then | ¯̄H : H| = p. Let A be a maximal normal abelian subgroup of G such that G/A ∈ N(p). Then
H ≤ A = ¯̄A. It is clear that A/H ∈ RFp, so there exists B ≤ A such that B C G, A/B is a p-group
and H = B ∩ ¯̄H. By applying Lemma 3.6 to the (G/A)-module A/B and its submodule ¯̄HB/B
we obtain a G-invariant subgroup L of A containing B such that L ∩ ¯̄HB = B and A/L lies in
the hypercentre of G/L. Now G/L ∈ RFp by Lemma 3.5, and L ∩ ¯̄H = B ∩ ¯̄H = H, so that H is
closed in G. This contradiction establishes the result for H ≤ Z(G).

Consider now the general case, where H ≤ Zn(G) for some positive integer n. We may again
assume that H is a maximal counterexample and so | ¯̄H : H| = p (note that ¯̄H ≤ Zn(G) since the
latter is closed); we may further assume that the statement holds for all proper quotients of G
which are residually-p. Suppose that D := H ∩ Z(G) 6= 1. By the previous paragraph ¯̄D/D is
a finite p′-group and so ¯̄D ≤ H. By assumption H/ ¯̄D is almost p-closed in G/ ¯̄D, hence | ¯̄H/H|
is a finite p′-number. It follows that also | ¯̄H : H| is a finite p′-number. By this contradiction,
H ∩ Z(G) = 1. Suppose that Z(G) is infinite and let S be an infinite cyclic subgroup of Z(G). If
¯̄H ∩ ¯̄S = 1 then | ¯̄H ¯̄S : H ¯̄S| = p, contradicting the assumption that the result holds for G/ ¯̄S. Thus
¯̄H ∩ ¯̄S 6= 1. As H ∩ ¯̄S = 1 it follows that | ¯̄H ∩ ¯̄S| = p. Since ¯̄S/S is a p′-group, as S ≤ Z(G), we
have ¯̄H ∩ ¯̄S ≤ S. This is a contradiction, and we conclude that Z(G) is finite. But then Zn(G)
is finite, hence H is finite, which is impossible because H is not closed. This final contradiction
completes the proof. �

Remark 3.8. Theorem 3.7 holds, as a special case, for abelian-by-(nilpotent-by-finite) polycyclic
groups. It is a natural question to ask whether it actually holds for all polycylic groups, that is to
say, whether the hypothesis that G is abelian-by-N(p) can be dismissed. Note that our proof uses
this hypothesis only in the case when H is central, so, only this case would need care. Also, one
can reduce the problem to the case of torsion-free nilpotent-by-abelian groups. In fact, it can be
proved that, for every prime p, every polycyclic-by-finite group G in RFp has a torsion-free normal
subgroup J such that G/J is a finite p-group and J/Fit J is torsion-free abelian; in this situation,
a subgroup H is almost p-closed in G if and only if H ∩ J is almost p-closed in J .

One difficulty in tackling the problem of extending Theorem 3.7 to arbitrary polycyclic groups
is that the corresponding extension of Lemma 3.5 does not hold: the following example seems
to suggest that some kind of nilpotency requirement is necessary there. For a positive integer λ
consider the class-2 nilpotent group F = 〈a〉 × 〈b, c〉, where d := [b, c] has order q = 2λ while
a, b and c have infinite order. Let G = F o 〈x〉, where x also has infinite order, ax = aq−1bq,
bx = ac and cx = bc−1. Then G/〈d〉 ∈ RF2, this follows from Proposition 3.1; as a matter of
fact, if λ = 1 then G/〈d〉 is isomorphic to the residually-2 group constructed in Remark 3.2.
However, G /∈ RF2. Indeed, x acts on F/F 2 by means of an automorphism of order 3, hence, for
all n ∈ N, either x2n

or x−2n

acts on F/F 2 in the same way as x. Now, [F 2, F ] ≤
〈
d2
〉

and so
d ∈ [F, x]′

〈
d2
〉

= [F, x2n

]′
〈
d2
〉
. It follows that d lies in every normal subgroup of finite 2-power

index in G, so that G /∈ RF2. Therefore X := F 〈x2〉 /∈ RF2, while X/〈d〉 ∈ RF2 and 〈d〉 ≤ Z(X);
this is the counterexample sought.
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Università degli Studi di Napoli “Federico II”, Dipartimento di Matematica e Applicazioni “R. Cac-

cioppoli”, Via Cintia — Monte S. Angelo, I-80126 Napoli, Italy
E-mail address: cutolo@unina.it

URL: http://www.dma.unina.it/~cutolo/

Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837, USA.
E-mail address: howsmith@bucknell.edu


