
/*   main iteration cycle of the CG algorithm  */

We deployed HADAB strategy into the parallel version of conjugate gradient (CG) algorithm implemented in PETSc library

with the following two objectives:

● to achieve a fault tolerant version of the PETSc CG, through the use of HADAB checkpointing;

● to realize, in a distributed environment, a system to enable migration of CG-based applications on alternative

resources, when faults occur.

In order to develop a fault tolerant version of CG algorithm, we follow an algorithm-based approach: we add to the PETSc

CG routine, the code needed to implement checkpointing and rolling back phases of the HADAB strategy.

N Execution Time 

(secs)

Checkpointing Time 

(secs) 

Total Time (secs) Overhead % 

checkp.

3.9*1017 37630 18666 56296 49.6%

Table 1 - Application execution with checkpointing mechanisms enabled: overhead introduced

in a failure free execution

Itfault Tit lost (secs) Tno C
tot (secs)

1000 5460 37630+5460 = 43090

2000 10920 37630+10920 = 48550

3000 16380 37630+16380 = 54010

4000 21840 37630+21840 = 59470

5000 27300 37630+27300 = 64930

6000 32760 37630+32760 = 70390

Table 2 - Application without checkpointing mechanisms: Tit lost is the time spent to execute again the

iterations before the fault when it occurs at iterations: 1000, 2000, 3000, 4000, 5000, 6000. Tno C
tot is the time

sum of failure free total time of application execution and Tit lost.

Itfault Tit lost (secs) TC
tot (secs) Overheadchkp

1000 (  6 it.) 32.76 56296+32.76 = 56328.76 31%

2000 (12 it.) 65.52 56296+65.52 = 56361.52 16%

3000 (  4 it.) 21.84 56296+21.84 = 56317.84 0%

4000 (10 it.) 54.60 56296+54.60 = 56350.60 -1%

5000 (  2 it.) 10.92 56296+10.92 = 56306.92 -13%

6000 (  9 it.) 43.68 56296+43.68 = 56339.68 -20%

Table 3 - Application with checkpointing mechanisms: Tit lost is the time spent to execute again

only iterations before the fault and from the last saved checkpointing. In last column we report

Overheadchkp = (TC
tot − TnoC

tot)/ TnoC
tot

From Table 1 we can observe that checkpointing mechanisms add about the 50% of overhead on the total execution time in absence of faults. However, if we consider execution with faults,

the presence of checkpointing mechanisms becomes ever more affordable when the iteration number where the fault occurs increases (see last column of Table 3).

Conclusions

The integration of the mechanisms for fault

tolerance, in libraries of scientific software as

PETSc, is a “good investment” because fault

tolerance property of the library modules are

inherited by all applications that use them.

The work gave us the chance to test the quality

of hybrid strategies in the implementation of

mechanisms for checkpointing/migration, even

by using disk-based approaches

About the overhead introduced by the check-

pointing mechanisms, it is related to an

application that, on a big amount of data,

performs a small amount of computations.

Thus checkpointing mechanisms advisability is

much more evident for applications handling

the same amount of data but using algorithms

with more complexity than that here

considered.

● Tests are related with the solution, by 6892 iterations of CG algorithm, of a linear system where

the size N of the sparse matrix is 3.9*1017.

● All tests are performed on the HPC computational resources available at the University of Naples

Federico II by S.Co.P.E. GRID infrastructure.

● Data are stored on a global scratch area based on Lustre parallel file system.
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In recent decades the focus of the scientific community moved from the traditional parallel computing
systems to high performance computing systems for distributed environments.

These systems, generally constituted by HPC resources (clusters) geographically scattered, provide
increasing computing power and are characterized by a great resources availability (typical of distributed
systems) and a high local efficiency (typical of traditional parallel systems).

These environments are characterized by high dynamicity in resources load and by a high failure rate, thus
fault tolerance and performance mantainance are key issues.

For many years researchers are working to identify standard methods to solve the problem of fault tolerance
and efficiency of software designed for distributed environments.

Design and deploy of a
checkpointing/migration
system, in order to enable fault
tolerance in parallel
applications running in a
distributed environments.

A problem solution

HADAB: The Hybrid, Adaptive, Distributed, Algorithm-Based checkpointing

Hybrid, because combines strategies: a disk based variant of diskless parity-based and
coordinated checkpointing
Adaptive, because different checkpointing techniques are performed each with different
frequency, with the aim to reduce the total overhead
Distributed, because checkpointing data are periodically saved on a remote storage resource
Algorithm-based because, although hard to implement, this approach is still the safest method
to select and reduce the checkpointing data amount.

Our  solution

A case study: HADAB deployment on the 
PETSc Conjugate GradientHADAB checkpointing strategy

Combining these two strategies it is possible to survive up to p-1 faults but not to the checkpointing processor
fault. To avoid this point of failure, after a coordinated checkpointing, we save local checkpointing data on a
remote storage in asyncrosous way. Thus the application can survive also to p faults and the total I/O
overhead due to checkpointing doesn't encrease.

1. Parity based strategy introduces a lower I/O overhead than a non-coding one, but it can tolerate only one
fault at a time.

2. Coordinated checkpointing, instead, can tolerate up to p-1 (where p is the number of processes) faults at a
time, but it is more expansive in terms of I/O overhead.

3. For this reason in our strategy each checkpointing is executed with a rate that depends on the extimated
execution time in a way to not excessively increase the total checkpointing overhead.

Some  results and conclusions

About the recovery phase, the

CheckCheckpoint routine determines, between

the two types (coordinated or parity-based), the

checkpointing that allows to restore the

application from the highest iteration.

About the checkpointing phase, with a

frequency respectively equal to ck_codif for

parity-based and ck_coord for coordinated

checkpointing, PetscCheckpointingCodif and

PetscCheckpointingCoord routines are

executed.

PetscStartCopyThreads and

PetscStartCollectThreads perform

the asynchronous distributed

checkpointing data saving on storage

resources external to the execution

cluster, usefull if application have to

migrate on an alternative resource.

The PetscCheckFreq routine modifies the

checkpointing frequency on the bases of

both: the average of past iterations

execution time and the real data saving

duration for each checkpoiting type

The problem
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The application starts with φ1

and φ2 default values. During the
execution those values are
changed on the bases of
estimated execution time to not
encrease the total I/O overhead.


